
Kernun UTM Handbook

Trusted Network Solutions, a.s.

March 30, 2023

Kernun UTM Handbook

Copyright © 2000–2023 Trusted Network Solutions, a.s.

2

C o n t e n t s

How to Read the Documentation 11

1 Kernun UTM Product Overview 13

1.1 Kernun UTM . 13

1.2 Kernun Clear Web . 13

2 Kernun UTM System Management 15

2.1 Installation Media, Releases, and Builds . 15

2.2 Disk Space Layout . 16

2.3 Licensing . 17

2.4 Boot Manager . 20

2.4.1 ZFS boot manager . 20

2.4.2 LEGACY (UFS) boot manager . 20

2.4.3 Security notice . 22

2.5 Installation . 22

2.5.1 Standalone Installer . 23

2.5.2 Initial Configuration . 27

2.5.3 Installation from the GUI . 31

2.5.4 Installation from the Command Line . 33

2.5.5 Enabling Serial Console Output . 36

2.6 Backup and Restoring . 37

2.6.1 Backup and Restoring from the GUI . 38

2.6.2 Backup and Restoring from the Command Line 38

2.6.3 Restoring a Backup in the Standalone Installer 40

2.7 Upgrade . 43

2.7.1 Upgrade from the GUI . 46

2.7.2 Upgrade from the Command Line . 47

2.8 Audit . 50

2.9 Emergency Repair Environment . 51

2.10 Running in virtual machine environment . 52

2.10.1 VMware . 53

2.10.2 Hyper-V . 53

2.10.3 VirtualBox . 53

3

CONTENTS

2.10.4 XEN . 53

3 User Interface 55

3.1 Graphical User Interface . 55

3.1.1 Kernun GUI Launcher . 56

3.1.2 GKAT—Management Console . 57

3.1.3 Logs . 67

3.1.4 GCML — Configuration . 69

3.1.5 Locking . 75

3.2 Command Line Interface . 79

3.2.1 Command Line Interface Details . 79

3.2.2 C

3

H — Command Completion and Context Help 79

3.2.3 KAT — Kernun UTM Admin Tool . 80

3.2.4 CML — Configuration Meta Language . 83

3.3 Administrative Utilities . 87

4 Configuration Basics 89

4.1 Configuration Language . 90

4.2 The Initial Configuration . 93

4.2.1 Global Level . 94

4.2.2 System . 95

4.2.3 SSH Server . 96

4.2.4 Local Mail Handling . 97

4.2.5 Application Proxies and ACLs . 97

4.2.6 DNS Proxy . 99

4.2.7 HTTP Proxy . 100

4.2.8 FTP Proxy . 102

4.2.9 HTTPS and SSH Proxy . 102

4.2.10 SMTP Proxy . 103

4.2.11 IMAP4 and POP3 Proxy . 107

4.3 Changing the Configuration . 109

4.3.1 Adding TCP Proxies . 111

5 Advanced features 117

5.1 Packet Filter . 117

5.1.1 Packet Flow . 117

5.1.2 Packet Filtering . 119

5.1.3 Antispoofing Using Packet Filter . 121

5.1.4 Selective Packet Forwarding . 122

5.1.5 Network Address Translation . 124

5.1.6 Packet Forwarding along with NAT . 125

5.1.7 Defending against DoS/DDoS Attacks . 126

5.1.8 Honeypot . 128

5.2 System Configuration . 128

4

CONTENTS

5.2.1 User Accounts . 128

5.2.2 Network Interfaces . 128

5.2.3 Static Routes . 129

5.2.4 Dynamic IP routing with BIRD . 129

5.2.5 File /etc/rc.conf . 131

5.2.6 Kernel Parameters in /etc/sysctl.conf 132

5.2.7 Configuration of the cron Daemon . 132

5.3 Caching Name Server . 133

5.4 DNS and DHCP Services . 134

5.4.1 DNS Server for the Local Zone . 134

5.4.2 DHCP Server for the Local Network . 135

5.5 Time Synchronization with NTP . 136

5.6 Monitoring of Kernun UTM Operation . 137

5.6.1 Logging Configuration . 137

5.6.2 Log Rotation . 139

5.6.3 Monitoring of Active Sessions . 139

5.6.4 Proxy Statistics Generation . 139

5.6.5 Monitoring of System Parameters . 140

5.7 Networking in Proxies . 141

5.7.1 Transparent Proxies . 141

5.7.2 A Proxy and a Server on the Same Port . 144

5.7.3 Listening on a port range . 145

5.8 H.323 Proxies . 145

5.9 SIP Proxy . 145

5.10 SQLNet Proxy . 146

5.11 UDP Proxy . 147

5.12 Cooperation of HTTP and FTP Proxies . 148

5.13 Secure Communication Using SSL/TLS . 149

5.14 User Authentication . 151

5.14.1 Authentication Methods . 151

5.14.2 Authentication in FTP Proxy . 152

5.14.3 Basic Authentication in HTTP Proxy . 154

5.14.4 Kerberos Authentication in HTTP Proxy 156

5.14.5 Kerberos Authentication in Transparent HTTP Proxy 161

5.14.6 NTLM Authentication in HTTP Proxy . 163

5.14.7 HTTP Authentication Proxy . 166

5.14.8 Out of Band Authentication . 169

5.15 Antivirus Checking of Data . 171

5.15.1 Connecting with ClamAV . 171

5.15.2 Connecting via ICAP protocol . 172

5.15.3 Antivirus Results . 172

5.15.4 Antivirus in Proxies . 173

5.15.5 SMTP Proxy: Discarding Infected Mails . 173

5

CONTENTS

5.15.6 SMTP Proxy: Replacing Infected Documents 174

5.15.7 Antivirus in POP3 and IMAP4 Proxies . 176

5.16 Antispam Processing of E-mail . 177

5.16.1 Antispam Engine . 177

5.16.2 White-, Grey-, and Blacklists . 179

5.17 Content Processing . 180

5.17.1 Content Type Detection . 180

5.17.2 HTML Filtering . 182

5.17.3 MIME Processing . 185

5.18 Filtering HTTP Requests by URI . 185

5.18.1 URL Matching and Rewriting . 186

5.18.2 Blacklists in HTTP Proxy . 187

5.18.3 Kernun Clear Web DataBase . 187

5.18.4 Using External Web Filter . 193

5.19 HTTPS Inspection . 195

5.19.1 Certificates . 195

5.19.2 HTTPS inspection ACL flow . 196

5.19.3 Transparent mode . 197

5.19.4 Non-transparent mode . 199

5.19.5 SNI inspection in HTTPS . 199

5.19.6 TLS termination . 201

5.20 Adaptive Firewall . 201

5.20.1 IDS agent variables . 204

5.20.2 Rules update . 204

5.20.3 Rules modification . 205

5.21 Traffic Shaping . 205

5.22 Virtual Private Networks — OpenVPN . 208

5.22.1 Remote Access Server . 209

5.22.2 Network to Network . 213

5.22.3 Accessing the virtual network . 215

5.22.4 Logs . 216

5.23 Virtual Private Networks — IPsec . 216

5.23.1 IPsec Configuration . 217

5.24 High Availability Clusters . 218

5.24.1 Controling multiple systems from GUI . 224

5.24.2 Sharing the configuration among systems 225

5.25 Kernun Branch Access . 228

5.25.1 Description and Plug-in . 228

5.25.2 Installation . 229

5.25.3 Configuration . 229

5.25.4 Diagnostics and Troubleshooting . 231

5.26 IPv6 . 232

5.27 Honeypot . 234

6

CONTENTS

A Kernun UTM Reference (1) 237

HtmlMatchPasswd.pm . 238

clear-web-db-update.sh . 240

clear-web-db . 241

cluster-sync . 243

diskdb . 245

fwpasswd . 249

grep-debug . 250

grep-stats . 251

html-match-db . 252

kernun-audit . 254

license . 256

log-ts . 257

mkblacklist . 258

monitor . 259

ooba-acs . 263

ooba-samba . 265

oobctl . 267

printblacklist . 268

quarc.sh . 269

resolveblacklist . 272

rrd . 273

sum-stats . 275

switchlog . 278

triplicator . 280

B Kernun UTM Reference (5) 283

acl . 284

adaptive-firewall . 297

alertd . 323

alertd.cfg . 325

altq . 328

antivirus . 329

application . 336

atr . 354

atrmon.cfg . 361

auth . 368

clear-web-db . 372

common . 379

cwcatd.cfg . 390

dhcp-server . 394

dns-proxy . 400

dns-proxy.cfg . 413

7

CONTENTS

ftp-proxy . 421

ftp-proxy.cfg . 436

gk-proxy . 445

gk-proxy.cfg . 449

h323-proxy . 455

h323-proxy.cfg . 460

http-cache . 467

http-control . 470

http-proxy . 471

http-proxy.cfg . 508

ica . 521

icap-server . 525

icap-server.cfg . 540

imap4-proxy . 550

imap4-proxy.cfg . 564

interface . 574

ipc . 581

ipsec . 583

kernun.cml . 592

ldap . 602

license . 607

listen-on . 610

log . 613

mod-antispam . 617

mod-html-filter . 620

mod-mail-doc . 627

mod-match . 646

monitoring . 650

nameserver . 652

netio . 658

nls . 662

ntp . 664

openvpn . 668

packet-filter . 691

pf-control.cfg . 708

pf-queue . 714

pike . 719

pikemon.cfg . 725

ping . 729

pop3-proxy . 731

pop3-proxy.cfg . 743

proxy-ng . 753

radius . 770

8

CONTENTS

resolver . 772

router . 780

rtadvd . 789

sip-proxy . 791

sip-proxy.cfg . 799

smtp-proxy . 805

smtp-proxy.cfg . 842

snmpd . 853

source-address . 858

sqlnet-proxy . 861

sqlnet-proxy.cfg . 869

ssh . 876

ssl . 880

sysctl . 888

system . 891

tcp-proxy . 946

tcp-proxy.cfg . 954

tcpserver . 962

test-expr . 967

time . 969

udp-proxy . 972

udp-proxy.cfg . 978

udpserver . 984

C Kernun UTM Reference (7) 987

access-control, acl . 988

adaptive-firewall . 992

antivirus . 994

auth . 997

cluster . 1000

configuration . 1002

data-matching . 1010

doctype-identification . 1012

host-matching . 1015

ips . 1020

kernun . 1023

logging . 1026

monitoring . 1035

netio . 1036

port-range-listen . 1039

resolving . 1040

tcpserver . 1043

time-matching . 1047

9

CONTENTS

traffic-shaping . 1049

transparency . 1050

udpserver . 1054

D Kernun UTM Reference (8) 1057

af-db.sh . 1058

alertd . 1060

atrmon . 1061

bootmgr . 1064

cml . 1066

cwcatd . 1092

dns-proxy, test-dns . 1093

ftp-proxy, test-ftp . 1103

gk-proxy, test-gk . 1110

h323-proxy, test-h323 . 1113

http-proxy, test-http . 1117

icamd . 1136

icap-server, test-icap . 1138

icasd . 1141

imap4-proxy, test-imap4 . 1143

kat . 1147

kavhttpd . 1156

pf-control . 1159

pikemon . 1161

pop3-proxy, test-pop3 . 1164

sip-proxy, test-sip . 1168

smtp-proxy, test-smtp . 1172

sqlnet-proxy, test-sqlnet . 1183

sysmgr . 1186

tcp-proxy, test-tcp . 1191

udp-proxy, test-udp . 1194

10

H o w t o R e a d t h e D o c u m e n t a t i o n

The documentation of Kernun UTM consists of several parts; all of them are available in the

electronic form. The complete documentation is installed with the software in the directories

/usr/local/kernun/doc and /usr/local/kernun/man, so it is always available on any

Kernun UTM system. The documentation is also contained in the kernun-doc directory on the

installation medium and is therefore also accessible before the installation. The Kernun UTM

documentation is available in the following formats:

Text files Only several short documents that should be read before the installation of Ker-

nun UTM are available as plain text files:

KERNUN-CHANGES.txt List of changes between individual versions of Kernun UTM.

KERNUN-INSTALL.txt Short installation instructions. This file basically refers to

Chapter 2 in the Kernun UTM Handbook.

KERNUN-RELNOTES.txt Release notes; various notices concerning the installation, config-

uration, and use of Kernun UTM.

PDF The Kernun UTM Handbook, that is, this document. The PDF version of the handbook

contains also the reference pages except for section 6. This format is suitable for printing

and reading as a book, basically from the beginning to the end.

HTML The Kernun UTM Handbook. The HTML version of the handbook contains also all the

reference pages. It is available either as a single very long HTML file, or broken into many

smaller HTML files. This format is suitable as a reference, with the possibility of hypertext

navigation between its parts.

Manual pages The reference part of the documentation is available also in the form of the

standard manual pages that can be viewed using the man(1) command. The manual pages

are categorized into sections, similarly as the system manual pages. Kernun UTM uses the

following manual page sections:

Section 1 User commands, mainly various tools for runtime monitoring and generation of

statistics.

Section 5 Configuration. Individual sections of the

/usr/local/kernun/conf/kernun.cml configuration file are documented in this

section.

11

HOW TO READ THE DOCUMENTATION

Section 6 For each log message, except for the debugging ones, there is a manual page

that describes the conditions, under which the message is logged, and the possible

consequences of its appearance in the Kernun UTM log. The manual pages’ names are

the IDs of the corresponding messages.

Section 7 The manual pages in this section explain general concepts. They cover features

that are common to many parts of Kernun UTM, such as proxies.

Section 8 Administrative commands, including application proxies and configuration man-

agement tools.

If you are looking for the description of a Kernun UTM feature, you can find its explanation

in Section 8 (if it is a separate program), or in Section 7 (if it is a part of a program). If the

feature is configurable, its configuration is defined in detail in Section 5. The corresponding

manual pages in Section 5 and Section 7 or 8 often have the same name; they are distinguished

only by the section number.

This Handbook will help you learn how to administer Kernun UTM. An overview of individual

products from the Kernun family is given in Chapter 1. The first steps and the installation

instructions are provided in Chapter 2. For the first time, it suffices to read only the sections

needed for the initial installation (Section 2.3, Section 2.5.1, and Section 2.5.2). Reading of the

remaining parts of the chapter can be postponed until you need to know more about alternative

installation methods, upgrades, backups, or disk layout. If you already have a preinstalled and

licensed instance of Kernun UTM, you can skip Chapter 2 altogether. Chapter 3 contains an

introduction to the graphical and command line administrative interface. Beginners will probably

find the GUI (Section 3.1) to be the easiest way of controlling Kernun UTM. If, for any reason,

you cannot (or do not want to) use the graphical interface, you find the information about the

command line tools in Section 3.2 and Section 3.3. If you know how to connect to a running

Kernun UTM system, monitor and control its operation, view logs, and edit the configuration,

you may learn principles of the Kernun UTM configuration and find an explanation of the initial

configuration generated during the installation in Chapter 4. Chapter 5 deals with configuration

of advanced features . At any time, details about features, commands, configuration syntax and

semantics, as well as the meaning of log messages can be found in the reference pages, which are

contained in the Appendix of this Handbook and available also in the form of manual pages.

12

Chapter 1

K e r n u n U T M P r o d u c t O v e r v i e w

The Kernun family consists of several products that are each useful for a specific set of network

security tasks. We will provide a brief introduction to each of them now.

1.1 Kernun UTM

Kernun UTM is a new type of a UTM secure device that contains multiple features, such as firewall,

antivirus, antispam, antispyware, content filtering, intrusion detection (IDS or IPS), routing, QoS

or VPN, in a single package. It has been designed to protect private data networks and DMZ

segments (demilitarized zones, including servers with public services, for example WWW, FTP,

mail servers, secure remote VPN connection, etc.). It provides antivirus and antispam protection,

as well as an ability to block unsuitable protocols (Skype, ICQ, etc.) and unsuitable Web pages.

Kernun UTM is highly flexible during the process of secure policy implementation. This

includes simple rules of status inspection, as well as sophisticated management on the level of

application protocols. Thanks to its ability to inspect the contents of each application protocol,

this technology is the ideal solution for environments with high security demands.

A typical implementation of the Kernun UTM technology is located on the perimeter of the

protected network as a gateway between the Internet and the internal network. All connections

to and from the Internet are authorized or prohibited at a central location. Kernun UTM also

serves as an antivirus and antispam gateway, and as a server, where VPN connections for clients

who work from home or while travelling and of VPN tunnels between branches are terminated.

Public service network servers (DMZ) are usually located on another network interface.

1.2 Kernun Clear Web

Kernun Clear Web is a web filter. It controls access of users to the WWW according to a con-

figured policy. The main functions of Kernun Clear Web are: web server categorization, user

authentication, definition of web access policy, antivirus protection, traffic monitoring, statistical

reports, and web-based graphical user interface.

The interface for administration of Kernun Clear Web is completely different from that of

Kernun UTM and it is not covered by this Handbook. For more information about use and

13

CHAPTER 1. KERNUN UTM PRODUCT OVERVIEW

management of a Kernun Clear Web system, see its own documentation.

14

Chapter 2

K e r n u n U T M S y s t e m

M a n a g e m e n t

In this chapter, we explain how to create and manage a Kernun UTM installation. The system

management tasks include installation, upgrade, system backup and restore. An auditing tool

can be used to receive notification of discovered bugs and available new software updates. We

also provide information about the use of license files and installation of up to three independent

Kernun UTM versions on a single computer.

Kernun UTM uses (slightly modified) FreeBSD as its underlying operating system. Although

experience with FreeBSD or another operating system based on Unix would certainly be beneficial

when performing advanced administrative tasks, it is not required. Kernun UTM provides its own

set of powerful tools for installation, configuration, and monitoring of operation.

2.1 Installation Media, Releases, and Builds

Each Kernun UTM release is distributed using the following types of distribution media:

USB flash drive image A bootable disk image, which contains the installation tools and the

full installation image.

Full image An installable image of the Kernun UTM system partition. It can be installed either

using the installer booted from the installation medium, or from a running Kernun UTM

system using the Kernun GUI or the sysmgr(8) command line tool. Each full image is

uniquely identified by its build number.

Patch image A patch image contains only the differences between two versions of Kernun UTM,

and is therefore much smaller than the full image. Patch images are usually created for

maintenance updates. Their sole purpose is to optimize the amount of data that needs to

be downloaded in order to update a Kernun UTM installation to the current version. The

result of installation is the same, no matter whether the full image or a patch image is used;

the only difference is in the size of the image. A patch image is identified by its build number

and by the build number of its base image.

15

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Kernun UTM releases are identified by version and build numbers. The version number de-

notes the source code version of the Kernun UTM software (the operating system, application

proxies, administrative tools, preinstalled third-party software packages, etc.). The format of the

version number is either 3.0 for releases (containing new features), or 3.0.1 for patch releases

(containing bug corrections and minor improvements). Some bug fixes are implemented using the

fast development cycle and are distributed as hotfix releases, numbered e.g. 3.0.1-h3.

The build number identifies the particular build, i.e., a binary image that comprises the core

Kernun UTM software, the operating system, and third-party software, such as antivirus scanners,

system monitoring tools, or administrative utilities. A build number contains the version number

(formatted without the dots and with a fixed number of digits), the date and time when the

image was created, and the hardware architecture. Examples: 030000h00.200809241501.i386 or

030001h00.200810170823.amd64.

2.2 Disk Space Layout

Kernun UTM is able to use one or two disk devices. Each disk device is either a physical disk, or a

logical disk provided by a hardware RAID. The disk space is divided into three system partitions,

one data partition, and swap space. In single disk configurations, all four partitions and the swap

space are located on the single disk. In configuration with two disks, the system partitions are on

one disk, whereas the data partition and the swap space on the other.

Each system partition may contain a complete Kernun UTM installation including the operat-

ing system, application proxies, administrative tools, and additional software. The data partition

contains logs, statistics, installation images, and backups. The contents of the data partition are

shared by all Kernun UTM installations in the system partitions.

The use of three system partitions minimizes downtimes during reinstallations and upgrades.

While the system started from one system partition is fully operational, it is possible to install

another version in the second partition. Then the new version can be started by a simple reboot.

It is always possible to revert to the old version if anything goes wrong with the new one. The

next upgrade will be installed in the first partition while running the system from the second one.

In this way, two system partitions can be alternated for subsequent upgrades. The third system

partition can be used in a similar fashion, so that two previous versions are always available, or

for an alternative installation, e.g. when testing a completely new configuration.

When a system partition is booted, it becomes the root file system. The other system partitions

can be mounted to the directories /1, /2, and /3. There are lines in /etc/fstab prepared for

this, but the partitions are not mounted automatically. The data partition is always mounted as

/data automatically. It contains the following directories:

/data/backup System backups are stored here. They can be used for restoration or copied to

another medium.

/data/dist This is where Kernun UTM installation images are kept. During each installation,

the installed image is stored here for future reuse.

/data/log This directory contains log files. The log directory /var/log from all system par-

titions is symlinked here.

16

2.3. LICENSING

/data/rrd This directory contains database files used to store system data for system perfor-

mance monitoring, as well as graphs generated from this data.

/data/statistics Reports with detailed statistics of proxy operation are stored in this direc-

tory.

The standard disk space layout is created during the first installation of Kernun UTM on a

new computer. It can be re-created or modified using the installer booted from the installation

medium, but such action deletes all data on the system and data disks.

Warning

It is strongly recommended not to modify the standard disk layout, as many parts of Ker-

nun UTM depend on it. You may add additional file systems and directories, but do not

delete or move any file system or directory created by the Kernun UTM installer.

2.3 Licensing

Kernun UTM requires a valid license file to operate properly. Without a license file, the software

can be installed, the operating system runs allowing both local and remote administrator access,

but no licensed component may be started. The licensed components include all application-level

network proxies and some additional modules (for example, antivirus, antispam, and Web filter).

The license file is a cryptographically signed text file. It contains the following information:

• The customer identification

• An optional identifier used to distinguish different licenses of the same customer

• A unique serial number

• The license size (the permitted number of protected network devices)

• A computer identifier, if the license is valid exclusively with particular hardware.

• The expiration date, if the license is valid for a limited time.

• (Only Kernun 3.3 and newer) The expiration date of upgrade subscription. Before this date,

new features (components) added to Kernun will be automatically licensed if covered by the

subscription. After this date, existing features will continue to work (until the optional

license expiration date), but new features will not be licensed.

• (Only Kernun 3.2 and older) The release version number, if the license is valid for a single

Kernun release (e.g., 3.1) only. The license can be used on all patch releases and hotfixes of

the licensed release (e.g, 3.1.2 or 3.1.1-h5), but not on other releases (e.g., 3.2).

• The list of licensed components.

17

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

• (Only Kernun 3.3 and newer) The list of licensed groups of components. Licenses are usually

issued for groups of components. For example, there are groups corresponding to various

Kernun products, such as Kernun Net Access or Kernun Kernun Mail Access. The use of

component groups makes it possible to add new licensed components to users with active

subscription without the need for a new license file.

• (Only Kernun 3.3 and newer) Various parameters of the licensed components.

• A cryptographic signature used to verify the integrity of the license.

Note

• License files from Kernun 3.0 are not valid for 3.1 and newer releases.

• Licenses from Kernun 3.1 and 3.2 are recognized by Kernun 3.3 and newer.

The license file must be installed as /usr/local/kernun/license.dat. The license file is

stored in the system partition and must therefore be reinstalled after each installation or upgrade.

The license file can be copied to Kernun UTM either from the command line using SCP, or at the

License tab of the GUI System Manager.

The set of configurable components changes depending on the type of the Kernun product and

the set of licensed components. For example, if the HTTP proxy is not licensed, it should not be

configured. A single configuration file may comprise configurations of many Kernun systems with

different products. In each configuration section related to a single system (section system), the

product can and should be specified using the product item. The product specification consists

of the Kernun software type, the list of licensed components, the list of licensed component groups,

and the upgrade subscription expiration value. The product specification should be filled according

to the contents of the license file present in the configured system. When the configuration is

verified, a check is made that only components usable in the selected products are configured.

When the configuration is applied, it is checked that the product specified in the configuration

complies with the product installed in the target Kernun system. At the time of writing of this

text, there are two product types available:

• kernun — all Kernun products;

• unspecified — the product type is not specified and will not be checked when applying

the configuration.

The recognized names of licensed components and component groups are the same as in the

license files. Components:

• product-kernun, product-kernun-net-access,

product-kernun-mail-access, product-kernun-vpn-access,

product-kernun-office-access, product-kernun-web-access,

product-kernun-secure-box, product-kernun-secure-box-retail — Ker-

nun product names;

18

2.3. LICENSING

• dns-proxy, ftp-proxy, gk-proxy, h323-proxy, http-proxy,

imap4-proxy, pop3-proxy, sip-proxy, smtp-proxy, sqlnet-proxy,

tcp-proxy, udp-proxy — individual proxies;

• icap-server — server for the ICAP protocol;

• mod-antivirus — module for communication with an antivirus in proxies;

• mod-antispam — module for spam checking in mail proxies;

• mod-pwf — module for communication with an external Web filter in the HTTP proxy;

• http-cookie — support for special handling of security-related HTTP cookies, for exam-

ple, various session ID cookies;

• mod-match, mod-match-replace — module for matching and replacement of HTML

form data.

Component groups:

• kernun-net-access, kernun-mail-access, kernun-vpn-access,

kernun-office-access, kernun-web-access, kernun-secure-box,

kernun-secure-box-retail — individual Kernun products;

• modules-data-scanning — modules for security scanning of data, such as the antivirus

module;

• modules-secure-box — special modules for the Kernun Secure Box products;

• modules-web-filter — modules providing URL-based categorization and filtration of

WWW servers.

When the initial configuration file is created (see Section 2.5.2), the product type is detected,

the currently installed license file is examined, and the system.product item is set appropriately.

Therefore, it is recommended to install the license file during the installation of the system, before

the initial configuration script is executed. The license file can be installed by the standalone

installer, as described in Section 2.5.1. If the license file is not installed during the generation of

the initial configuration or if a new system is being added to an already existing configuration,

the product item must be set manually.

If you set the product item manually, select the correct product type and enter

the list of licensed components, the list of licensed component groups, and the upgrade

subscription expiration date according to your license file

1

. It is also possible to include the

samples/include/products.cml file in the main configuration file. This file contains

definitions of variables that can be used instead of the system.product item.

1

Collect values from lines starting with component:, group:, and upgrade: in the license file.

19

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Note

Some products may have optional components. Their respective variables in

samples/include/products.cml have a parameter containing the list of licensed

optional components. For example, Kernun Net Access with the optional antivirus and an-

tispam modules will be specified as:

$PRODUCT-KERNUN-NET-ACCESS { mod-antivirus, mod-antispam };

Even if no optional components are licensed, the empty list must be written explicitly as the

variable’s parameter:

$PRODUCT-KERNUN-NET-ACCESS { };

Variables for products without optional components do not have a parameter and are there-

fore written without the braces:

$PRODUCT-KERNUN-MAIL-ACCESS;

2.4 Boot Manager

The Kernun UTM boot manager is located on the system disk. It is installed during the initializa-

tion of the system performed by the standalone installer. Depending on the partitioning scheme,

there is either ZFS or LEGACY (UFS) boot manager.

The Kernun GUI or the command line bootmgr(8) utility can be used to change partition

labels, enable and disable booting from individual partitions, and set whether the default boot

partition is fixed, or is always changed to the last booted partition.

2.4.1 ZFS boot manager

There is a default partition selected for boot, which boots automatically. It is also possible to select

another partition during the boot sequence. The boot manager displays the menu as shown in

Figure 2.1. Press option 7 to select the boot partition. Another menu is displayed (see Figure 2.2).

In this menu, press the number that corresponds to the system to be booted. For example, press

option 5<Enter> to boot the Kernun 3.10.6.h3.

2.4.2 LEGACY (UFS) boot manager

The boot manager displays labels of up to three system partitions and allows selection of the

partition to boot from by pressing F1, F2, or F3.

F1 Kernun 3.0 2008/10/01 07:36 (030000h00.200809241501.i386)

F2 Kernun 3.0 2008/10/18 05:21 (030000h00.200810170852.i386)

F3 Kernun 3.0.1 2008/11/15 07:22 (030001h00.200811142135.i386)

20

2.4. BOOT MANAGER

Figure 2.1: ZFS boot manager screen 1

Figure 2.2: ZFS boot manager screen 1

21

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Default: F2

If no option is selected, the default one is chosen automatically after a timeout.

2.4.3 Security notice

Anybody with physical access to the Kernun UTM console may select a system partition to boot

from, boot a different kernel or kernel modules, or boot to the single user mode and access the

system without a password. If the system console is not physically secure, the following actions

can be done to protect the system against unauthorized access:

1. Disable boot device selection in the BIOS (for example, by setting a BIOS password).

2. Enable only the desired system partition in the boot manager (using bootmgr(8)).

3. Add line “-n” to /boot.config. This prevents interrupting the boot process in the stages

one and two.

printf --

’-n\n’ >

/boot.config

4. Protect the loader with a password by adding a password line to /boot/loader.conf.

Make the file readable only by root.

#

echo

’password="SECRET"’ >>

/boot/loader.conf # chmod

go-rw

/boot/loader.conf

5. Force verification of the root password as a condition for entering the single user mode.

Locate the line beginning with “console” in /etc/ttys and change its last word to

“insecure”.

2.5 Installation

Kernun UTM can be installed using either the standalone installer booted from the installation

medium, or command line or GUI system management tools. The first installation on a new

computer must be done using the standalone installer, which does not require an already installed

Kernun UTM with initialized system and data disks and is able to initialize the standard disk

layout, as described in Section 2.2. Once there is at least one working Kernun UTM instance

on the computer, further installations can by done from it using either the GUI, or the sysmgr

command line tool. The standalone installer is able to install in any system partition. The GUI

and command line installations cannot be performed in the system partition that contains the

currently running Kernun UTM instance.

22

2.5. INSTALLATION

Note

Regardless of the installation method, the newly installed system partition is, by default,

enabled in the boot manager and made the default selection for the next boot. The boot

manager can be reconfigured using the GUI or the command line utility bootmgr(8).

2.5.1 Standalone Installer

The standalone installer is normally used only for the first installation on a new computer, after

replacing a disk, or if disk repartitioning is needed. In other situations, installation using the GUI

(Section 2.5.3) or the command line (Section 2.5.4) is more comfortable.

Note

Since version 3.11.7-h3, the installer boots using only UEFI (with disabled Secure Boot),

while previous versions used only legacy BIOS. If your hardware does not support UEFI,

consider installing an older version and upgrading it to the latest version.

To start the standalone installer, you need the Kernun UTM installation medium

2

. Boot from

the USB flash drive and following the boot loader and kernel messages, you will see the installer

menu.

*** KERNUN INSTALLATION ***

Build 030000h00.200809241501.i386

1. Install Kernun

2. Check for existing Kernun installations

3. Restore backup

4. Start rescue shell

5. Mount Kernun file systems

6. Resize installer’s in-memory temporary file system (current size 32m)

7. Halt

8. Power down

9. Reboot

0. Install license

Select action:

Press 1<Enter>. If the disk partitioning for Kernun UTM has already been done, the de-

vice names of the system and data disks are displayed and the installer asks whether you want

repartitioning.

2

You can use dd on Linux / BSD or https://github.com/openSUSE/kiwi/downloads on Windows to copy

the USB flash drive image to the device.

23

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Detected Kernun system disk ad0

Detected Kernun data disk ad0

Repartition disks (y/n)?

Reply n to skip disk partitioning. If you reply y or if the disk partitioning has not been done

yet, the system suggests the default installation:

Default installation parameters:

System disk: ada0 (131072 MB)

SSD disk: ada1 (524288 MB)

Swap size: 8192 MB

Install with default parameters? (y/n)

Reply y<Enter> to finish the installation with default parameters. If you reply n, the instal-

lation parameters are asked. Select the system disk and partitioning schema:

Detected disk devices:

ada0 131072 MB

ada1 524288 MB

media RPM non-rotating

Kernun system disk(ada0 ada1) [ada0]: <Enter>

Use ZFS (y/n) y<Enter>

Always select a disk that the BIOS (or UEFI) will be able to boot from as the system disk

3

.

If there is only one disk device, the selection of devices will be skipped and the single device will

be used. The ZFS partitioning schema is prefered over the legacy (UFS) schema. Note that ZFS

boots using UEFI while UFS boots using legacy BIOS.

Tip

When the installer asks a question, it offers a default value in brackets. Press <Enter> to

select the default value.

The installer then asks for the swap size. Reasonable default value is provided. It can be

changed if the default value does not meet the expectations.

System disk size is 131072 MB

Memory size is 4096 MB

Swap partition size in MB [8192]: <Enter>

Disk ada0 [131072 MB] will contain 3 GPT partitions:

ada0p1 with freebsd-boot

ada0p2 with freebsd-swap [8192 MB]

3

It is usually the first disk: da0 (SCSI), ad0 (PATA), ad10 (SATA).

24

2.5. INSTALLATION

ada0p3 with freebsd-zfs

Use these values (y/n)? y<Enter>

Disk partitioning will delete contents of selected disks,

continue (y/n)? y

If you want to cancel the installation process, answer n to the last question. It will return to

the main menu without changing the disk contents.

Warning

Answering y to the “continue” question will initialize the selected system and data disks with

the standard disk layout for Kernun UTM. Any existing contents of the disks will be lost.

If there is a SSD disk, it is offered to be used. Select the device name to use the SSD disk, or

select NO not to use it.

Detected disk devices:

ada1 524288 MB

media RPM non-rotating

Create SSD disk (NO ada1) [NO]: ada1<Enter>

Creating KBI disk on ada1

Messages concerning creation of disk partitions and file systems will then be displayed, followed

by:

Current Kernun installations:

Boot manager on ZFS pool ’kernun’

F1: Unused

F2: Unused

F3: Unused

type=Kernun ZFS boot manager ver. 1.0

current_booted=NONE

bootable=

update=1

default_selection=NONE

Select partition for installation (1 2 3) [1]: <Enter>

Overwrite partition /dev/ad0s1 by new Kernun installation (y/n)? y

These lines show the configuration of the Kernun UTM boot manager, see bootmgr(8). The

first installation will be usually performed in the first system partition, so just press <Enter>.

Finally, you are asked to confirm whether you want to overwrite the selected system partition.

The installer creates any missing standard directories in the data partition, creates a new empty

file system in the selected system partition, and displays a list of the installation images (identified

by build numbers) available on the medium and in the /data/dist directory. If there is more

than one image, one can be selected, with the newest image as the default. If the image from the

25

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

medium is selected, it is first copied to /data/dist. The selected image is then unpacked to

the system partition. The /etc/fstab file in the newly installed partition is adjusted according

to the system partition number. The build number of the installed Kernun UTM is stored in the

/kernun-version file in the system partition. The content of the newly installed Kernun UTM

instance is stored in /kernun-installed.fsdb.bz2. This file is used by the backup tools in

order to decide which files have changed since the installation and therefore need to be backed up.

After the installation is finished, the installer waits for <Enter> and then returns to the main

menu.

...

Available installation images:

1 030000h00.200809241501.i386

Copying installation image to /data/dist

Clearing system partition 1

...

Installing kernun-030000h00.200809241501.i386.txz to system partition 1

Unpacking image

Removing file system content databases for installed images

Creating /etc/fstab

Writing build number into /kernun-version

Creating file system content database

Installation successfully finished

Press Enter for return to menu...

Optionally, if you have a license file for your newly installed system available, you can install it

now. This ensures that the initial configuration script will set the system.product configuration

item correctly after reboot. It will also ask whether the licensed proxies should be enabled in the

initial configuration. The license installation is done in several steps:

1. Prepare a USB disk with a UFS or FAT file system.

2. Copy the license file license.dat to the root directory of the USB disk. Alternatively, if

you have some other license files (for example, for the antivirus engine), you can pack them

all

4

in the license.tar file in the tar format with all paths relative to the Kernun system

root directory.

3. Do not connect the USB disk yet and select 0 from the installer main menu.

4. When prompted, connect the USB disk. The license files present will be installed.

Select 9 from the main menu to have the newly installed Kernun UTM booted. You can then

perform its initial configuration, as described in the following section.

4

including usr/local/kernun/license.dat

26

2.5. INSTALLATION

Note

The /data/dist directory may contain full and patch installation images. A full image can

be always installed. A patch image contains only the differences from a base image. Hence

the base image must be available in order to install the patch image. The base image may

itself be a patch image, and its base image is then required as well. Generally, each patch

image requires a continuous sequence of base images starting with a full image followed by

zero or more patch images.

2.5.2 Initial Configuration

When a newly installed Kernun UTM system is booted for the first time, an interactive initial con-

figuration script (/etc/rc/kernun-config) is executed early in the boot process

5

. It prompts

the administrator for various basic system parameters, creates and applies the Kernun UTM config-

uration file, and finishes the boot procedure with the new configuration. The initial configuration

can be modified later using the standard Kernun GUI or command line configuration tools.

First, the time zone needs to be set. We recommend to use UTC for the CMOS clock—select

Yes by pressing <Tab><Enter> in the first dialog. Even if the CMOS clock is currently set

to the local time, it is better to select UTC here and adjust the time later using the date(1)

command or by configuring NTP, see section ntp in system(5). After selecting the CMOS clock

mode, the time zone menu is displayed. Choose the time zone suitable for your location. Then

set the administrator password (user root).

After that, a new SSH host key is generated. It is used to authenticate the system to a remote

access client

6

(GUI or command line SSH). You should write down the reported key fingerprint

and compare it with the fingerprint reported by SSH or the GUI when making the first remote

connection to the system. The SSH host keys should be the same for all Kernun UTM installations

on the same computer. Therefore, if an SSH host key exists during the installation, it is copied to

the newly installed system partition and the generation of a new key is skipped during the initial

configuration. The GUI and command line installers look for an SSH host key in the current

system partition. The standalone installer takes an SSH host key from the first system partition

that contains one and is different from the partition, in which the installation is taking place.

Answer n to the following question (or just press <Enter>) if you want to input the basic

configuration parameters and generate the initial Kernun UTM configuration file.

**

Fingerprint of the SSH host DSA key. Compare this value with the value

reported by SSH client or Kernun GUI when connecting in order to check

that you are connecting to this system.

5

More precisely speaking, the initial configuration script is executed during any system boot if there is no

Kernun UTM configuration file /usr/local/kernun/conf/kernun.cml and none of the files /etc/rc.conf

and /etc/rc.conf.local contain the line kernun_config_enable=NO.

6

The host key is used by the SSH client (or GUI) to ensure that it is communicating with the intended server.

It is different from the client’s key, which is used to authenticate the client to the server.

27

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

1024 71:0a:ec:8d:dd:9e:e7:2d:2b:91:79:0e:1a:ca:89:2b

/etc/ssh/ssh_host_dsa_key.pub

**

*** KERNUN INITIAL SYSTEM CONFIGURATION ***

Skip Kernun configuration (y/n)? [n] <Enter>

Two network interfaces are configured in the default configuration: internal, intended to be

connected to the protected network, and external, which is typically connected to the Internet.

The configuration script asks for the names, IP addresses, and network masks of these interfaces.

Then, the DNS server and default router addresses need to be specified. The initial configuration

will allow the administrator SSH access from the internal network (using the GUI or a command

line SSH client). If you want to allow some application protocols to pass from clients in the internal

network to servers in the external network, you can enable the respective proxies. The configura-

tion of the proxies will contain the default values of various parameters, which will be sufficient

for the simplest use. More complicated configuration requirements can be implemented later by

editing the generated initial configuration file using the GUI or command line configuration tools

(modifying proxy configuration, adding new proxies, etc.). An example of the initial configuration

setup is given and explained below.

Caution

In many environments, an initial configuration with enabled proxies may violate a security

policy. Therefore, it is recommended not to enable any proxy in the initial configuration

unless you are sure that you really need it.

Hostname without domain []: fw ❶

Domain []: example.com

Show only Ethernet interfaces (y/n)? [y] ❷

By repeating the following test with connected and

disconnected network cables, you can determine interface

names of physical network cards.

*** Media state of network interfaces ***

ed0: media: Ethernet autoselect (100baseTX <full-duplex>)

ed1: media: Ethernet autoselect (100baseTX <full-duplex>)

Show again (y/n)? [y]

*** Media state of network interfaces ***

ed0: media: Ethernet autoselect (none) ❸

ed1: media: Ethernet autoselect (100baseTX <full-duplex>)

28

2.5. INSTALLATION

Show again (y/n)? [y]

*** Media state of network interfaces ***

ed0: media: Ethernet autoselect (100baseTX <full-duplex>)

ed1: media: Ethernet autoselect (100baseTX <full-duplex>)

Show again (y/n)? [y] n

Internal interface name (ed0 ed1) []: ed0 ❹

Internal IP address []: 192.168.10.1

Internal interface netmask [24]:

External interface name (ed0 ed1) []: ed1 ❺

External IP address []: 192.168.11.2

External interface netmask [24]:

DNS server IP address []: 10.1.1.1 ❻

Default router IP address []: 192.168.1.1 ❼

Postmaster e-mail [postmaster@example.com]: ❽

Enable some proxies (y/n)? y ❾

Enable DNS proxy (y/n)? [n] y

Enable FTP proxy (y/n)? [n]

Enable HTTP proxy (y/n)? [n]

Enable HTTPS proxy (y/n)? [n]

Enable POP3 proxy (y/n)? [n]

Enable IMAP4 proxy (y/n)? [n]

Enable SMTP proxy (y/n)? [n]

Enable SSH proxy (y/n)? [n] y

Hostname: fw ❿

Domain: example.com

Internal interface: ed0

Internal IP: 192.168.10.1

Internal netmask: 24

External interface: ed1

External IP: 192.168.11.2

External netmask: 24

Name server: 10.1.1.1

Default router: 192.168.11.1

Postmaster e-mail: postmaster@example.com

Enabled proxies: DNS SSH

Use these values (y/n)? y ➀

The configuration begins ❶ with setting the host name and the domain name. Then, the

internal and external interfaces are selected. First, the available network interfaces are listed. You

can choose ❷ whether you want to show all interfaces, or just Ethernet interfaces. The interfaces

are repeatedly listed with their media states. This can be useful if you are not sure about the names

of physical interfaces. You can unplug network cables one by one and observe, which interface

29

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

changes its state. In the example ❸, the cable was unplugged from the network interface ed0.

The internal ❹ and external ❺ interface names, IP addresses, and network masks are defined. The

DNS server IP address ❻ is used by Kernun UTM for domain name resolution. The default router

❼ is typically a router in the external network. The postmaster e-mail address ❽ is used by the

SMTP proxy to forward mail sent to the postmaster.

You can also enable some proxies ❾ for access from the internal to the external network. Ques-

tions about individual proxies are asked only if you reply y to the initial “enable some proxies”

query. Otherwise, all proxies are disabled without further questions. The generated initial con-

figuration file will contain configuration of the disabled proxies as well, with their configuration

sections marked as hidden. A proxy can be easily enabled later by unhiding its configuration

using the GUI or the command line configuration interface. Only licensed proxies are offered for

enabling.

Finally, all values defined during the configuration setup are listed ❿. If you are satisfied,

reply y ➀ and the initial configuration file will be generated and applied. If you reply n, the whole

configuration setup will be repeated with the previously specified values as defaults.

After defining values for the initial configuration, the SSH key for remote administrator access

is generated. You must enter a passphrase used to encrypt the key. The same passphrase is also

used for the initial download of the key from Kernun UTM.

The configuration script will now generate the root’s SSH key.

The passphrase for the key will be also used as the password

for initial key download from Kernun GUI.

Enter SSH key passphrase:

Repeat SSH key passphrase:

Generating public/private dsa key pair.

Your identification has been saved in /home/keygen/id_dsa.

Your public key has been saved in /home/keygen/id_dsa.pub.

The key fingerprint is:

33:27:5a:63:53:b1:ba:47:bf:e8:58:4a:d0:f6:d4:d4 root@fw.example.com

The SSH key generation is the last step in the initial configuration process. After that, the

normal operation of the newly installed Kernun UTM begins.

The SSH (private) key needs to be downloaded to the administrator’s local computer and

subsequently copied to any system used by the administrator to access Kernun UTM. The ad-

ministrator’s computer must be in a network routed via the Kernun UTM internal interface, e.g.,

192.168.10.0/24 in our configuration example. There is a special user account keygen dedi-

cated to SSH key download. The GUI is able to download the key automatically, you only need

to select Initialize new firewall in the Connect to Server dialog. See also Section 3.1.1 for details.

For command line SSH access, you can either use the key downloaded by the GUI, or download

the key manually:

1. Use SCP to copy the private OpenSSH key (id_dsa), the public OpenSSH key

(id_dsa.pub), and the Putty key (key.ppk).

$ scp keygen@192.168.10.1:* .

30

2.5. INSTALLATION

keygen@192.168.10.1’s password:

id_dsa 100% 736 0.7KB/s 00:00

id_dsa.pub 100% 609 0.6KB/s 00:00

key.ppk 100% 807 0.8KB/s 00:00

$

2. Log in to Kernun UTM as user root using the newly obtained key.

$ ssh -i id_dsa root@192.168.10.1

Enter passphrase for key ’id_dsa’:

...

[root@fw ˜]#

3. Delete the key files in the home directory of user keygen.

[root@fw ˜]# rm ˜keygen/*

4. Disable the keygen account.

[root@fw ˜]# pw lock keygen

5. Log out from Kernun UTM.

[root@fw ˜]# logout

Connection to 192.168.10.1 closed.

$

The steps after the first one are not strictly necessary, but they are recommended for security

reasons. Although the secret SSH keys are protected by a passphrase, they should be kept in a

secure store that can be accessed only by authorized administrators. If the key is downloaded by

the GUI, the key files on Kernun UTM as well as the keygen account are automatically removed

when the GUI connects to Kernun UTM with the downloaded key for the first time.

2.5.3 Installation from the GUI

In this section, we assume that the reader has at least the basic knowledge of the Kernun GUI.

An introduction to the Kernun GUI can be found in Section 3.1 of this manual. The installation

and its related tasks are controlled by the Kernun GUI System Manager, which is accessible using

the ❶ button in the main window toolbar, as shown in Figure 2.3.

Figure 2.3: The System Manager icon in the toolbar

The installation is done from the Installation images tab in the System Manager window,

see Figure 2.4. It displays a list of available installation images (stored on Kernun UTM in

31

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

/kernun/dist). An image is marked as installable if it is either a full image, or a patch image

with an available base image. The version number, build date, and build number are listed for

each image. Installation images can be copied from the administrator’s local machine, where the

GUI runs, to Kernun UTM by clicking the Upload button. The Download button can be used to

copy in the opposite direction. It is also possible to delete a selected image (Remove) or all images

older than the selected one

7

(Remove older).

Figure 2.4: Installation images in the System Manager

Tip

Each installed image is is copied to /data/dist. As the images may consume a lot of disk

space on a regularly updated Kernun UTM, it is recommended to delete old images regularly

or when you need more space on the data disk. An easy way to do this is to select one of

the newest images and click Remove older. It is usually sufficient to retain only the one or

two most recent images.

To initiate the installation of the selected image, click the Install button. In the example, we

will install the newest (last) installation image from the list. The installation of Kernun UTM

can be alternatively initiated using the Install firewall button on the Quick Wizards page. A wizard

window (see Figure 2.5) appears and prompts you to select the target system partition. It displays

the number and label of the system partition that contains the currently running system. This

partition cannot be overwritten by the installation. One of the other two system partitions,

which are also listed with their labels, needs to be chosen. If you started the wizard from the

Quick Wizards page, you are then supposed to choose the desired installation image. Finally, the

recapitulation of the selected values is displayed. Click the Finish button to launch the installation

process (it deletes all the existing content of the selected partition).

7

An image is considered older if it has a lower version number or an earlier build date.

32

2.5. INSTALLATION

Figure 2.5: Selection of the installation target

Caution

When performing an installation, make sure that you have selected the correct system parti-

tion, in order to avoid inadvertently overwriting a system partition that you want to retain.

The installation process takes several minutes; it can be aborted using a button in the progress

dialog displayed in the meanwhile. The newly installed system partition is made bootable, but the

default boot partition is not changed. The reason is that the new Kernun UTM instance is not

configured and until its initial configuration is performed from the console, it will be inaccessible

via the network. The boot manager configuration after the finished installation can be viewed in

the System Manager’s Kernun systems tab, as shown in Figure 2.6. It is possible to change the

partition label (using the Change Title button) or make the new system partition the default boot

partition (the Set Default button).

If the installation process terminates because of an error, the output of the failed command is

displayed. The example in Figure 2.7 shows an error message caused by a corrupted installation

image file.

2.5.4 Installation from the Command Line

The command line installation functionality is provided by the sysmgr(8) and bootmgr(8) util-

ities. An installation image that is to be installed must be stored in the /data/dist directory,

along with the corresponding base image(s), if it is a patch image. The existing images can be

listed using the following command:

[root@fw ˜]# sysmgr images

* 030000h00.200809241501.i386

030000h00.200810170852.i386 ❶

* 030001h00.200811142135.i386

33

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Figure 2.6: The system partitions after the installation

Figure 2.7: An error during the installation

34

2.5. INSTALLATION

The installable images are marked with an asterisk. The image ❶ is a patch image that cannot

be installed, because its base image is missing. Information about the currently installed instances

of Kernun UTM can be obtained using the bootmgr command or from the /kernun-version

file. In order to get access to this file in other system partitions, the file systems in those partitions

need to be mounted first.

[root@fw ˜]# bootmgr

Boot manager on /dev/ad0

F1: Kernun 3.0 2008/10/01 07:36 (030000h00.200809241501.i386) ❶

F2: Unused

F3: Unused

type=Kernun 1024 B boot manager (74 character labels)

current_booted=1 ❷

bootable=1

update=yes

default_selection=F1

[root@fw ˜]# cat /kernun-version

030000h00.200809241501.i386

[root@fw ˜]# mount /2

[root@fw ˜]# cat /2/kernun-version

030000h00.200810170852.i386 ❸

[root@fw ˜]# mount /3

mount: /dev/ad0s3a on /3: incorrect super block ❹

The bootmgr command displays labels of the system partitions ❶ and the number of the

system partition that contains the currently running system ❷. The second system partition in

the example contains another Kernun UTM version ❸, even though it was manually relabeled as

“Unused”. The third system partition is really unused; it does not even contain a file system ❹.

We will install a new Kernun UTM version in the second system partition. We choose the

newest version available according to the sysmgr images report. Unlike the standalone installer

described in Section 2.5.1, the command line installer asks no questions. The image build number

and the target system partition number are given on the command line and the installation

starts immediately. The standard partition label, containing the Kernun UTM version, date of

installation, and build number, is set for the newly installed partition. The initial configuration

process (see Section 2.5.2) is started after booting from the newly installed system partition.

[root@fw ˜]# sysmgr install 2 030001h00.200811142135.i386

Clearing system partition 2

...

Installing kernun-030001h00.200811142135.i386.txz to system partition 2

Unpacking image

Installing SSH host keys

Removing file system content databases for installed images

Creating /etc/fstab

35

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Writing build number into /kernun-version

Creating file system content database

Installation successfully finished

[root@fw ˜]# bootmgr

Boot manager on /dev/ad0

F1: Kernun 3.0 2008/10/01 07:36 (030000h00.200809241501.i386)

F2: Kernun 3.0.1 2008/11/17 16:39 (030001h00.200811142135.i386)

F3: Unused

type=Kernun 1024 B boot manager (74 character labels)

current_booted=1

bootable=1 2

update=yes

default_selection=F2

Caution

Be careful when running sysmgr install. Especially, make sure that you specify the correct

system partition number. Otherwise, you might inadvertently overwrite a system partition

that you would like to retain.

Caution

The newly installed system partition is made the default choice for the next boot. As it is not

configured, it will be inaccessible via the network after the reboot and its initial configuration

will need to be performed from the console. If you want to keep the current default boot

partition, so that you retain a fully working system after the reboot, use the -n parameter

of the sysmgr command:

[root@fw ˜]# sysmgr install -n 2 030001h00.200811142135.i386

2.5.5 Enabling Serial Console Output

Typically, the interaction with Kernun UTM is performed using a VGA console. However, in some

cases it is neccessary to switch the system output to a serial console, which is also available on

most of Kernun devices. In order to redirect the output to a serial console, plug-in the console to

a serial port, restart Kernun UTM, and follow these steps:

• Press <Space> repeatedly until the booting process prompts with boot:

• When the prompt boot: appears, type “-h” and confirm by pressing <Enter>. The output

of booting proccess should now be redirected to the serial console and continue.

>> FreeBSD/i386 BOOT

Default: 0:ad(0,a)/boot/loader

boot: -h

36

2.6. BACKUP AND RESTORING

2.6 Backup and Restoring

Kernun UTM provides both GUI and command line tools used to back up system partitions and

restore data from backups created in this way. They can be used to back up not only the current

system partition, but any of the three system partitions. A backup file does not contain the

complete contents of a system partition, but only the changes made since its installation. The size

of the backup file therefore depends on the amount of changes that have been made in the system

partition since its last installation. After an installation, the content of a system partition is stored

in the /kernun-installed.fsdb.bz2 file. When doing backup, this file is compared with the

current content of the system partition. Added and modified files are stored in the backup file,

along with information about deleted files and files with changed metadata attributes

8

.

The backup and restore operations process only a subset of files contained in a system partition,

mainly Kernun configuration files. The list of files included in a backup can be viewed and modified

in the /etc/kernun-fsdb-include file. During backup and restore operations, this file is

passed to diskdb(1) using the -I parameter.

Backup files are stored in the /data/backup directory, from which they should be copied to

a safe place. They should not be renamed, because their names contain important information for

backup processing: the build number of the Kernun UTM instance, the number of the backed up

system partitions, and the date and time when the backup was created.

A backup created on a particular Kernun UTM version (build number) should be restored to

a system partition containing a newly installed image with the same build number. On the other

hand, a system partition with any partition number can be used for restoring, not only the one

where the backup was created. The restore program adjusts the contents of the file system table

/etc/fstab accordingly.

Kernun UTM provides tools for manual backup and restoring of system partitions using local

backup files in /data/backup. The administrator should create a backup at least after every

major configuration change and copy it to a storage medium other than a local disk. Solutions for

automated backup, remote backup, or backup of the data partition are not provided out of the box,

because backup policies required for different deployments vary significantly. More sophisticated

backup scenarios can be implemented using operating system tools (tar(1), cron(8), etc.) or

various third-party backup software. The Kernun UTM tools support only complete restoring of

a backup to a newly installed system partition. Nevertheless, a backup file is a tar(1) archive

compressed by bzip2(1) and can therefore be freely manipulated using these tools.

In some situations, especially when a backup is restored to a different version of Kernun UTM

or to a system partition that has been modified since the installation, conflicts may be reported

during restoring. It is also possible that unresolved conflicts from an earlier restore operation

interfere with the current one. In such a case, the old conflicts need to be resolved or discarded

first. See Section 2.7 for explanation of conflicts and instructions on how to resolve them.

8

for example, access rights, owner, or modification time

37

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

2.6.1 Backup and Restoring from the GUI

A backup can be created in the GUI in the Kernun systems tab of the System Manager (Figure 2.6).

All you need to do is select a system partition and click on the Backup button. A backup file will

be created and stored in /data/backup. The new backup will appear in the Backups tab,

see Figure 2.8. Using buttons under the list of backup files, a file can be downloaded to the

administrator’s computer, uploaded back to Kernun UTM, or removed.

Figure 2.8: Existing backup files in the GUI

Click on the Restore button if you want to start the restore operation. Alternatively, restoring

can be initiated using Restore backup on the Quick Wizards page. A wizard window appears. It

prompts for the target system partition (must not be the currently booted one), for selection of

a backup file and for a corresponding installation image. There are also buttons for uploading a

locally stored backup or image to Kernun UTM. As the last step, the recapitulation of the selected

values is displayed, as shown in Figure 2.9. When you click Finish, the selected image is installed

in the chosen system partition and the selected backup is unpacked. Then it is possible to do

any combination of the following operations: set the newly restored partition as the default boot

partition; change the partition label; reboot Kernun UTM immediately (see Figure 2.10).

2.6.2 Backup and Restoring from the Command Line

The sysmgr(8) utility is used to create and restore backups from the command line. A new

backup file in /data/backup is created by the following command:

[root@fw ˜]# sysmgr backup 2

Creating backup content database /kernun-backup.fsdb.bz2

Creating file system content database

Creating backup file

/data/backup/backup-030000h00.200809241501.i386-2-200807281400.tbz

[root@fw ˜]#

If a backup of the current system partition is to be created, the partition number (2 in our

example) may be omitted. A list of existing backup files is displayed by

38

2.6. BACKUP AND RESTORING

Figure 2.9: Parameters of a restore operation

Figure 2.10: Final settings after restoring a backup

39

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

[root@fw ˜]# sysmgr backups

backup-030000h00.200809241501.i386-1-200810031714.tbz

backup-030000h00.200809241501.i386-2-200809261822.tbz

backup-030000h00.200809241501.i386-2-200809301350.tbz

A backup can be restored to a selected system partition; it must not be the currently used

system partition. A clean installation of an image with the correct build number should be done

first.

[root@fw ˜]# sysmgr install 2 030000h00.200809241501.i386

...

Installation successfully finished

[root@fw ˜]# sysmgr restore 2 \

> backup-030000h00.200809241501.i386-1-200810031714.tbz

Processing changes of file system contents

Unpacking files from backup

Resolving conflicts

All conflicts resolved

[root@fw ˜]#

An attempt to restore a backup in a system partition that contains a Kernun UTM instance

with a different build number is detected and a warning is displayed:

[root@fw ˜]# sysmgr restore 2 \

> backup-030000h00.200809241501.i386-1-200810031714.tbz

Backup is from different build than currently installed in /2.

Installed: 030001h00.200811142135.i386

Backup: 030000h00.200809241501.i386

It is strongly recommended to restore a backup to the Kernun build that

was used for creating the backup.

Continue anyway (y/n)? n

[root@fw ˜]#

2.6.3 Restoring a Backup in the Standalone Installer

A backup can be restored also from the standalone installer booted from the Kernun UTM installa-

tion medium. This can be helpful after installing a new system disk or when moving a Kernun UTM

installation to a new computer. First, select a system partition and install Kernun UTM from

an image corresponding to the backup that is to be restored, following the procedure described

in Section 2.5.1. If the backup file is not already located in /data/dist, you can copy it there

using the emergency repair environment tools, as described in Section 2.9.

*** KERNUN INSTALLATION ***

Build 030001h00.200811142135.i386

40

2.6. BACKUP AND RESTORING

1. Install Kernun

2. Check for existing Kernun installations

3. Restore backup

4. Start rescue shell

5. Mount Kernun file systems

6. Resize installer’s in-memory temporary file system (current size 32m)

7. Halt

8. Power down

9. Reboot

0. Install license

Select action: 1 ❶

Detected Kernun system disk ad0

Detected Kernun data disk ad0

Repartition disks (y/n)? n

Current Kernun installations:

Boot manager on /dev/ad0

F1: Kernun 3.0 2008/10/01 07:36 (030000h00.200809241501.i386)

F2: Kernun 3.0.1 2008/11/17 16:39 (030001h00.200811142135.i386)

F3: Unused

type=Kernun 1024 B boot manager (74 character labels)

current_booted=

bootable=1 2

update=yes

default_selection=F2

Select partition for installation (1 2 3) [1]: 3 ❷

Overwrite partition /dev/ad0s3 by new Kernun installation (y/n)? y

Available installation images:

1 030000h00.200809241501.i386

2 030001h00.200811142135.i386

Select image to install (1-2) [2]: 1 ❸

Enter the label that will be used to identify this installation in the

boot manager. The label can be at most 44 characters long. The Kernun

build number will be appended after the entered label automatically.

Label [Kernun 3.0 2008/11/20 10:26]:

Clearing system partition 3

...

Installing kernun-030000h00.200809241501.i386.txz to system partition 3

...

Installation successfully finished

Press Enter for return to menu...

41

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

*** KERNUN INSTALLATION ***

Build 030001h00.200811142135.i386

1. Install Kernun

2. Check for existing Kernun installations

3. Restore backup

4. Start rescue shell

5. Mount Kernun file systems

6. Resize installer’s in-memory temporary file system (current size 32m)

7. Halt

8. Power down

9. Reboot

0. Install license

Select action: 3 ❹

Select partition to be restored (1 2 3) [1]: 3 ❺

Available backups for build installed in partition 3:

1 backup-030000h00.200809241501.i386-1-200810010405.tbz

2 backup-030000h00.200809241501.i386-1-200810040604.tbz

Select backup to restore (1-2) [2]: 1 ❻

Restoring backup-030000h00.200809241501.i386-1-200810010405.tbz

to partition 3

Are you sure (y/n)? y

Conflicts resolution data in /data/restore already exist ❼

Remove old /data/restore (y/n)? y ❽

Processing changes of file system contents

Unpacking files from backup ❾

Resolving conflicts

All conflicts resolved

Press Enter for return to menu...

In the example above, we assume that the backup file is already stored in the /data/backup

directory and the corresponding installation image in the /data/dist directory. We start the

backup restoring procedure by carrying out a fresh Kernun UTM installation ❶ in an unused

system partition ❷. The installation image ❸ is chosen so that it corresponds to the backup file

that will be restored. After returning to the installer main menu, we select Restore backup ❹. The

partition ❺ installed in the previous step should be selected. A list of backups compatible with the

content of the target system partition is displayed. We choose one of the offered backup files ❻ and

the restoring begins. The message ❼ indicates that there are unresolved conflicts from previous

restore or upgrade operations. Usually, you should reply n to the question ❽. This will interrupt

42

2.7. UPGRADE

the restore operation. You can restart it after you resolve the conflicts according to instructions

given in Section 2.7. If you are sure that you do not need to resolve the old conflicts

9

, you may

reply y and the conflict resolution data will be deleted. The message and question concerning the

old conflicts ❼❽ will not be displayed if there are no pending conflicts. Finally ❾, the backed up

files are unpacked from the backup file and checked for conflicts. No conflicts should occur if the

backup is restored to the same Kernun UTM build that was installed at the time the backup was

created. The restored files are installed in their proper places and the restore operation successfully

finishes.

2.7 Upgrade

The upgrade procedure described in this section is applicable if you want to retain as much as

possible from the configuration of the old Kernun UTM instance in the new instance. If you want

to configure a new Kernun UTM version from scratch, follow the installation and configuration

procedures described in Section 2.5.

Upgrading to a new version or build of Kernun UTM is basically done by restoring a backup

of the old version in a system partition that contains a fresh installation of the new version. The

upgrade procedure comprises the following steps:

1. Normalizing the configuration.

2. Backing up the system partition with the old version.

3. Installing the new version.

4. Restoring the backup created in step 2 to the installed new version.

5. Resolving any conflicts arisen in step 4.

6. Upgrading the Kernun UTM configuration file.

7. Checking the upgraded configuration.

8. Applying the upgraded configuration.

9. Starting the new Kernun UTM version.

The syntax and semantics of the configuration files are sometimes slightly changed between

versions. In order to be usable in the new Kernun version, the old configuration file must be

converted in step 1. This is done automatically during the upgrade process. The configuration

conversion script expects the configuration in a normalized format. Using just some formatting

accepted by normal Kernun configuration tools (GUI or CML) is not sufficient. The normalization

during the upgrade process is done either automatically (by GUI), or using a command in the

command line upgrade.

9

for example because they are in a system partition that is not used any more

43

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Important

If you are upgrading from a Kernun version that does not implement automatic configuration

normalization during the upgrade process, that is, from a version older than 3.3.2, you should

perform the normalization manually. It can be done simply by opening and saving the config-

uration by either GUI, or CML. The normalization step may be skipped if the configuration

has been saved recently and has not been modified outside the Kernun configuration tools,

for example, by a text editor.

The upgrade operation results in a newly installed system partition that contains the new

version of Kernun UTM. If we want to keep the configuration across upgrades, we need to copy

the main Kernun UTM configuration file /usr/local/kernun/conf/kernun.cml and any

other changes done in the old installation to the new one. The configuration files that have

been changed, created, or deleted since the installation are found and saved when the old system

partition is backed up in step 2.

Step 3 requires a full or patch installation image. Although it is possible to replace the contents

of the currently used system partition with the new version, it is not recommended. You should

always install an upgrade to a currently unused system partition, for two reasons. First, the old

Kernun UTM instance can continue running until the upgrade is finished. Second, you can quickly

return Kernun UTM to an operational state if something goes wrong with the upgrade.

Tip

The recommended practice is to use two system partitions for regular upgrades. One partition

is occupied by the currently running version, while the other contains the old version and

will be used for installation of the next upgrade. After each upgrade, the roles of the two

partitions are switched. The third system partition can be reserved for special tasks, such as

preparation of a completely new configuration.

Tip

Set the boot manager (as described in Section 2.4) default boot partition so that it always

boots the currently used Kernun UTM instance. Consider disabling the automatic updating

of the default boot partition or disabling the unused partitions altogether.

Restoring of the backup from step 2 in the system partition installed in step 3 effectively

copies the complete configuration from the old system partition. Restoring of a backup to a build

different from the one used for its creation may cause conflicts. These are files that cannot be

restored automatically and a manual intervention of the administrator is necessary. A conflict

occurs if there are two incompatible changes of the same file. The original version of the file

comes from the installation image of the Kernun UTM instance that is being upgraded; we will

call it “old”. The second version (called “backed-up”) is contained in the backup file, if the file was

44

2.7. UPGRADE

changed

10

at some time between the installation of the old version and the start of the upgrade

process. The third version of the file (called “new”) is obtained from the installation image of

the new Kernun UTM instance installed in step 3. There are two potential changes of the file.

One between the old and the backed-up version, the second between the old and the new version.

If only one change exists, no conflict occurs and the changed (backed-up or new) version of the

file will be used. For example, /etc/ttys may have been changed by the administrator in the

installed Kernun UTM, but remains the same in the build we are upgrading to. Another example

is a proxy executable, which is modified in the new Kernun UTM version, but left unchanged by

the administrator. If all three versions exist, i.e. when the backed-up and the new version differ, a

conflict occurs. The automated upgrade tools are unable to handle the file and the administrator

must decide whether the new file, the backed-up file, or some combination of the two should be

used. For example, a third party software added in the new build creates a new user account

in /etc/master.passwd, and the administrator has created another user account. During the

upgrade, a conflict is reported for /etc/master.passwd. The administrator can resolve this

particular conflict by merging the two versions of the file, adding both new user accounts to the

resulting file.

The detected conflicts are recorded in the /data/restore/resolve file during step 4.

The conflicting files from the backup file (the “backed-up” version) are not unpacked

to the root directory tree. Instead, they are stored in corresponding locations under the

/data/restore/conflicts directory. The root directory tree contains the files as installed

(the “new” version). In step 5, the administrator specifies for each file how the conflict should be

resolved, choosing from the following possibilities:

• The new version is retained and the backed-up version is deleted from

/data/restore/conflicts.

• The backed-up version replaces the new version.

• The new or the backed-up version is used, but is modified first, for example by merging the

contents of the two versions in a text editor.

• The conflict is postponed until a later iteration of conflict resolution.

The /data/restore directory is deleted when all conflicts are resolved. Only one upgrade

procedure can be in the conflict resolution stage at a time. If a conflict resolution session is

started and there is already the /data/restore directory with unresolved conflicts, the admin-

istrator can either cancel the second resolution, or delete the old /data/restore directory, thus

effectively using the “new” versions of the files for all conflicts in the earlier conflict resolution

session.

In step 6, a script is executed that edits the contents of the main configuration file

/usr/local/kernun/conf/kernun.cml to make it compatible with the upgraded

Kernun UTM. Sometimes, if there are complex changes in the configuration syntax and

semantics between the two Kernun UTM versions, or if the configuration file contains certain

10

By a change, we mean modification of the contents of the file, deletion of the file, a change of the file attributes

(e.g., the owner or access rights), or creation of a previously nonexistent file.

45

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

advanced constructs, the script may be unable to perform a perfect conversion. It is therefore

recommended to always check the result of the automatic conversion in step 7.

The new configuration file needs to be applied before the upgraded system can be put into

normal operation. The low-level configuration files are generated and the configuration is applied

in the context of the newly installed system using the applycfg command of sysmgr(8). If the

generation or application of the configuration fails, the configuration should be corrected and

applied again.

Finally, the upgraded Kernun UTM can be put into the normal production mode by rebooting

to the newly installed system partition.

No modifications of the configuration (steps 6 and 7) are often required during the upgrade

procedure. This is usually true when upgrading between two builds of the same version or between

patch releases of the same version, for example, from 3.0 to 3.0.1 or from 3.0.1 to 3.0.2.

2.7.1 Upgrade from the GUI

An upgrade is initiated from the Quick Wizards page of the System Manager. There are two

alternatives. Click Upgrade Firewall if you want to start the complete upgrade procedure. If you

already have a recent backup of the system partition that you want to upgrade, you can skip the

first step — creation of a backup. In this case, use the Restore backup into newer firewall button.

We will describe only the former alternative; the latter is almost identical, only the backup step

is missing.

The GUI assumes that we want to upgrade the currently running Kernun UTM instance.

Therefore, the current system partition will be backed up. After clicking on the Upgrade Firewall

button, we select the target system partition in which the upgraded Kernun UTM will be installed.

Then we select the installation image of the new version. Our selections are displayed in the settings

recapitulation window (Figure 2.11). Click on the Finish button to start the upgrade.

Figure 2.11: Parameters of an upgrade operation

The GUI displays the progress of the upgrade procedure. First, the current system partition

46

2.7. UPGRADE

is backed up. Then, the new system partition is installed and the backup is restored in it. If

there are any conflicts, the conflict resolution window is displayed, as shown in Figure 2.12. The

window shows a list of conflicting files. You can determine how to resolve the conflict of a file by

clicking in the Action column. The following actions are possible:

• + — uses the “backed-up“ version of the file;

• . — uses the “new” version of the file, as installed from the new installation image;

• - — deletes the file;

• ! — postpones the conflict to the next iteration of conflict resolution.

It is also possible to select a file and then click a button on the right-hand side of the window

to display the differences between the two versions of the file, or to open one of them in an editor.

Figure 2.12: The conflict resolution window during an upgrade

After you give instructions for conflict resolution and optionally edit some conflicting files,

click OK to have the conflicts resolved. Finally, a window is displayed (see Figure 2.13) that

makes it possible to realise any combination of the following actions: set the newly upgraded

system partition as the default boot partition; run the configuration conversion script; change the

partition label; reboot Kernun UTM immediately.

2.7.2 Upgrade from the Command Line

Command line upgrades are realized using the sysmgr(8) utility. Unlike when using the GUI,

which performs all the required steps automatically, a command line upgrade must be done step

by step. An example of the upgrade procedure follows:

47

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

Figure 2.13: Final settings after an upgrade

[root@fw ˜]# cml -l -f /usr/local/kernun/conf/kernun.cml ❶

RCSL-730-N File ’/usr/local/kernun/conf/kernun.cml’ locked for current user

CMLM-790-N RCS command completed

[root@fw ˜]# sysmgr checkcfg ❷

...

Configuration is correct

[root@fw ˜]# sysmgr backup ❸

Creating backup content database /kernun-backup.fsdb.bz2

Creating file system content database

Creating backup file

/data/backup/backup-030000h00.200809241501.i386-1-200811300006.tbz

[root@fw ˜]# sysmgr install 2 030002h00.200811291341.i386 ❹

Clearing system partition 2

...

Installation successfully finished

[root@fw ˜]# sysmgr upgrade 2 \

> backup-030000h00.200809241501.i386-1-200811300006.tbz ❺

Processing changes of file system contents

Unpacking files from backup

Resolving conflicts

There are pending conflicts, see /data/restore/resolve

*** CONFLICT RESOLUTION *** ❻

1. Resolve with easy editor (ee)

2. Resolve with editor vi

3. Do not resolve now

Select action: 2

Conflict resolution file for system partition /2 ❼

Each line of this file contains an instruction for one file. You

48

2.7. UPGRADE

can edit the file and then apply the instructions by running

"sysmgr resolve". Every line contains three fields:

- one character that defines an action to be done with the file

- one character for file type (’d’ for a directory, ’-’ for any

other type)

- path to the file, interpreted either relative to /2 for the

existing file and relative to //data/restore/conflicts

for the file from the backup

Procedure of conflict resolution:

1. Locate all lines beginning with ’!’. These denote conflicting

files.

2. Optionally edit the conflicting files.

3. Change the character ’!’ to

+ ... to use the file from backup, temporarily stored in

/data/restore/conflicts

. ... to keep the current file

- ... to delete the current file

! ... keep the conflict for future resolution

4. Run "sysmgr resolve".

5. Repeat steps 1-4 until all conflicts are resolved.

Merging file from the backup with the current file can be done

either by editing the current file and specifying action ’.’

(keep) or editing the file from the backup and specifying

action ’+’ (use backup).

! - ./etc/motd

! - ./etc/login.conf

...

Resolving conflicts

There are pending conflicts, see /data/restore/resolve ❽

[root@fw ˜]# vi /data/restore/resolve ❾

...

[root@fw ˜]# sysmgr resolve ❿

Resolving conflicts

All conflicts resolved

[root@fw ˜]# sysmgr upgradecfg 2 ➀

Upgrading Kernun configuration /2/usr/local/kernun/conf/kernun.cml

/2/usr/local/kernun/conf/kernun.cml,v <--

/2/usr/local/kernun/conf/kernun.cml

new revision: 1.2; previous revision: 1.1

done

Automatic configuration upgrade done. It is recommended to review the

configuration before returning Kernun UTM to production use.

[root@fw ˜]# sysmgr applycfg 2 ➁

49

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

...

System kernun applied in system partition 2

[root@fw ˜]# cml -u -f /usr/local/kernun/conf/kernun.cml ➂

CMLM-790-N RCS command completed

[root@fw ˜]#

Before upgrade, the configuration should be locked ❶
11

, checked and normalized ❷. This

step ensures that the configuration upgrade step ➀ will understand the configuration file. The

upgrade procedure starts by backing up the current system partition ❸. Specify a system partition

number to upgrade a currently inactive partition. If a recent backup already exists, this step can be

skipped. A new Kernun UTM version is installed to an unused system partition ❹. This command

also sets the default boot manager label for the newly installed partition, and makes it bootable and

the default boot selection for the next booting. The backup is then restored to the newly installed

system partition ❺. This command writes the list of conflicts to /data/restore/resolve.

The conflicting files from the backup are stored in the /data/restore/conflicts directory.

If there are conflicts, the conflict resolution menu is displayed ❻. You can either resolve the

conflicts, or postpone the conflict resolution to do it later. If you choose to resolve the conflicts,

the conflict resolution file /data/restore/resolve is opened in a text editor. Edit the file

according to the displayed instructions ❼ to determine the way of resolution of individual conflicts.

After the file is saved and the editor is terminated, the conflict resolution is executed in accordance

with the file. If some conflicts remain unresolved, a message ❽ is printed. It is then possible to

edit /data/restore/resolve manually ❾ and restart the conflict resolution ❿. Commands

❾ and ❿ can be repeated until all conflicts are resolved. The main configuration file is upgraded

➀ and applied ➁. Finally, the lock is released ➂. You can then reboot to the new system partition

and start using the upgraded Kernun UTM.

2.8 Audit

The Kernun auditing tool kernun-audit(1) provides a convenient source of information about

bugs discovered in the Kernun software. The auditing tool also reports when a new software

version becomes available. A Kernun audit is usually executed daily by the cron daemon via

the periodic command. It downloads the up-to-date auditing database, and then examines the

product type, version, and architecture of the installed system. Based on these values, the relevant

records are extracted from the database and reported. There are two classes of records: bugs and

software updates.

Each bug that is discovered in the currently installed version of the Kernun product is reported.

A bug has a unique identification number, a description, a list of versions, in which it occurs, a

solution, and a workaround. The recommended solution is always a software update to a version

in which the bug has been fixed (if such version is available). The workaround (if available)

describes how to minimize the impact of the bug without updating the software. It should be

applied if the software has not been fixed yet or if an immediate update is infeasible. Nevertheless,

11

Steps ❶ and ➂ are supported by Kernun since release 3.6. In the prior versions, these steps should be skipped.

50

2.9. EMERGENCY REPAIR ENVIRONMENT

the workaround should always be regarded as a temporary solution and the Kernun installation

should be updated as soon as possible.

Software updates are reported only for the same product and architecture as in the installed

system. The latest patch release from each release branch is shown. Only versions newer than the

currently installed version are displayed. For example, if 3.1 is the version installed and 3.0–3.0.6,

3.1–3.1.3, and 3.2–3.2.1 are available, 3.1.3 and 3.2.1 will be the versions reported.

The initial configuration of a Kernun system runs the auditing tool daily using the

DEFAULT-CRONTAB and DEFAULT-PERIODIC variables from the included crontab and

the periodic configuration file crontab.cml. Auditing can be disabled by setting

daily_status_security_kernun_audit_enable to "NO" in that file. The auditing tool

kernun-audit can be also executed manually from the command line. The product name,

version number, and architecture name are obtained from the current system, or can be specified

using the command line arguments of kernun-audit. The identification of the current system is

stored in the files /kernun-product (product name) and /kernun-version (build number,

which contains the version number before the first dot and the architecture name after the

second dot). If the location (local or remote) of the audit database is not specified, the database

is downloaded from download.kernun.com by default.

The www.kernun.comWeb site provides an online version of the Kernun auditing tool. After

filling the Kernun product, version, and architecture in a form, the auditing report is generated

in the same format as the one kernun-audit produces.

2.9 Emergency Repair Environment

Warning

The instructions in this section are intended for experienced administrators with profound

knowledge of Kernun UTM and FreeBSD.

The Kernun UTM installer booted from the installation medium can be used to repair the

system if all system partitions are unable to boot. The available functions are accessible from the

installer main menu:

1. Install Kernun

2. Check for existing Kernun installations

3. Restore backup

4. Start rescue shell

5. Mount Kernun file systems

6. Resize installer’s in-memory temporary file system (current size 32m)

7. Halt

8. Power down

9. Reboot

0. Install license

Option 1 is described in Section 2.5.1. Options 7, 8, and 9 are self-descriptive. Option 2

displays the boot manager configuration and the disk device names.

51

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

System disk is /dev/ad0

Boot manager on ZFS pool ’kernun’

F1: Kernun 3.11 2018/06/06 07:36 (031100h00.201806111345.amd64)

F2: Unused

F3: Unused

type=Kernun ZFS boot manager ver. 1.0

current_booted=NONE

bootable=1

update=1

default_selection=F1

Option 3 restores a backup selected from a list of backup files found in /data/backup. If the

backup is stored on another medium, it must be first copied to the /data/backup directory, using

for example the rescue shell (option 4). For details about backup and restoring, see Section 2.6.

Option 4 starts a rescue shell (bash). It provides the environment for emergency maintenance

of a computer with non-bootable Kernun UTM installations. The rescue shell (as well as the

whole standalone installer) runs in a custom FreeBSD environment. The standard Kernun UTM

kernel is used. The root file system is mounted from the installation medium and is therefore

read-only. A read-write RAM disk for temporary data is mounted under /tmp, symlinked also

from /var/tmp. The standard size of the RAM disk is 32 MB. It can be resized using option 6

of the installer main menu.

Warning

The content of the RAM disk is lost when the installer is terminated or when the RAM disk

is resized.

Caution

Do not make the RAM disk too large, because its content is stored in the kernel memory. If

the free kernel memory gets too low, the kernel may panic.

Option 5 of the menu mounts any existing Kernun UTM partitions under the directories /1,

/2, /3 (the system partitions), and /data (the data partition). The rescue shell provides many

standard FreeBSD command line programs. Programs from a mounted Kernun UTM system

partition can be run as well.

Tip

It is often useful to perform a chroot(8) to a mounted Kernun UTM system partition and

to run commands in the chrooted environment.

2.10 Running in virtual machine environment

Kernun can be deployed in any virtualization environment with support for FreeBSD OS.

52

2.10. RUNNING IN VIRTUAL MACHINE ENVIRONMENT

See also the notice in Section 5.24.

The following virtualiztion environments are tested for compatibility with Kernun.

2.10.1 VMware

The emulators/open-vm-tools-nox11 is installed and staretd automatically if the VMWare

environment is detected.

2.10.2 Hyper-V

The virtualization support is built in the FreeBSD OS. See also

https://docs.microsoft.com/cs-cz/windows-server/virtualization/hyper-v/Supported-FreeBSD-virtual-machines-on-Hyper-V

and https://wiki.freebsd.org/HyperV for more detailed information.

2.10.3 VirtualBox

The emulators/virtualbox-ose-additions is installed and started automatically if the Virtual-

Box environment is detected.

2.10.4 XEN

The sysutils/xe-guest-utilities is installed and started automatically if the XEN environment

is detected.

53

CHAPTER 2. KERNUN UTM SYSTEM MANAGEMENT

54

Chapter 3

U s e r I n t e r f a c e

Kernun UTM can be administered locally, or remotely via the network. Local administrator access

is usually limited to the initial installation, when the network is not yet configured, and emergency

situations after a failure or misconfiguration if the network is not accessible. The administrator

can access the system locally via a text system console. It provides the same set of command line

tools as the remote text login via SSH. In normal operation, Kernun UTM is usually administered

remotely. There are two options for remote access: a text command line interface and a graphical

user interface.

An administrator can log in to Kernun UTM remotely via SSH and get shell access to the

system. Administrative tools accessible from the shell include the primary Kernun UTM command

line control and configuration tools kat(8) and cml(8), see also Section 3.2. Besides these two,

many additional command line utilities are available, including specific Kernun UTM commands

introduced in Section 3.3 and all the standard FreeBSD commands.

Kernun UTM’s graphical user interface (GUI for short, described in Section 3.1) provides a

similar functionality as the command line utilities, but in a more intuitive and comprehensive way.

It shows the current state of all system components and can display details for each component.

The GUI contains also a powerful log analyzer, a configuration editor, and a system manager, which

administers installations, backups, and upgrades. There is some functionality that is unique to the

GUI and cannot be accessed from the command line, such as displaying of performance graphs.

The GUI runs on the administrator’s local computer and communicates with Kernun UTM via the

network, using SSH internally. Hence, the same prerequisites are needed for both the command

line and GUI access to Kernun UTM (especially, SSH keys and the SSH protocol enabled on the

way between Kernun UTM and the administrator’s computer).

3.1 Graphical User Interface

In this section, we will introduce the Kernun GUI. In later chapters dealing with configuration

(Chapter 4, and Chapter 5) we will assume that the administrator knows how to use the GUI.

The Kernun GUI is available in two functionally equivalent versions: for Microsoft Windows

and for UNIX. The binary executables of the Kernun GUI are distributed for MS Windows and

55

CHAPTER 3. USER INTERFACE

for FreeBSD

1

. The Kernun GUI can be easily compiled also for other UNIX platforms. See the

README file for instructions on how to compile the Kernun GUI.

On UNIX machines, the Kernun GUI expects OpenSSH to be installed (namely, the ssh, ssh-

agent, ssh-keygen and ssh-add programs are expected to be located in a directory listed in the

PATH environment variable).

There are no prerequisites to be installed on MS Windows. All the necessary executables are

included in the Kernun GUI distribution.

The Kernun GUI provides the following functionalities:

• monitoring of the state of Kernun UTM;

• management (starting, stopping, restarting, . . .) of Kernun UTM (or its particular compo-

nents);

• work with logs (both current online logs and downloaded offline logs) and statistics;

• modification and application of the configuration of Kernun UTM;

• administration of Kernun UTM installations, backups, and installation images.

3.1.1 Kernun GUI Launcher

When the GUI is started, the launcher window is displayed, see Figure 3.1. The launcher provides

buttons to open (and change) a local copy of the Kernun UTM configuration file (for more infor-

mation on work with the configuration in the GUI see Section 3.1.4) or examine a local log file (see

Section 3.1.3). However, the main purpose of the GUI launcher is to establish a new connection

to Kernun UTM and launch the main GUI management window.

Figure 3.1: GUI Launcher

The GUI communicates with Kernun UTM via SSH connections. You therefore need to have

the sshd service running and correctly configured (see Section 4.2.3). The parameters of the

SSH connection to Kernun UTM are specified in the Connection Parameters dialog, as depicted

in Figure 3.2. You need to fill in the Host name or IP address of the Kernun UTM machine,

Username, Port and select the SSH key file.

1

The binary executables are compiled for the version of FreeBSD used by Kernun UTM.

56

3.1. GRAPHICAL USER INTERFACE

Tip

If you are connecting to Kernun UTM via SSH for the first time, you need to initialize

Kernun UTM (i.e., download your private SSH key from Kernun UTM). To do this, use the

dialog that appears after the Initialize new system button is pressed. Fill in the Hostname

and the Password you entered during the installation. See also Section 2.5.2.

Figure 3.2: Connecting to Server

If you intend to apply the configuration to other Kernun UTM than the one you are logged in

(for example, the second Kernun UTM in a cluster), you must check the Forward SSH agent check

box. See ssh(1) for information about security risks of SSH agent forwarding.

Important

It is unsafe to leave the SSH keys loaded in the ssh-agent after finishing your work with

Kernun UTM.

The key is deleted automatically on UNIX, if there was no ssh-agent running before the

Kernun GUI was started. Otherwise, you need to unload it yourself (e.g. using ssh-add -

d private_key_file).

On MS Windows, the Kernun GUI instances are managed by the GUI launcher, which is

set to unload the keys automatically (after a timeout) if there are no main Kernun GUI

applications running. You can change this behavior or unload the key manually using the

context menu of the Kernun GUI taskbar icon.

3.1.2 GKAT—Management Console

The functionality of the Kernun GUI main window, depicted in Figure 3.3, is basically equivalent

to the command line administrative tool kat(8). It displays the states of individual Kernun UTM

components and allows them to be started, stopped, and monitored.

When connected to Kernun UTM, the state of the proxies and other system components is

indicated by their state icons. The states of the components are also propagated to the state icon of

57

CHAPTER 3. USER INTERFACE

Figure 3.3: GKAT — Kernun UTM management console

their parent component groups and of the whole Kernun UTM. There are the following component

groups: Proxies, System Components (such as SSH servers, mail forwarders, or DNS servers),

Network (interfaces, packet filtering, routing), and Open VPN servers. A running component is

denoted by green icon background , whereas the background of a stopped component is red .

There are several icon overlays that indicate further information concerning the component’s state:

• Not up-to-date configuration — the configuration of the component has changed; reload

it, so that the changes can take effect.

• Parent exiting flag — the proxy is in a special state: it does not accept new connections,

but only waits for the already active sessions to finish. For example, this state may appear

when a proxy is reloaded, some sessions remain open in the old proxy instance, and only

the new instance accepts new connections. Total restart of the proxy stops the old proxy

instance and starts another, so no sessions remain open.

• Not in configuration — the system component is not in the configuration. Kill the com-

ponent to solve the problem.

• Component’s state changing — this overlay is displayed while the component’s state

(started/stopped/restarted/reloaded) is being changed. It disappears immediately after the

action is finished.

In the situation depicted in Figure 3.3 we know that all proxies are running, even though the

Proxies subtree is collapsed. The IPS component is stopped, which is why the System Components

and Kernun icons are partially green and red. Kernun UTM has four network interfaces, the

packet filter and the routing table running. No Open VPN server is configured. You can click on

a component, group, or the whole Kernun UTM icon in the proxy tree to select it and display its

details in the right-hand part of the window. The information about the RTT (Round Trip Time)

in milliseconds between the GUI and Kernun UTM is displayed next to the Kernun UTM name.

58

3.1. GRAPHICAL USER INTERFACE

Kernun UTM Details

On the Manage page of the whole Kernun UTM (that is, with the top-level Kernun node selected

from the component list in the left-hand part of the window), the administrator can easily manage

(start/stop/reload/restart) the whole Kernun UTM, as depicted in Figure 3.4.

Figure 3.4: Kernun UTM Manage Page

The selected action can be applied either to all components, or to the components marked

with a tag in the configuration. The tag or the All components option can be selected from a

combo box. A change in the configuration takes effect only after the system state is synchronized

with the updated configuration. This can be always done by rebooting, restarting, or reloading

the whole Kernun UTM, but it often suffices to restart only a subset of components, while the

remaining parts of Kernun UTM may be left running. The Synchronize system button automates

this process. It displays a window (depicted in Figure 3.5) that lists the actions required to bring

all the components into sync with the configuration. You can manually alter the proposed actions

by clicking on a component in the Action column. When you are satisfied, click OK and all the

selected actions will be executed.

Figure 3.5: System state synchronization dialog

59

CHAPTER 3. USER INTERFACE

The Process List page (Figure 3.6) contains the list of the running parent proxy processes

2

.

Figure 3.6: Process List page

The context menu in the process list (Figure 3.7) can be used to send the TERM (Kill parent

process) or KILL (Kill -9 parent process) signals to the particular process, to copy the contents of

the process list to the clipboard or to save them to a file.

Figure 3.7: Process List context menu

The Graphs page contains graphs of various system parameters, see Figure 3.8. There are

many monitored parameters of the operating system (CPU load, used memory and disk space,

etc.), hardware (temperature measurement, if supported by the hardware), and cluster behavior

(switches between the cluster master and backup). Kernun UTM collects parameter values and

creates graphs depicting how they evolve in time, with several time scales available. The most

detailed graphs show only the recent history, while coarse-grained graphs extend further into the

past. Right-click on a graph to open a context menu that makes it possible i.a. to save the graph

to a file or to add it to Favorite graphs.

The Top page (Figure 3.9) shows the output of the popular top(1) command. The Misc

page (Figure 3.10) displays the output of several commands, showing i.a. the disk space (the

df -hi command), the network state (netstat) or the uptime and current load of Kernun UTM

(w | head -n 1). The Version page (Figure 3.11) shows the version of Kernun UTM and of the

FreeBSD system used by Kernun UTM.

2

Usually, there are many simultaneous requests on each Kernun UTM proxy, which need to be handled simulta-

neously. To do that, for every proxy there is one parent process, which only manages its child processes (starts

and kills them), while these child processes take care of the traffic. Therefore, the number of the child processes

depends on the current traffic.

60

3.1. GRAPHICAL USER INTERFACE

Figure 3.8: Graphs page

Figure 3.9: Top page

61

CHAPTER 3. USER INTERFACE

Figure 3.10: Misc page

Figure 3.11: Version

62

3.1. GRAPHICAL USER INTERFACE

Proxy Details

When the Proxies node or a particular proxy is selected in the component tree, it is possible to

control and monitor all proxies or the single proxy, respectively. The set of pages is similar in both

cases, but the Process List and Graphs pages are available only if a single proxy is selected.

The Manage page for all proxies is similar to the Manage page of the whole Kernun UTM

(Figure 3.4), but the Synchronize system button and the combo box used to restrict operations to

the tagged components are missing. For individual proxies, there are three additional buttons. Kill

terminates the proxy like Stop, but works also for proxies that are removed from the configuration.

The SIGUSR1 and SIGUSR2 buttons change the log level. For more information about log levels,

see logging(7).

The Process List page contains the list of running processes, restricted to the processes that

belong to the particular proxy; both parent and child processes are listed. The functionality is

identical to the global process list (Figure 3.6), including the possibility to send signals to processes.

The Monitor page, see Figure 3.12, shows the current active sessions of all proxies, or of the

selected proxy. Its content is available only for proxies, for which monitoring(5) is enabled in the

configuration. Proxies can be configured to generate the monitoring information into different

directories, so it is possible to select the directory, from which the GUI will read the monitoring

data.

Figure 3.12: Proxy Monitor

The Graphs page’s functionality is similar to the system-level one shown in Figure 3.8, but

different graphs are displayed: the number of proxy child processes and the number of bytes

transferred by the proxy.

The Log page shows the current log messages of the selected proxy, or of all proxies. New

messages are added immediately, so the log view provides information about the current proxy

activity. Select Help to MsgId from the context menu in the log view to open the Details win-

dow with a reference page containing information about the selected message. Click on the Row

Detail tab in the Details window to display the message as a whole, rather than split into fields.

Figure 3.13 shows the log page with the Details window displayed.

63

CHAPTER 3. USER INTERFACE

Figure 3.13: Proxy Log

64

3.1. GRAPHICAL USER INTERFACE

Network Interface Details

The Network node in the component tree groups individual network interfaces, the routing table,

and the packet filter

3

.

All nodes in the Network subtree share the Manage page containing buttons for

starting/stopping/restarting/reloading a component, similar to that of the whole Kernun UTM,

as depicted in Figure 3.4, but without the Synchronize system button and the component tag

selection combo box. Other pages differ for various types of nodes in the Network component

subtree. For the Network node, individual network interface nodes, and routing there are pages

containing output of the ifconfig(8) and netstat(8) commands with various parameters. The

Network node provides an additional page sockstat -4 with the list of all existing IPv4 sockets.

Each network interface has a Graphs page with traffic statistics graphs in bits and packets per

second. Otherwise, the page behaves like its system-level counterpart (Figure 3.8). The current

configuration and state table of the packet filter node can be displayed using pages containing

the output of the pfctl(8) command.

Toolbar and Menu

The toolbar and the menu of the main GKAT window contain almost identical sets of actions.

They are adapting to the currently displayed components (page) of the application, i.e., only the

useful (and usable) buttons or menu items are enabled.

Figure 3.14: Main window toolbar buttons, listed together with the corresponding menu items,

and sometimes keyboard shortcuts:

1. Help | About Kernun GUI — Shows the about dialog box with information about the GUI

version.

2. Settings | Preferences — Opens the basic preferences dialog, in which you can set the default

behavior of your GUI (e.g., your default diff program).

3. File | Analyze Log <Ctrl+L> — Opens a form, in which you can choose certain restrictions

of the log information to be analyzed (date, time, proxy, etc.), and then downloads the log

from Kernun UTM and displays it in a new window (for more information on log analyzing

see Section 3.1.3).

4. File | Statistics — Opens a proxy statistics browser window. If configured, daily, weekly

and monthly statistics of traffic handled by proxies are computed from the log. The

browser window displays a hierarchy of available statistics ordered first by the frequency

(weekly/monthly/daily), then chronologically, and finally by the proxy name. After

3

Kernun UTM uses the PF packet filter (see pfctl(8) and pf.conf(5)), which provides stateless and stateful

packet filtration, NAT, and traffic shaping.

65

CHAPTER 3. USER INTERFACE

choosing an item from the hierarchy, the corresponding statistical output (in the form of a

HTML document with images containing graphs) is displayed.

5. The Configuration submenu:

• Edit Kernun configuration — Downloads the Kernun UTM configuration and opens a

window, in which you can edit it (see Section 3.1.4).

• Configure Kernun from the remote example — Lets you choose and edit a sample Ker-

nun UTM configuration that you can later use as your Kernun UTM configuration.

• Import the configuration from a local file — Opens a local configuration file for editing.

You can later upload it to your Kernun UTM to use it as its configuration or save it

back to your computer.

• Recent versions of the configuration file — Opens an RCS Browser displaying all the

changes you have made in the Kernun UTM configuration and making it possible to

switch back to any of the previous versions.

6. The Console submenu:

• Kernun console — Opens the console with an ssh connection to Kernun UTM.

• Add custom remote command — Opens a dialog, in which you can create custom remote

commands that can be executed in the console. When created, they are added to the

Console menu and can be easily invoked.

7. File | Kernun Systems Management — Provides routines to install, backup, and upgrade

Kernun UTM installations. See Section 2.5, Section 2.6, and Section 2.7 for details. The

system manager has also the License page, accessible also from Settings | License. It displays

the current license file and provides a button for uploading a license file to Kernun UTM.

8. File | Reconnect — Restarts the connection from the GUI to Kernun UTM. It may be useful

if your RTT gets too high or the connection is interrupted.

9. View | Tear off the tab <Ctrl+T> — Opens the current page in a new window and keeps it

up-to-date (refreshes the selected page).

10. Refresh Frequency — The period, with which new data is downloaded from Kernun UTM.

The lower is the period, the more traffic load Kernun UTM produces towards the GUI.

11. Start/Stop — Starts and stops refreshing (downloading of new information from

Kernun UTM) of the current page.

12. View | Tear off a snapshot — Makes a static copy of the current page and opens it in a new

window. This window is never refreshed. It can be used to analyze the snapshotted situation

(e.g., the traffic log).

13. View | Clear the contents — Clears the contents of the current page.

66

3.1. GRAPHICAL USER INTERFACE

14. View | Show/Hide Filters&Markers Window <Ctrl+M> — Shows or hides the Filters and

Markers window, which is used to specify filtering and marking for the displayed log (see

Section 3.1.3).

15. View | Show/Hide Detail Window <Ctrl+D> — Shows or hides the details window, which

displays the details of the current row (e.g., in a log) and the reference page for the current

row type.

16. View | Show/Hide Bookmarks Window <Ctrl+B> — Shows or hides the bookmarks window.

Bookmarks are used to assign a name to a certain line of a snapshotted situation. You can

then easily jump from one bookmarked line to another.

17. View | Find <Ctrl+F> — Opens a dialog used to search for selected text in a selected

column. The view highlights all the found occurrences and jumps to the first one.

18. View | Find next marked line <Ctrl+G> — Jumps to the next line marked by the chosen

marker.

19. View | Find previous marked line <Ctrl+Shift+G> — Jumps to the previous line marked

by the chosen marker.

20. View | Line-Up Columns <Ctrl+I> — Adjusts the column widths according to the widths

of their contents.

21. View | Jump to the beginning <Ctrl+Up> — Scrolls to the beginning of the current page.

22. Keep at end <Ctrl+Down> — Scrolls to the end of the current page and keeps scrolling so

that the newly added lines are displayed. This function is most useful with the Log page, if

we want to display newly added messages continuously.

3.1.3 Logs

The Kernun GUI contains a powerful log analyzer. It provides tools for filtering out undesired

log entries and for marking those that are more important to you with different colors. The log

window (possibly displayed as a part of another window) is displayed in several modes: you can

either open a local log file, download a “historical” log file from Kernun UTM, take a snapshot of

the currently displayed log, or work with the up-to-date (and changing) log.

The first setting concerning logs is the specification of the log level for the particular proxy

(permanently in the configuration or temporarily using buttons on the Manage page). There are

seven different log levels, as described in logging(7). The higher the level is, the more information

the Kernun UTM stores (and sends to your log analysis window).

Filter and Marker Basics

Figure 3.15 shows an example of a log display window (created by selecting File | Analyze Log

in the GKAT main menu). The logs are presented as tabular data. You can drag a column by

its title and drop it elsewhere to change the column order. Each column has a context menu

used to select which columns are to be displayed. For example, if you are analyzing a log from a

67

CHAPTER 3. USER INTERFACE

particular proxy in a single Kernun UTM network, you may want not to display the columns Fw

(Kernun UTM name), Proxy and PID (as the PID is also included in the column called SID, which

is a concatenation of the PID and the number of the current session

4

served by this process). You

can use the Save column visibility settings option, so that you do not have to set it every time.

Figure 3.15: Example of a simple HTTP filter and marker set

The filters and markers are accessible using View | Show/Hide Filters&Markers Window

(<Cltr+M>). Filters are used to display only the log entries that you are interested in, while the

main point of markers is to highlight some special rows (columns) in the log. A selected marker

can be then easily used to jump to the next/previous marked line.

Note

Both filters and markers are managed (created, deleted, moved, changed) in a similar way.

From now on we will only describe management of filters. However, all of the operations

work in the marker context, too.

The only difference between the management of filters and markers is that markers are applied

automatically after a change, whereas filters need to be explicitly applied by selecting the Apply

filter option from the context menu of the Filters node, or by clicking on the same button, which

appears blinking after any change in the filter set. Moreover, the context menu of a marker

contains an option used to change the highlighting color and highlighted column(s).

4

A session encompasses the communication of a particular proxy process with a single client.

68

3.1. GRAPHICAL USER INTERFACE

Important

If you work with the current live log, the filters only apply to the newly incoming log messages.

The old ones are not filtered out even if you apply the filter. To filter out older log entries,

tear off a snapshot. Markers take effect instantly in all situations.

Creating Filter Conditions

There can be many filters in the system. They are all presented in the filter tree under the Filters

node. Some of the filters may be turned off (by unchecking the box next to their name). Each

filter is a tree of conditions with logical operators And, Or and Not. Each condition consists of a

column to be examined, a relational operator and a desired value. The relational operator defines

the relation between the value in the column and the desired value that must be fulfilled in order

for the row to be included in the log. The following relational operators are available: Is, Contains,

Matches regex and their negations, Starts with and Ends with; they are all self-explanatory.

The easiest way to create a filter is to drag and drop a field from the log table. A new filter is

created and a new condition inside this filter is initialized with the value of the field you dropped

there. You can also drag a field and drop it on the relational operator (then the new condition is

added as a child of the operator) or on another condition (in this case, you are asked whether you

want to use And or Or to connect it with the target condition or whether you want to add the new

condition to the same parent). Other useful options (including creation of a new filter) are listed

in the context menu of the selected node of the filter tree.

Having created some filters, you can copy a particular node (and all its subnodes) to another

place simply by dragging it there. In this way you can easily create a filter from an existing

marker, and vice versa.

Saving and Loading Filters and Markers

You may want to save filters you create for future use. You can save a single filter or any subset

of filters. Both saving and loading of filters is done using the context menu of the chosen filter (or

the Filters node). A filter can be saved either to a local file, or to the registry. The filters (and

markers, of course) in the registry are displayed in (and can be loaded from) the Load filters/markers

submenu of the top-level Filters/Markers context menu.

Tip

To rename a filter/marker, double-click on its name or select Rename from the context menu.

3.1.4 GCML — Configuration

This section describes the GUI functionality for examination and modification of the Kernun UTM

configuration. It does not describe the configuration language. See Section 4.1 for an introduction

to the configuration syntax and semantics, and Section 4.2 for a simple configuration example.

69

CHAPTER 3. USER INTERFACE

Kernun GUI provides a GUI editor for the Kernun UTM configuration files (kernun.cml).

The GUI CML editor is functionally equivalent to the line-oriented cml(8) tool. The GUI CML

editor is aware of the CML syntax and semantics and highlights points of the configuration that

are detected as erroneous. When connected to Kernun UTM, the Kernun GUI can automatically

download the configuration from Kernun UTM, present it in the graphical CML editor, and commit

it back to Kernun UTM. The GUI CML editor can also open a local file; in this case, a connection

to Kernun UTM is not required.

Configuration Window Overview

Figure 3.16 shows the main GUI configuration window. The configuration is displayed in an

expandable configuration tree. You can select a node to display and easily edit its details in the

right-hand part of the window. The displayed details include the selected node’s type and name,

its full path in the configuration (as displayed by cml(8) in the command line prompt), a brief

description, and the constraints (if there are any). There is also a form with fields (editable, if

appropriate) that represent the elements of the selected node. A short description, the name of

the element, and the expected data type are displayed to the right of each field. The labels of the

required fields are highlighted (bold). Several field types help you fill in data of the correct data

type. If you make a mistake (e.g., do not fill in all the required information or do not respect

the expected data type) the background of the incorrect field is highlighted, an exclamation mark

button appears next to it (click on the button to show the error message) and the error is also

displayed in the configuration tree.

Figure 3.16: GUI CML Editor

When editing the configuration, select File | Show differences in the main menu to display the

differences between the current contents of the configuration and the original configuration file

70

3.1. GRAPHICAL USER INTERFACE

downloaded from Kernun UTM. The currently edited configuration can be saved to a local file

using the File | Save the configuration as a local file menu item. In addition to online marking of

incorrect configuration nodes, it is possible to invoke verification of the whole configuration using

Verify | Verify the configuration.

When you finish editing of the configuration, you may want to save and apply it to Ker-

nun UTM or save it as a local file. Both can be easily done using the File menu. Committing of

the configuration (<Ctrl+S>) invokes a dialog, depicted in Figure 3.17, where you can choose ac-

tions to be done with the configuration on Kernun UTM (save/generate/apply/synchronize state,

all done by default) and the configuration to apply. The results of the action are displayed in a

text box. If you have made any changes to the configuration, you are asked to fill in the RCS Log

Message describing the changes. First, the configuration file is saved and stored in a RCS file,

in which the complete history of changes is kept and from which any old version of the configu-

ration file can be retrieved. Then, low-level system and proxy configuration files are generated.

The application of the configuration means copying the low-level configuration files to locations,

in which Kernun UTM components look for them at the startup. Finally, the system state is

synchronized with the configuration. This is the same action as the one performed by Synchronize

system, including the possibility of reviewing and modifying the list of performed actions in the

dialog window shown in Figure 3.5.

Figure 3.17: Configuration commit dialog

71

CHAPTER 3. USER INTERFACE

Interaction with the Configuration Tree

Each line of the configuration tree represents a node of the Kernun UTM configuration and has

an icon according to its type. You can select a node by clicking on its name. The easiest way

to move in the tree is using the cursor keys. <Up>/<Down> selects the next/previous node,

<Right> expands the current section, <Left> jumps to the parent of the current node (or

collapses an expanded section). A non-empty section node can also be expanded/collapsed by

clicking on the +/- sign next to it. Useful commands for interaction with the configuration tree

are available in the Edit menu, the context menu of the selected node, and on the toolbar. A

section can be expanded, along with all of its subsections (and their subsections, etc.) by select-

ing Expand current node recursively <Ctrl++> (and collapsed using the Collapse . . . <Ctrl+->

command). Because the order of individual sections and items matters, you can move a node up

and down (<Ctrl+Up>/<Ctrl+Down>) using commands from the same menu. You can also Re-

move (<Ctrl+D>), Hide (<Ctrl+H>), Copy (<Ctrl+C>), Cut (<Ctrl+X>) or Paste (<Ctrl+V>,

pastes the last copied/cut node under the selected one) a node.

Tip

If you are more familiar with the line-oriented cml(8) tool, you may want to see the text

version of the configuration of the current node (section). This is accessible from the View

| View expanded configuration menu or from the context menu of the node. A read-only

window containing the output of the /show -a cml command is displayed.

Inserting a new node using the Insert menu is relatively easy with the GUI. First, you need to

decide where you want to add the new node (as the first child, as the last child (<Ins>), or next

to the current node (<Ctrl+I>)). Then you need to choose the type of the new node (section,

item, data variable definition, section variable definition, section variable application, for loop,

switch/case, include file, or comment). In the case of inserting a section, item or section variable,

you need to choose the type of the section/item and its name (if appropriate). Finally, the new

node is inserted and you can edit its properties in the details window.

Form Field Types

Several form field types are used to represent the properties of a node. It is important to understand

each of them, in order to fill in correct data.

• Text box — Expects text data. However, you cannot fill in anything; you still need to

preserve the data type specified in the parentheses in the field label (e.g., the sock type

means [ip]:port). The syntax of values of various data types used in the Kernun UTM

configuration is described in Section 4.1.

• Check box — Can either be checked (true), or unchecked (false).

• Combo box (selection) — You can choose exactly one of the specified options. If you want to

enter its content manually, you need to use the Edit | Toggle combobox/explicit value menu

72

3.1. GRAPHICAL USER INTERFACE

item, which allows you to write there “anything” (e.g., a variable name). If there is a “fork”

icon next to the combo box, the value of the combo box decides which further form fields

are displayed (e.g., in system.smtp-proxy.delivery-acl.sender the error value

requires further constraints on the error, whereas the ok option does not).

• List of values — Some CML properties (e.g.system.acl.service) expect a list of values

of a certain type (str, addr. . .). You need to be able to create new values, as well as change

and delete the old ones. The value list field type displays each value of the list in a separate

row. You can simply edit a particular value in the same way as you are used to work with

the above-mentioned field types. A value can be deleted from the list using the Delete icon

next to it. To insert a new value, click the Append Value button. The value lists can be

multidimensional (any value list can contain sublists, which can also contain sublists, etc.).

You can append a new sublist by clicking the Append Sublist button. On the right from a

sublist there is a button with a submenu that allows to Remove the sublist or Exclude the

sublist (creates the negation of the current sublist). List items can also be loaded from a file,

in which each line represents one item of the list. To “inject” a file into a list, click on the

Append File button and select the shared-file section name, in which the file name and

the format (e.g., IP addresses, text or REGEXPs) are specified.

Tip

The contents of the shared-file can be edited in the GUI in the details of the path

item of the shared-file section.

Bookmarks

As orientation in a very big configuration may become difficult, the Kernun GUI provides tools to

simplify it.

First of all, you can use View | Show/Hide Bookmarks Window (<Ctrl+B>) to create bookmarks

(like in your Web browser) to important positions in the configuration tree. The bookmark window

is displayed in the top right part of Figure 3.18. To add a bookmark to the current configuration

node, select the Bookmark this node option from its context menu or the Bookmark current position

option from the context menu of the bookmark list in the Bookmarks window. You are asked to fill

in the bookmark’s title before adding it. You can jump to a bookmarked node by double-clicking

the bookmark’s name in the Bookmarks window. Additional bookmark operations (removing,

renaming) are available from the context menu of individual bookmarks.

Relevant Nodes

In addition to simple bookmarks, the Kernun GUI provides smart bookmarks, accessible via

View | Show/Hide Relevants window (<Ctrl+R>). Smart bookmarks are used to highlight the

configuration nodes that are relevant to the chosen nodes (e.g., the ACLs for proxies) and to easily

jump to them. The function of finding and highlighting of the relevant nodes is only available for

proxies (it would not make much sense for other nodes), but the relevant nodes may include any

73

CHAPTER 3. USER INTERFACE

Figure 3.18: Bookmarks and relevant sections in GUI CML

sections (proxies, ACLs or other sections). A node is relevant to a proxy if a change to the node

may alter the behavior of the proxy.

There are two lists of bookmarks in the Relevants window. The first one (Proxies) displays

the list of all proxies in the configuration and makes it possible to select the proxies, for which

the relevant nodes are to be highlighted. The other list (Relevant sections) displays bookmarks

to configuration nodes that are relevant to the chosen proxies. Again, you can double-click a

bookmark to jump to it in the configuration tree. After selecting the proxies in the Proxies list,

the relevant nodes are highlighted in the configuration tree and bookmarks to them are displayed

in the relevant sections list.

There are more actions available from the context menus of the items of the bookmarks lists,

including Bookmark this. . . (which adds the current item to the simple bookmarks), Jump to node

(works like double-clicking on the item), and several default selection templates for the proxies.

Furthermore, you can choose the types of relevant nodes that you are interested in for the Relevant

section items.

Tip

You might not want the relevant item list to be to refreshed automatically (after every change

in the configuration and in the selection of the proxies), especially on a slower machine. This

behavior can be controlled from the context menu of any of the relevant items using the

Automatically refresh relevants check box in its context menu. If it is unchecked, you have

to refresh the list manually by clicking the Refresh button.

74

3.1. GRAPHICAL USER INTERFACE

Configuration Wizards

The Kernun GUI provides configuration wizards in order to simplify the configuration of complex

tools (OpenVPN, IPSec). All the wizards are accessible via the Insert | Configuration wizard menu

item. Select Overview of the wizards to open a dialog that describes all the wizards and the use of

the created part of the configuration, and makes it possible to start the selected wizard.

Each wizard is divided into several pages that prompt the user to fill in individual fields. The

form fields are the same as in the GCML, so you can use references to other parts of configuration

or data variables. The fields highlighted with orange background are filled incorrectly and you

need to correct their values before you are allowed to proceed. The last page of each wizard

displays the part of the configuration that has been created using the wizard and the result of

verification of the configuration after the changes are committed into the configuration. If you do

not like the values, you can return back in the wizard, correct the respective fields and proceed to

the wizard overview again. When you finish the wizard, the created configuration is committed to

the main system configuration. You can cancel the wizard at any moment to undo all the changes

and return back to the GCML.

The Help button located on each wizard page opens a help window next to the current page

that describes all the fields on it. The contents of the help window always correspond to the

current page.

Tip

All that can be created using wizards can be done also manually using the standard GCML

interface. Another option is to create only the core part of the configuration using the wizard

and then modify it using the GCML.

There are currently five wizards in the Kernun GUI. They are described in more detail in the

corresponding sections of the handbook.

• Section 4.3.1 — enables connection from clients in the internal network to server(s) in the

external network (e.g., access to HTTPS servers).

• Section 4.3.1 — enables access of external clients to servers in the local network (e.g., a

proxy for local IMAP4S mail servers allowing employees to download their mail from home).

• OpenVPN Remote Access Server — configures an OpenVPN server that will accept connec-

tions from clients in the external network (road warriors).

• OpenVPN Network to Network — configures a local OpenVPN peer, which will connect local

and remote networks (behind another OpenVPN peer).

• IPSec — configures IPSec in the tunnel or transport mode to secure the communication

between the specified local and remote networks.

3.1.5 Locking

The Kernun GUI implements a configuration locking mechanism, which prevents changes made by

different users from being accidentally overwritten. The first user to open the CML configuration

75

CHAPTER 3. USER INTERFACE

in edit mode or the System Manager acquires the configuration lock. Any other user trying to

open the configuration at the same time will not be able to acquire the lock. Hence, the user will

be presented with the Figure 3.19 dialog presenting the available options. The choice to break the

lock must be confirmed explicitly in Figure 3.20 as a potentially dangerous operation.

The Kernun GUI also prevents the user from modifying the configuration in two different

places at once. Therefore opening the System Manager while editing the configuration results in

Figure 3.21.

The Kernun GUI unlocks the configuration automatically when the user closes the window,

which has acquired the lock. Possible errors are reported (Figure 3.22).

Figure 3.19: Configuration already locked by other user

Figure 3.20: Break lock confirmation

After the locking phase, the CML configuration editor checks whether the actual contents of

the configuration file have been stored in the revision control system (RCS). If not, the user will

be asked whether to do so (Figure 3.23). The configuration file or the RCS version file may not

even be initialized (Figure 3.24).

Before commiting the configuration to Kernun, the CML configuration editor checks whether it

still owns the lock. If not, it may have either been broken and still locked (Figure 3.25) or broken

and then unlocked (Figure 3.26).

76

3.1. GRAPHICAL USER INTERFACE

Figure 3.21: Configuration and System Manager at the same time

Figure 3.22: Configuration unlock failed

Figure 3.23: Commit configuration to RCS confirmation

77

CHAPTER 3. USER INTERFACE

Figure 3.24: Initialize RCS confirmation

Figure 3.25: Configuration lock broken

Figure 3.26: Configuration not longer locked

78

3.2. COMMAND LINE INTERFACE

3.2 Command Line Interface

Besides the GUI (Section 3.1) there is another approach to Kernun UTM services, namely the

text-only, or command-line interface (CLI). Its common features as well as its particular tools are

described further in this section.

3.2.1 Command Line Interface Details

All command-line tools can be used in the interactive mode, which means that they display

prompts and expect commands entered by the user. The user can use common features of the

command-line interface, known e.g. from the bash(1) tool, namely:

History browsing The user can browse through the list of commands entered recently using the

cursor keys, change the command text and re-enter it by pressing the <Enter> key.

History searching Using the <Ctrl+R> key combination, the user can invoke the command

history searching. When s/he starts typing a part of a command, the CLI displays the most

recent command containing this string. When a cursor key is pressed, the search is stopped

and the selected command is copied to the command line for further processing.

Hotkey binding Most of hotkey bindings known from bash(1) are available in Kernun UTM’s

CLI tools. For example, <Ctrl+A> skips to the beginning of the line, <Ctrl+E> skips to

the end of the line, <Ctrl+U> clears the line, <Ctrl+D> exits the tool etc.

KAT@fw> apply fw

CMLK-720-E Directory ’/usr/local/kernun/conf’ contains no SYSTEM

KAT@fw> cml -g

RCS file: /usr/local/kernun/conf/kernun.cml,v

...

CKGB-719-N ---- System ’fw’ successfully generated

KAT@fw> <ˆR>

Searching for: ’ap’ > apply fw

Warning

The command history is saved when a CLI tool is closed and made available again the next

time it is started. However, there is a bug in the library used for the line-editing support and

in some cases, the reading of the history file fails and the tool coredumps. The recovery is

very simple: remove the history file (˜/.kat_hist for the KAT and ˜/.cml_hist for

the CML) and restart the tool.

3.2.2 C

3

H — Command Completion and Context Help

One of the most important and most useful features implemented in Kernun UTM’s CLI tools is

Command Completion and Context Help, or shortly C

3

H.

79

CHAPTER 3. USER INTERFACE

The C

3

H support helps you write correct commands or proper parameters more quickly. The

rule of thumb is: “If you don’t know what to do now, press the <Tab> key!”. Of course, it does

not work absolutely perfectly in all situations, but it works e.g. when selecting a command name,

a command argument name (if there is only a defined set of ones), a system name (the apply

command in the KAT), a proxy name (application or process management in the KAT, language

reference in the CML), a file name (some KAT or CML commands, a file name reference in the

CML), a correct operator or delimiter (in the CML language), and many others.

KAT@fw> <Tab>

apply # apply generated system config files

cml # start configuration tool

...

KAT@fw> a<Tab>

KAT@fw> apply

KAT@fw> apply <Tab>

KAT@fw> apply fw

CMLK-820-N [root] Applying ’SYSTEM-fw’, Source: kernun.cml,v 1.1 ...

...

System /usr/local/kernun/conf/SYSTEM-fw applied to /.

KAT@fw> start s<Tab>

SMTP SSH SSHD

KAT@fw> start Sm<Tab>

KAT@fw> start SMTP

CMLK-841-N [root] Executing ’start’ operation of N=SMTP A= T=

...

CMLK-849-N [root] Successful end of ’start’ operation

KAT@fw> ps -<Tab>

-a -b -d -p -S -t -T

KAT@fw> ps -p <Tab>

KAT@fw> ps -p smtp-proxy

3.2.3 KAT — Kernun UTM Admin Tool

The KAT utility is the core management facility for administration of Kernun UTM. It is available

directly on Kernun UTM when used locally, can be used when accessing Kernun UTM remotely

in the text mode via SSH, and, in fact, most of operations implemented in the GUI (Section 3.1)

are realized using the KAT on the remote machine.

The complete command summary is available in kat(8); this section points out only the most

important features and shows the typical tasks an administrator can do using the KAT tool.

Modes of Operation

The KAT can be used in two modes:

80

3.2. COMMAND LINE INTERFACE

Interactive mode In this mode, the program is called without parameters. It displays its own

prompt KAT@hostname> and expects commands issued by the user. In this mode, the

KAT accepts also ordinary UNIX shell commands, so it can be used as a simplified UNIX

shell with added commands for Kernun UTM management.

Batch mode In this mode, the program is called with a KAT command as a parameter; the

command is executed and the tool exits. This mode is used for quick execution of a single

KAT command without the need of starting the KAT explicitly.

[root@fw ˜]# kat ps

12345 1 Ss 0:00.01 SMTP: parent: ready on 1 address: ...

[root@fw ˜]#

Configuration Management

The management of the Kernun UTM configuration is one of the most important functions pro-

vided by the KAT. The configuration tool CML (see Section 3.2.4 below) can be invoked from

the KAT simply by typing the command cml. After finishing the configuration, the KAT apply

command must be executed to put the changes into effect.

KAT@fw> cml

CMLI-700-N CLI interactive mode entered

RCS file: /usr/local/kernun/conf/kernun.cml,v

...

CMLR-710-K File ’/usr/local/kernun/conf/kernun.cml’ loaded

CML> ... work interactively with the CML

CML> ./generate

CKGB-719-N ---- System ’fw’ successfully generated

CML> ./quit

CMLI-709-N CLI interactive mode closed

KAT@fw> apply fw

CMLK-820-N [root] Applying ’SYSTEM-fw’, Source: kernun.cml,v 1.1 ...

In the case of a mistake, the administrator can go through the log of previous revisions, compare

different versions and revoke an older one. For this purpose, several commands have the -r option

with a value of revision number, or 0, -1, etc. for previous RCS versions of the configuration file.

KAT@fw> rlog

RCS file: kernun.cml,v

Working file: kernun.cml

head: 1.2

...

81

CHAPTER 3. USER INTERFACE

revision 1.1

date: ...

Initial revision

===

KAT@fw> rcsdiff -r 0 -r 1.1

===

RCS file: kernun.cml,v

retrieving revision 1.2

retrieving revision 1.1

diff -c -r1.2 -r1.1

...

KAT@fw> cml -r -1

CMLK-825-N [root] Revoking revision 1.1 of ’/.../kernun.cml’

CMLI-700-N CLI interactive mode entered

Component Management

Kernun UTM consist of a set of components, and the KAT tool facilitates the work with them.

The commands of this group work with the configuration currently applied in the system. Thus,

applications that are not configured cannot be operated (e.g. stopped) using these commands.

For such tasks, the process management (see Section 3.2.3 below) commands need to be used.

The commands have several options used to select the proper set of components by type, by name

etc., and also by the current state of the component’s configuration (e.g. restart only the updated

ones).

KAT@fw> restart

----> Are you sure to do this operation with the whole firewall? (y/[n]) n

KAT@fw> showapp -n

SMTP smtp-proxy proxy - : UPDATED 50

CMLK-840-I Found 1 component(s)

KAT@fw> restart -n SMTP

CMLK-841-N [root] Executing ’restart’ operation of N=SMTP A= T=

...

CMLK-849-N [root] Successful end of ’restart’ operation

KAT@fw> showapp

...

SMTP smtp-proxy proxy - : CURRENT 50

...

CMLK-840-I Found 14 component(s)

KAT@fw> restart -n SMTP

CMLK-841-N [root] Executing ’restart’ operation of N=ROUTES A= T=

CMLK-740-W Component ’ROUTES’ running, skipping...

82

3.2. COMMAND LINE INTERFACE

CMLK-712-E No appropriate component found

KAT@fw>

Process management

The running applications (components) of Kernun UTM can be operated using the commands of

this group. The administrator can monitor a list of application processes and send them signals.

KAT@fw> ps -b SMTP

12345 1 SMTP: parent: ready on 1 address: [192.168.10.1]:25

KAT@fw> kill -info SMTP *

12345 1 SMTP: parent: ready on 1 address: [192.168.10.1]:25

CMLK-830-N [root] Sending signal 29 to application ’SMTP’(), process: *

CMLK-130-N [root] Sending signal 29 to process 12345

KAT@fw>

3.2.4 CML — Configuration Meta Language

The CML tool is a simple syntax-driven editor of the Kernun UTM configuration. The complete

command summary is available in cml(8); this section points out only the most important features

and shows the typical configuration tasks.

The user can move within the configuration in the manner very similar to moving across the

file system, with the sections of the configuration playing the role of directories. At every moment,

the user is in a node of the configuration tree; the “path” to the node is shown in the prompt. To

descend into a subnode, simply type the subnode’s header with the opening left brace. To ascend,

analogously type the closing right brace.

CML> sy<Tab>

CML> system <Tab>

<new name> fw

CML> system fw {

CML.fw> routes {

CML.fw.routes> }

CML.fw>

In the case of a command error or incompleteness, the CML advises the proper continuation

in the prompt text.

CML.fw> routes

CML.fw.routes> [OPEN] <Tab>

CML.fw.routes> [OPEN] {

CML.fw.routes>

83

CHAPTER 3. USER INTERFACE

Type an existing section to enter it for editing; type a new one to append it after the “cursor”.

If a new node should be placed elsewhere, the cursor position needs to be changed. Special CML

commands are used for such “control” operations. To be distinguishable from the section and item

names, they start with a special character sequence (“/” or “./”). The show command is used to

display the content of a node, the goto command to move the cursor.

CML.fw> ./show

[1] ## Host name without domain

[2] hostname fw;

...

--> [25] routes { ... }

...

}

CML.fw> ./goto = acl

--> acl INTOK { ... }

CML.fw> acl NEW {

CML.fw.NEW> }

...

CMLR-592-W .: Section ’NEW’ definition not correct

CML.fw> ./show . acl

acl INTOK { ... }

--> acl NEW { ... }

CML.fw>

The above example illustrates also the “online verification” function. After completing the

configuration directive, the CML tries to check whether it would be readable by the low-level

configuration reader, and prospective errors are displayed.

The show and goto commands can be typed in a shortened version without names, as shown

in the following example.

The rules for entering sections apply to items, too. Type a non-existent item to add it, or an

existing unrepeatable item to change it. The only difference concerns work with repeatable items.

If you type one, a new item will be added; to edit an item, use the edit command. The C

3

H

(Section 3.2.2) may help significantly, if used.

CML.fw> acl INTOK {

CML.fw.INTOK> ./

acl INTOK {

[1] from { ˆsystem.INT.ipv4.net };

[2] service { DNS, FTP, HTTP, HTTPS, POP3, IMAP4, SMTP, SSH };

--> [3] accept;

}

CML.fw> 1

84

3.2. COMMAND LINE INTERFACE

--> from { ˆsystem.INT.ipv4.net };

CML.fw.INTOK> ./edit <Tab>

CML.fw.INTOK> ./edit from { ˆsystem.INT.ipv4.net };

CML.fw.INTOK> ./edit from { $INT-ADDR };

CML.fw.INTOK> from { $EXT-ADDR };

CML.fw.INTOK> ./

acl INTOK {

[1] from { $INT-ADDR };

--> [2] from { $EXT-ADDR };

[3] service { DNS, FTP, HTTP, HTTPS, POP3, IMAP4, SMTP, SSH };

[4] accept;

}

Context-oriented online help is available at every point of the configuration using either C

3

H

(the <Tab> key), or the info command.

CML.fw.INTOK> ./info descr

Repeatable section acl...

General ACL definition.

Constraints:

Exactly one of DENY and ACCEPT must be specified.

...

Item SERVICE must be specified..

acl <name> {

* from ...;

* to ...;

...

service ...;

}

CML.fw.INTOK> doctype-ident-order <Tab>

doctype-ident-order [for <for>] <order>;

Elements:

--> [KEY DIRECTION-SET for = *]

DOCTYPE-IDENT-METHOD-LIST order

The delete command can be used to remove unneeded configuration directives (the last re-

moved node can be restored using the undelete command). The hide command provides a similar

function. However, a hidden node remains in the configuration, even though it plays no role in

the actual configuration, and can be re-enabled in the future using the unhide command.

CML.fw.INTOK> ./

85

CHAPTER 3. USER INTERFACE

acl INTOK {

[1] from { $INT-ADDR };

--> [2] from { $EXT-ADDR };

[3] service { DNS, FTP, HTTP, HTTPS, POP3, IMAP4, SMTP, SSH };

[4] accept;

}

CML.fw.INTOK> ./delete

--> service { DNS, FTP, HTTP, HTTPS, POP3, IMAP4, SMTP, SSH };

CML.fw.INTOK> ./undelete

--> from { $EXT-ADDR };

CML.fw.INTOK> ./hide

--> hidden from { $EXT-ADDR };

CML.fw.INTOK> ./unhide

--> from { $EXT-ADDR };

The CML has a clipboard, which can be used to copy and move configuration directives.

Repeatable sections can be renamed when being pasted.

CML.fw> ./copy

CMLM-751-N 1 node(s) stored to clipboard

CML.fw> ./paste

CMLT-570-E Section ’INTOK’ already defined

CML.fw> ./paste NEW

--> acl NEW { ... }

When the configuration changes are finished, the configuration should be saved. Before actually

saving it, the CML verifies the configuration. If the verification fails, the save operation does not

proceed. The verification can be skipped (e.g. when saving temporarily), but it is strongly

recommended not to do so regularly.

CML.fw> ./save

CKGB-711-N ---- Trying verification of system ’fw’...

CFGR-500-E FTP.NEW: Authentication method must be set

CFGR-500-E HTTP.NEW: Authentication method must be set

CKGB-718-E ---- System ’fw’ verification failed

CMLM-713-E Saving cancelled

CML.fw> ./save !

CMLS-715-N Configuration saved to file ’/.../kernun.cml’

/.../kernun.cml,v <-- /.../kernun.cml

new revision: 1.3; previous revision: 1.2

enter log message, terminated with single ’.’ or end of file:

>> temporary saving

>> .

86

3.3. ADMINISTRATIVE UTILITIES

done

CMLT-800-N Configuration identification: kernun.cml,v 1.3 ...

3.3 Administrative Utilities

Kernun UTM contains many administrative utilities, which can be invoked from the shell command

line. The most important of them, kat(8) and cml(8), have been described in Section 3.2. In

addition to these two utilities and the standard FreeBSD commands there is a set of Kernun-

specific utilities, which are introduced in this section. For detailed description, see the respective

reference pages.

Note

The full contents of terminal sessions of the administrator are logged

5

in the

/var/log/session-USER-DATE-HOST.log.gz files.

bootmgr(8) Kernun UTM boot manager configuration tool. It can be used to view and set

system partition labels, toggle the bootable flag of system partitions, and select the default

system partition for the next boot. Its functionality is provided also by the GUI, on the

Kernun systems page of the System Manager.

diskdb(1) This program can traverse the file system and create a database file containing in-

formation about all files and directories in it. It is able to compare two such databases and

display the list of changes to the file system between the times of creation of the databases.

The diskdb program is used internally by the Kernun UTM backup, restore, and upgrade

tools. It can be used also to detect unexpected changes to vital system files.

fwpasswd(1) Program for management of password files for user authentication. See

Section 5.14.1 for more information.

log-ts(1) It selects messages from Kernun UTM’s logs using various criteria. Automatically

selects the log files that cover the required time interval.

kernun-audit(1) This tool reports bugs in the installed Kernun software and availability of

new versions. It is usually run automatically at a regular interval (daily) and the reports

are e-mailed to the administrator. See also Section 2.8.

mkblacklist(1)

printblacklist(1)

resolveblacklist(1) Utilities for manipulation and viewing of blacklists for http-proxy(8). See

Section 5.18.2 for instructions on the use of blacklists in the HTTP proxy.

5

A session is copied into a file using the screen (1) command invoked from /root/.profile.

87

CHAPTER 3. USER INTERFACE

monitor(1) A utility for online monitoring of active proxy sessions. Monitoring is provided also

by the GUI on the GKAT Monitor pages for proxies. The configuration of monitoring is

described in Section 5.6.3.

ooba-samba(1) This script is used by the out-of-band authentication to obtain the list of logged-

in users from a Samba server. The script should be copied to the Samba server machine and

run automatically, as described in Section 5.14.8.

quarc.sh(1) A tool for SMTP proxy quarantine management. In the ACLs of the

smtp-proxy(8) it can be specified that some mail messages are not to be delivered, but

stored in the quarantine instead. The quarantine management tool can be used to list the

quarantined content, as well as remove or resend messages from the quarantine.

rrd(1) This is the command line interface to system parameter monitoring, as described in

Section 5.6.5. It is also used by the GUI to generate graphs displayed on the Graphs page

(Figure 3.8).

sum-stats(1) This script processes Kernun UTM logs and generates proxy statistics. The con-

figuration of statistics is described in Section 5.6.4. The statistics can be displayed by the

GUI in the window invoked by selecting File | Statistics from the main menu.

switchlog(1) This is a program for fast filtration of a Kernun UTM log based on proxy name

and message ID matching. It can multiplex selected messages to several output streams for

further processing. For example, the process of proxy statistics generation uses switchlog

to quickly select statistical messages written by proxies and pass them to sum-* scripts.

triplicator(1) A tool for SMTP proxy greylisting database management. Greylisting is one of

antispam techniques implemented in Kernun UTM. See Section 5.16.2 for more information.

sysmgr(8) This is the command-line alternative to the GUI System Manager window. It can

perform installation, upgrade, backup, and restoring of Kernun UTM. Refer to Chapter 2

for detailed instructions on how to perform various Kernun system management tasks.

88

Chapter 4

C o n fi g u r a t i o n B a s i c s

In the first section of this chapter, we will introduce the principles of the Kernun UTM con-

figuration. We will describe the syntax and semantics of the configuration language and its

two different representations. The textual representation is used in the configuration file (usu-

ally /usr/local/kernun/conf/kernun.cml) and by the command line configuration tool

cml(8). The graphical representation is used by the Kernun GUI. Then we will discuss the ini-

tial configuration that is generated when the newly installed Kernun UTM is booted for the first

time. We will explain the meaning of individual items in this configuration and how to change

them. For information about configuration of additional functionality not included in the initial

configuration, such as more types of proxies, authentication, antivirus, or antispam modules, refer

to Chapter 5.

Kernun UTM keeps its configuration in a text format called CML (Configuration Meta Lan-

guage). The configuration is usually stored in the /usr/local/kernun/conf/kernun.cml

file. Whenever the configuration file is saved by the GUI or command line tools, it is also saved

to a RCS (Revision Control System) file called /usr/local/kernun/conf/kernun.cml,v.

The RCS file contains the complete history of the configuration, which makes it possible to return

to any past version of the configuration file, show differences between two versions, and more. The

Kernun GUI and cml(8) provide functions for work with RCS files. For more advanced operations

with RCS, you can use command line system tools, see rcsintro(7).

Speaking more precisely, there are two levels of configuration: high and low. Usually, the ad-

ministrator maintains only the high-level configuration file. On the other hand, each Kernun UTM

component reads its low-level configuration file upon starting. The Kernun UTM configuration

handling tools generate a set of low-level configuration files

1

from the single high-level configuration

file. In fact, the high-level configuration is more or less an extension of the low-level configuration

of proxies. This concept makes it possible to keep a simple configuration file for each proxy and,

at the same time, maintain a single file that describes the whole system in a comfortable way.

1

They are mainly proxy configuration files and some system configuration files, e.g., /etc/rc.conf.

89

CHAPTER 4. CONFIGURATION BASICS

4.1 Configuration Language

The configuration has a tree structure consisting of sections, items, and elements. A section is

a named group of logically connected configuration directives. It can contain other (sub)sections

and items. An item is a named group of values—elements. The configuration structure is reflected

by the view of the configuration in the GUI, see Figure 4.1, as well as in the corresponding textual

configuration file:

Configuration of a single Kernun UTM system ❶

system fw { ❷

Host name without domain

hostname fw; ❸

Domain name

domain pha.tns.cz;

The default crontab defines typically used periodic actions

crontab {

$DEFAULT-CRONTAB;

}

The network interface connected to the internal network

interface INT { ❹

dev em0;

ipv4 [192.168.10.1/24]; ❺

}

Figure 4.1: Tree structure of the configuration

In the sample configuration there is a section of type system named fw ❷. It contains several

subsections and items. For example, an item hostname with an element (value) fw ❸, or a

subsection interface named INT ❹ containing an item ipv4 ❺. Note that it is possible to

include comments in the configuration file. They are also displayed by the GUI ❶.

Nodes of the configuration tree are referenced by paths. A path lists the ancestor sections in

the tree. In the above example, the fw.INT.ipv4 path denotes the item ❺. Instead of specifying

a value for an element, it is possible to use a reference to another value in the configuration with

the same type. For example, the initial configuration contains

90

4.1. CONFIGURATION LANGUAGE

system fw {

...

ssh-server SSHD {

listen-sock ˆsystem.INT.ipv4.host ❶ : 22;

...

}

...

}

Here, ❶ denotes the value obtained by going up the tree to the system type node (section

system fw), and then down to the node named INT (it is interface INT), then to ipv4,

and finally we take its host element (value).

References ensure the consistency if the same value appears at two or more places in the

configuration. If the same path is to be repeated several times, e.g., in listen-on of several

proxies, we may avoid the use of the full path by using a variable.

system fw {

interface INT {

dev em0;

ipv4 [192.168.10.1/24];

}

set INT_IP = ˆsystem.INT.ipv4.host; ❶

...

SSH daemon for remote administrator access from the internal network

ssh-server SSHD {

listen-sock $INT_IP ❷ : 22;

passwd-auth;

}

The previous example is changed so that the reference path is stored in a variable called

INT_IP ❶ and the variable is used instead the full path later ❷. For the GUI view of the same

configuration, see Figure 4.2. In addition to these data variables it is possible to define variables

containing several configuration items or even whole sections. These section variables can be

parametrized. A simple example of section variables will be shown in the next paragraph, along

with file includes.

Figure 4.2: Tree structure of the configuration

91

CHAPTER 4. CONFIGURATION BASICS

A configuration file can include another file. After the installation there are several include

files in /usr/local/kernun/conf/samples/include. The initial configuration includes

two of them, root-servers.cml (a list of root DNS servers) and crontab.cml (the default

configuration of the cron (8) daemon that runs periodic actions in the system, e.g., log rotation).

Example: the crontab.cml include file contains

set DEFAULT-CRONTAB system.crontab {

...

}

set DEFAULT-PERIODIC system.periodic-conf {

set-env daily_clean_hoststat_enable "NO";

set-env daily_status_disks_df_flags " -i";

set-env daily_status_mail_rejects_enable "NO";

set-env daily_status_include_submit_mailq "NO";

set-env daily_submit_queuerun "NO";

}

It is included in the main configuration file kernun.cml

include "samples/include/crontab.cml";

...

system fw {

...

crontab {

$DEFAULT-CRONTAB;

}

The same excerpt of the configuration viewed in the GUI is shown in Figure 4.3. The

crontab.cml file is included at ❶. It defines the variables DEFAULT-CRONTAB and

DEFAULT-PERIODIC. The first variable is used at ❷. Note that the GUI displays the contents

of included files.

Figure 4.3: Including configuration files and using section variables

Configuration elements are of various types. All the types and their exact syntax are described

in configuration(7). Here we only list the types and present the most important syntax rules.

92

4.2. THE INITIAL CONFIGURATION

• Integers — a nonnegative decimal or hexadecimal value; several types with different numbers

of bits

• Port number — an integer or a service name from /etc/services

• String — a sequence of characters in double quotes. It is possible to omit the quotes for

strings that contain only a limited set of characters.

• Regular expression — delimited by slashes

• Host — an IP address in dotted decimal format enclosed in brackets or a host name

• Interface address, network address — an IP address with mask, enclosed in brackets

• Socket — a host and a port number

• Enumeration — a set of names representing integer constants

• List — a sequence of values of a basic type, separated by commas and enclosed in braces.

Lists can be nested.

• Set — a set of values of a basic type. Syntax is similar to lists with additional features—

ranges, exclusion of members, and wildcards. Sets of some types allow special members, e.g.,

regular expressions in a set of strings or host addresses.

Important

In the GUI, the values must be entered including quoting characters, such as double quotes

for strings and brackets for IP addresses.

We have introduced only the basic concepts of the Kernun UTM configuration language. The

complete definition of the language syntax can be found in reference pages configuration(7) and

cml(8). The semantics of the configuration is defined by the meaning of individual sections, items,

and elements. Semantic rules also define the subsections and items each section may contain.

There are constraints, e.g. that the existence of a configuration node requires or forbids the

existence of another node. The set of possible values of a configuration element can be limited. A

section or item can be repeatable (can occur several times, in the case of sections with different

names), or non-repeatable (cannot occur more than once; non-repeatable sections do not have

names). For example, in Figure 4.1, the named sections system and interface are repeatable,

whereas the section crontab is non-repeatable. The semantics of the configuration is described

comprehensively in section 5 of the reference pages (in the appendix of this handbook or in manual

pages displayed using the man(1)) command.

4.2 The Initial Configuration

A newly installed Kernun UTM is configured by an interactive script during the first boot, as

described in Section 2.5.2. The initial configuration is identical to the configuration sample file

93

CHAPTER 4. CONFIGURATION BASICS

/usr/local/kernun/conf/samples/cml/simple.cml. The configuration script takes this

file and substitutes the values of parameters entered by the administrator, e.g., IP addresses.

The configuration file simple.cml is suitable for Kernun UTM with two network interfaces, one

connected to the internal (protected) network and the other to the external network (the Internet).

Kernun UTM will be configured so that clients that use selected network protocols in the internal

network may access servers in the external network, but access is denied for other protocols and to

clients in the external network. The administrator can connect to Kernun UTM from the internal

network. Although it is possible to enable proxies for some application protocols using the initial

configuration script, we will assume that the administrator has chosen the more secure way, i.e.,

not to enable any proxy initially, but to do so later selectively using the GUI.

4.2.1 Global Level

Figure 4.4: The global level of the initial configuration file

The global level of the initial configuration file is depicted in Figure 4.4. It begins with three

standard include files

2

. The first file, samples/include/products.cml, defines variables us-

able as the system.product item. See Section 2.3 for more information about Kernun product

specification in the configuration. The second file, samples/include/crontab.cml, defines

variables usable as the contents of the system.crontab and system.periodic-conf sec-

tions. The third file, samples/include/root-servers.cml, contains a list of root DNS

servers. Then, several shared-dir and shared-file sections specify files that are copied

from the configuration directory to their target locations when the configuration is applied. The

configuration can be edited on one Kernun UTM and then applied remotely to another. In this

case, the shared files and directories are copied from the system where the configuration is edited

to the system where it is applied.

2

All relative paths here are relative to the configuration directory /usr/local/kernun/conf.

94

4.2. THE INITIAL CONFIGURATION

4.2.2 System

The rest of the sample configuration is the system fw section. It defines a single Kernun UTM

system. The configuration of a standalone Kernun UTM usually contains only one system section.

If several alternative configurations are used or several systems are configured from one place (e.g.,

in high-availability clusters), more than one system sections can be defined.

Figure 4.5: Various system-level definitions

First, the type of the Kernun product is specified (Figure 4.5) using one of standard product

variables from samples/include/products.cml. The product specification controls which

components can be configured. During the application of the configuration, a check is made

that the product installed on the target system matches the specification. See also Section 2.3

for a more detailed explanation of the product specification in the configuration. The system

parameters start with host and domain names. The configuration of actions executed periodically

by the cron (8) daemon and by the periodic (8) command is defined in the sections crontab

and periodic-conf. These sections are filled in by the application of variables defined in

crontab.cml.

Figure 4.6: Definitions of network interfaces

The following part of the system section, displayed in Figure 4.6, contains the settings of two

network interfaces, connected to the internal (INT) and external (EXT) network, respectively. Two

values are specified for each interface: the name of the network interface device as used by the

operating system (item dev), and the IP address with the network mask (item ipv4). Note that

interface is a repeatable section, so it can occur more than twice. For example, a demilitarized

zone network can be connected via a third interface in a more complex network topology.

The system section then defines further network-related parameters, see Figure 4.7. Domain

name resolution parameters are set in the section resolver. In the initial configuration, the

only item in this section selects a DNS server. There may be several resolver sections. The

95

CHAPTER 4. CONFIGURATION BASICS

Figure 4.7: Definitions of various network parameters

section that is used globally for resolutions performed by Kernun UTM components is chosen by

use-resolver. Each proxy can use the global resolver, or the resolver setting can be overridden

for the proxy using a use-resolver section local to the proxy configuration section. In the

initial configuration, the global resolver is shared by all proxies. Note that the resolver is used

for address resolution performed by Kernun UTM itself. If clients in the internal network should

have access to the DNS, which is usually the case, either a DNS server can be configured in the

internal network, or the clients can resolve via a Kernun UTM dns-proxy.

Note

As the Kernun UTM dns-proxy does not cache responses obtained from DNS servers in the

external network, it is inefficient to configure clients in the internal network to resolve directly

via the proxy. The recommended configuration is to create a caching-only DNS server in

the internal network and to set dns-proxy as its forwarder. The internal DNS server can be

created in Kernun UTM, by adding section system.nameserver to the configuration.

The routes subsection defines static routes. In the sample configuration, only the default

route to a router in the external network is specified. The use-services item selects a

shared-file3 that will be copied into /etc/services. It defines port numbers assigned

to various network services. The last network-related parameter is a list of root DNS servers,

section ns-list. It is set by the application of the section variable ROOT-SERVERS defined in

the included file root-servers.cml.

4.2.3 SSH Server

Figure 4.8: An SSH server for administrative access

Kernun UTM is usually administered remotely via the network. The administrator connects

to Kernun UTM using SSH, either directly in order to obtain a shell command line, or via the

3

Sections shared-file are created at the global level of the configuration file.

96

4.2. THE INITIAL CONFIGURATION

GUI, which uses SSH internally. Therefore, an SSH server for administrator’s access should be

defined in the configuration. The initial configuration contains a single SSH server section called

ssh-server SSHD, see Figure 4.8. It listens on the standard SSH port 22 on the internal network

interface only. Hence the administrator can connect to the Kernun UTM from the internal network

only. If access from the external network is desired, the SSH server must be reconfigured to listen

on the external interface as well.

The server allows password-based authentication of non-root users. It is used for the initial

download of the root’s SSH key using the special keygen account, as described in Section 2.5.2.

The root can log in to Kernun UTM with the SSH keys listed in section ssh-keys. By default,

this section contains the key generated by the initial configuration process and accessible via the

keygen account.

4.2.4 Local Mail Handling

Figure 4.9: The server for handling locally-originated mail

Kernun UTM generates some e-mail messages locally, mainly as the output of periodic actions

executed by cron (8). These messages are delivered to the address provided in the admin item

by the mail server configured in the local-mailer section, see Figure 4.9. The default local

mailer configuration refers to the standard file master.cf selected by a global shared-file

parameter.

The server that handles local mail is Postfix-configured so that it does not listen for any incom-

ing network connections. It handles only mail sent by themail (1) command. The administrator’s

e-mail address is set as an alias for the root user in /etc/aliases.

4.2.5 Application Proxies and ACLs

Kernun UTM utilizes both the packet filter and application proxy firewalling technologies. The use

of application proxies is preferred, because it provides a higher level of security and finer control

of the network traffic. The network traffic is therefore passed through Kernun UTM mainly via

proxies that handle individual application protocols.

It is possible to enable proxies for several frequently used network protocols in the initial

configuration. However, in order to maintain better control over the network traffic it is advisable

not to enable any proxy when the initial configuration script creates the configuration of a newly

installed Kernun UTM, but rather to selectively enable and configure the proxies later, when the

administrator connects to Kernun UTM via the GUI. The part of the configuration that is directly

related to proxies is shown in Figure 4.10. Note that all proxy sections are hidden, so that proxy

parameters are defined, but have no effect and the hidden proxies are not started

4

.

4

For the present, you can ignore the section smtp-forwarder. It will be discussed later, together with the

97

CHAPTER 4. CONFIGURATION BASICS

Figure 4.10: Hidden proxies and a global ACL

Proxies can be non-transparent or transparent, see Section 5.7 for more details. By default,

all proxies in the initial configuration except dns-proxy are configured as transparent, which

enables the use of clients in the internal network without any reconfiguration.

Access control in proxies is driven by access control lists (ACLs). Each proxy has one or more

layers (phases) of ACLs. Individual phases are consulted at specific moments during the processing

of the network communication.

For example, in http-proxy, there are three phases of ACLs: the session-acl sections are

consulted when a new connection from a client is accepted. They make early decisions based on

values, such as the client’s IP address. The second phase, request-acl, is checked after the

HTTP request is received from the client. Its actions can depend e.g. on the request URI or on

the values of some request headers. The third phase, doc-acl, is applied when the HTTP reply

headers are received. On the other hand, tcp-proxy, which handles only the TCP data stream

without deeper understanding, has a single ACL phase, session-acl.

The ACLs that belong to one phase are tested sequentially. The input conditions of every

ACL section are evaluated and the first ACL, for which all the conditions are true, is selected.

The chosen ACL can accept or deny the session, thus effectively allowing it to continue or

terminating it. Various parameters that affect further handling of the session by the proxy can be

set by the ACL. If no matching ACL is found, the session is terminated.

ACLs can be located at two different places in the configuration. Global ACLs defined in the

system section belong to the first phase (session-acl). Each global ACL has a service

item containing the list of proxies, to which it is applicable. The initial configuration contains

one global acl INTOK that applies to all proxies and accepts sessions originated from clients in

the internal network, as can be seen in Figure 4.10. Note that sessions initiated by clients in the

external network do not match the from condition of acl INTOK and there is no other ACL

that could match, hence these sessions are denied

5

. Local ACLs are defined in the configuration

smtp-proxy.

5

In fact, such sessions do not even begin regardless of ACLs, because the proxies are configured to listen on the

98

4.2. THE INITIAL CONFIGURATION

sections of individual proxies. Each such ACL applies only to the proxy, in which it is defined.

Phase one (session-acl) ACLs in a proxy are merged with the global ACLs that have this

proxy in their service lists. For each session-acl in a proxy there must be a global ACL

with the same name.

Note

The first-phase ACLs are checked in the order defined for the global ACLs. The per-proxy

session-acl sections can add proxy-specific items to the ACLs, but do not change the

order of ACLs.

4.2.6 DNS Proxy

Figure 4.11: DNS Proxy

In a typical scenario, the DNS proxy provides the domain name resolution service for clients

behind Kernun UTM. It is defined by its particular dns-proxy section which resides in the

system section. In this example, the listen-on section specifies that the DNS proxy will listen

non-transparently on the internal interface on port 53. This means that clients from the internal

network must set the IP address of Kernun UTM’s internal interface as their DNS server in order to

use this proxy. The chroot-dir item specifies that the process will be chrooted to the directory

/usr/local/kernun/root, see chroot(8).

internal interface only.

99

CHAPTER 4. CONFIGURATION BASICS

The requests-table-size and sockets-table-size items are obligatory for

dns-proxy. Every domain name resolution request is stored in a table that contains all the

necessary information. The size of this table is specified by the requests-table-size item.

It is recommended to reserve slightly more items than the estimated number of parallel requests.

Besides the number of requests, the number of simultaneously opened sockets is monitored as

well. This maximum must be specified by the sockets-table-size item. See dns-proxy(5)

for details.

Caution

The DNS proxy is not designed to be used as a name server. The typical scenario is that all

clients ask another server in the internal network and this server queries the proxy (if needed)

and caches the answers. See Section 5.3 for details.

dns-proxy needs at least one request-acl section providing details on what traffic is

permitted or not, and the way it should be dealt with. In this example, the accept item specifies

that request-acl RESOLVE describes an accepting request-acl. This means that this section defines

the positive case — the conditions, under which the request is accepted. Then query * resolve

ROOT-SERVERS directs the proxy to use the ROOT-SERVERS to resolve all the requests. Further

on, it is defined that all the respective replies from the ROOT-SERVERS are permitted to be

returned to the clients.

The ROOT-SERVERS item is defined in the sample file

samples/include/root-servers.cml, which is included in the configuration using the

include keyword. This file contains the definition of the $ROOT-SERVERS variable, which

defines the ns-list section — a list of DNS root servers. In order to apply that definition, it is

necessary to include the $ROOT-SERVERS keyword in the configuration.

Finally, dns-proxy must be referenced by at least one system ACL. In this example, the

access to the DNS proxy is granted for all clients from the internal network.

4.2.7 HTTP Proxy

http-proxy is the proxy daemon for HyperText Transfer Protocol (RFCs 1945, 2616). It sup-

ports version 0.9, 1.0 and 1.1 HTTP clients and version 1.0 and 1.1 HTTP servers. The proxy

also supports secure communication via the SSL/TLS protocols.

In the example depicted in Figure 4.12, http-proxy is configured to listen on the

internal network interface on port 80 in the transparent mode, and on port 3128 in the

non-transparent mode; see Section 4.2.5 for details about transparency. Again, the proxy is

configured by chroot-dir to be chrooted into /usr/local/kernun/root/, see chroot(8).

The document-root item defines the root directory of the error document set. In this

example, it refers to DOCROOT — the shared-dir section defined at system is a list of path

items designating directories for further use. Note that the relative path (i.e., one that does not

start with “/”) is in fact relative to /usr/local/kernun/conf.

http-proxy uses three-phase ACLs.

100

4.2. THE INITIAL CONFIGURATION

Figure 4.12: HTTP Proxy

• session-acl is checked once for each client connection. It permits or denies client access

and sets some connection parameters.

• request-acl is checked for each HTTP request after the request headers are received

from the client, but before anything is sent to the server. It decides whether the request is

permitted or denied, and it can also set some request parameters. Note that there can be

several requests per connection if persistent connections are used.

• doc-acl is checked for each HTTP request after the response headers are received from the

server, but before the response is sent to client.

Important

The session-acl section of any proxy is always based on an acl defined at the system

level. The items that are common for all types of proxies are defined in the common part at

the system level. The items that are specific for each proxy are defined within the particular

proxy’s section

6

.

In this simple example, http-proxy is configured not to use authentication (auth none).

You might have noticed that we did not specify the accept item in session-acl INTOK, nor

did we restrict the IP range of clients that can use http-proxy. The reason is that we only specify

the acl section INTOK that we defined earlier. In fact, FIREWALL.HTTP.INTOK is a local copy

of FIREWALL.INTOK, and we have particularized this local copy. Finally, request-acl and

doc-acl are configured to accept any request or document, respectively. However, CONNECT

method requests are limited to port 443 to allow SSL/TLS connections only.

See dns-proxy(5) for details.

6

Moreover, some items can be configured at both levels. The proxy-specific one takes precedence in that case.

101

CHAPTER 4. CONFIGURATION BASICS

4.2.8 FTP Proxy

Figure 4.13: FTP proxy

ftp-proxy provides the proxy service for File Transfer Protocol (RFC 959) and its extensions.

For crucial commands, it behaves like a server for the client and vice versa, with full syntax and

semantics verification. Commands that have no impact on the session state are only recognized

and simply forwarded to server.

The simple configuration of ftp-proxy is quite similar to the simple configuration of

http-proxy (see Section 4.2.7). In the example at Figure 4.13, it is configured to listen on

the internal network interface on port 21 in the transparent mode and chrooted into

/usr/local/kernun/root/ (see chroot(8)). No restrictions are configured, so everyone (from

the internal network — as specified in the INTOK acl) is allowed to use the ftp-proxy. As

usual, the ftp-proxy FTP must be present in some ACL; in this case, it is referenced in the

service list in the INTOK definition.

ftp-proxy uses three-phase ACLs.

• session-acl is checked once for each client connection. It permits or denies client access

and sets some connection parameters.

• command-acl decides how to handle particular protocol commands depending on client

parameters, destination server, proxy-user, etc. Each command is checked against command

items in the order of their appearance in the cfg file, and the first matching one is used. If

no one matches, the command is denied.

• doc-acl is checked for each HTTP request after the response headers are received from the

server, but before the response is sent to the client. It decides how to handle particular files

transferred via the proxy, depending on the file name, type and transfer direction.

For more information about ftp-proxy, see ftp-proxy(8) and ftp-proxy(5).

4.2.9 HTTPS and SSH Proxy

Both HTTPS and SSH protocols are handled by the generic tcp-proxy, because they use en-

crypted communication and Kernun UTM therefore cannot understand the protocol data. The

102

4.2. THE INITIAL CONFIGURATION

Figure 4.14: Proxies HTTPS and SSH

configurations of tcp-proxy HTTPS and tcp-proxy SSH are almost identical, see Figure 4.14.

They differ only by the port they listen on—the port number is 443 for HTTPS and 22 for SSH.

Both proxies listen for clients connecting transparently via the internal interface of Ker-

nun UTM (section listen-on). The proxies run with identity of proxy-user kernun and

are chrooted into directory /usr/local/kernun/root. They do not define any ACL, therefore

the global acl INTOK applies to them unmodified.

4.2.10 SMTP Proxy

smtp-proxy is the proxy daemon for Simple Mail Transfer Protocol (RFCs 2821, 2822, 2045

etc.). The SMTP protocol is used to send electronic mail from clients to mail servers as well as

between mail servers. The task of smtp-proxy is to apply a security policy, check the incoming

mail for correctness and then use some smtp-forwarder to queue and distribute mail. In other

words, there must be an SMTP server (other than Kernun UTM) to deliver e-mail. The easiest

way is to employ the common UNIX postfix daemon for this task. The configuration can be

included in the Kernun UTM configuration and the proper configuration files for postfix are

then generated automatically.

Figure 4.15: SMTP Proxy System Sections and Forward Agent

In the typical scenario depicted in Figure 4.15, postfix is configured to listen at Kernun UTM’s

loopback address and forward e-mails send to it by smtp-proxy, which listens at Kernun UTM’s

103

CHAPTER 4. CONFIGURATION BASICS

internal address. Note that under this settings mail does not arrive from the Internet to the

internal network. We will explain an alternative scenario in the second part of this chapter.

The postfix program is configured from Kernun UTM by the agent section in

smtp-forwarder. It must contain a master-cf item — an anchor to shared-file

that contains the Postfix master.cf configuration file. There is a sample in

samples/shared/postfix-master.cf. There also must be specified at least one server

item in smtp-forwarder — an address, to which the mail is to be sent.

The proxy itself listens transparently on Kernun UTM internal address port 25 (as defined by

the listen-on section). Besides the common chroot-dir item there must also be present a

postmaster item, which defines the postmaster e-mail address, and a mail-pool item, which

defines the directory used as temporary storage for incoming mails.

Figure 4.16: SMTP Proxy ACLs

smtp-proxy uses four types of ACLs on three levels:

• session-acl — (level 1) is checked once for each client connection. It either defines

the general protocol behavior, or rejects the connection. In addition to the generic ACL

conditions and actions, some smtp-proxy-specific conditions and parameters can be set (see

smtp-proxy(5)).

• delivery-acl — (level 2) is checked once for each mail recipient. It either defines the

response to the RCPT TO command, i.e. the way of delivery, or rejects the particular

addressee.

• mail-acl — (level 3M) is checked once for each mail recipient. Its rules control whether

the forwarding of the mail to the particular recipient should be rejected or accepted.

• doc-acl — (level 3D) is checked once for each recipient and document (MIME part) and

defines the document processing mode (e.g. filtering, replacing etc.).

The example in Figure 4.16 shows three different delivery-acl items. The first one

(BAD-SENDER) refuses mail with incorrect senders (i.e., the MAIL FROM argument), the

104

4.2. THE INITIAL CONFIGURATION

second one (BAD-RCPT) rejects mail with incorrect recipients and the last one (OTHER) accepts

all other mail (that is, mail that matches neither of the preceding delivery-acls). The mail-acl

and doc-acl items are configured to accept all e-mails.

During the delivery-acl phase, the correctness of all the commands (HELO,

MAIL FROM and RCPT TO) and their arguments is checked and the proper decision is

made.

Warning

When resolving domain names, the current resolver section setting is applied. It means

that the search list (if present) is tried when some resolution fails. If this search-list

contains a domain that has the *.domain MX record set, every resolution succeeds and

errors such as unknown-perm never occur. This is probably not the desired behaviour. You

can solve this problem by defining a new resolver section without the search item and

then using this resolver in the particular smtp-proxy only by means of a use-resolver

item in the proxy’s configuration section.

Figure 4.17: SMTP Proxy Mail Filter

smtp-proxy checks the correctness of the mail headers and MIME structure. Mail that does

not conform to the RFCs is rejected. However, many clients do not respect RFCs and if the security

policy allows sending of such e-mails, you can instruct the proxy to correct or even pass them. We

therefore add a mail-filter item, which handles the most common cases, to the session-acl

item. For details on the particular entries, see smtp-proxy(8) and mod-mail-doc(5).

In the example depicted in Figure 4.17, a reference to mail-filter is added into

session-acl of smtp-proxy. The mail-filter itself is configured to:

• accept-8bit-header — accept non-US-ASCII characters in mail or MIME document

headers;

• correct-8bit-body— accept and correct missing declaration of the use of non-US-ASCII

characters in mail bodies or MIME documents;

• correct-bad-char — accept and correct the use of NUL char (0x00) or bare CR (not

followed by LF) in mail bodies or MIME documents.

105

CHAPTER 4. CONFIGURATION BASICS

• correct-boundary — accept and correct the use of incorrect characters in MIME multi-

part boundaries.

• correct-quoting — accept and correct characters in SMTP and MIME headers that

should be included in quotes, but are not.

• stamp-filter — remove ’Received:’ headers that contain local-dependent information

from mails. The number of the removed lines is counted and added to the e-mail as a special

header X-Kernun-Loop-Info.

• stamp-limit 30 — define the maximum number of Received-headers in mail. This check

prevents mail loops.

• treat-binary-as-8bit — accept messages that use BINARY

Content-Transfer-Encoding and treat them as 8BIT, even though it makes no sense in the

current SMTP.

• treat-rfc822-as-text — handle the included documents as text.

Mail Server in the Internal Network

Figure 4.18: SMTP Proxy Mail Sever in the Internal Network

There can be a mail server in the internal network. This type of mail server usually serves as

the SMTP forwarder for the internal network (that is, it forwards mail addressed outside the local

network, and stores mail addressed to the internal network).

From Kernun UTM’s point of view, the internal SMTP server sends some e-mails

7

to the

internal interface of smtp-proxy. Such mail is already handled by smtp-proxy configured

sooner in this chapter. What is new is that there can be mail from the external network addressed

to someone in the local network (precisely speaking, to the mail server in the internal network).

Kernun UTM should therefore listen on the external interface, accept mail addressed to the internal

7

In particular, mail sent from the internal network addressed to someone outside the local network.

106

4.2. THE INITIAL CONFIGURATION

network and forward it to the internal mail server. It is possible either to create another SMTP

server, or to extend the existing one. The example in Figure 4.18 shows the latter option:

Unlike other screenshots, the figure shows only the sections and items added to the configu-

ration of the sample smtp-proxy. A new smtp forwarder INTERNAL, which forwards mails to

the internal network (to the server 192.168.1.25), has been added. Then there is smpt-proxy

SMTP configured to listen in the non-transparent mode on the external interface on port 25.

Furthermore, there is new delivery-acl TO-INTERNAL, which accepts only e-mails for the

selected domains (example.com) and delivers them via smtp-forwarder INTERNAL. Note that

the order of the access control lists of the same type (delivery-acl in this case) is significant.

When Kernun UTM looks for the delivery-acl to use, it follows the first matching one and

then stops the search. The delivery-acl TO-INTERNAL section must be therefore created

between the BAD-RCPT and OTHER sections configured earlier. The delivery-acl OTHER sec-

tion has slightly changed; it now accepts only mail from the internal network. Note that from {

ˆsystem.INT.ipv4.net }; must be located at the beginning of the ACL, so that the entry

conditions are kept before the action (accept in this case). Finally, the original delivery-acl

OTHER was restricted to accept mail from the external network (which was not necessary until the

second listen-on item was added).

4.2.11 IMAP4 and POP3 Proxy

The IMAP4 and POP3 protocols are used to access electronic mail that is stored on mail servers.

Both make it possible for client e-mail programs to download mail and present it to the user.

Unlike POP3, IMAP4 enables them also to upload mail to the mailbox on the IMAP4 server.

IMAP4 Proxy

Figure 4.19: IMAP4 Proxy

imap4-proxy is the proxy daemon for Internet Message Access Protocol version 4rev1

(IMAP4rev1), as defined by RFC 3501. The proxy supports secure communication via the

SSL/TLS protocols.

The proxy is configured in the imap4 section. In the sample configuration depicted in

Figure 4.19, the proxy-user and chroot-dir items define the operating-system-level user,

107

CHAPTER 4. CONFIGURATION BASICS

under which the proxy should run, and the directory, to which it should be chrooted. The proxy

listens transparently for requests at Kernun UTM’s internal address at port 143 and, again, the

proxy must be referenced by at least one ACL in the system section.

The mail-pool item defines the directory, in which e-mails are temporarily stored by the

proxy. Note that this directory must be created manually by the administrator and that it must

be writable by proxy-user. Note also that the directory can be the shared by smtp-proxy,

imap4-proxy and pop3-proxy (or by any combination of them).

imap4-proxy uses three-phase ACLs. The first phase, session-acl, is checked once for

each client connection. It permits or denies client access and sets some connection parameters.

The second phase, command-acl, is also checked once for each connection, but it can be selected

according to the client certificate if SSL/TLS is enabled by session-acl. Various parameters

can be set in command-acl, e.g., the permitted sets of IMAP4 commands and capabilities, time-

outs, SSL/TLS on the server connection. The third-phase ACLs are used only if mail processing

is enabled in command-acl. Two types of these ACLs exist. mail-acl is checked once for each

transferred e-mail. It defines the rules of the acceptance or rejection of the mail according to its

content and antivirus/antispam test results. doc-acl is checked once for each document (MIME

part) of a mail. It defines document processing, e.g., filtration or replacement by a fixed file. See

mod-mail-doc (5).

In this example, command-acl COMMOK defines that no mail scanning is to be performed on

either downloaded or uploaded e-mails. The item no-mail-scanning means, in this context,

that the mail is not even opened. Were the no-mail-scanning item absent, the mail would be

stored and unfolded to headers and attachments, etc., and various tests could be performed on

any part. This alternative will be discussed in Section 5.15 and Section 5.16.

POP3 Proxy

Figure 4.20: POP3 Proxy

pop3-proxy is the proxy daemon for Post Office Protocol version 3 (RFCs 1939, 2449, 1734).

The proxy supports secure communication via the SSL/TLS protocols.

The proxy is configured in the pop3 section. In the sample configuration depicted in

Figure 4.20, the proxy-user and chroot-dir items define the operating-system-level user,

under which the proxy should run, and the directory, in which it should be chrooted. The proxy

108

4.3. CHANGING THE CONFIGURATION

listens transparently for requests at Kernun UTM’s internal address at port 110 and, again, the

proxy must be referenced by at least one ACL in the system section.

The mail-pool item defines the directory, in which the mails are temporarily stored by the

proxy. Note that this directory must be created manually by the administrator and that it must

be writable by proxy-user. Note also that the directory can be the shared by smtp-proxy,

imap4-proxy and pop3-proxy (or by any combination of them).

pop3-proxy uses three-phase ACLs. The first phase, session-acl, is checked once for each

client connection. It permits or denies client access and sets some connection parameters. The

second phase, command-acl, is also checked once for each connection, but it can be selected ac-

cording to the client certificate if SSL/TLS is enabled by session-acl. Various parameters can

be set in command-acl, e.g., the permitted sets of POP3 commands and capabilities, timeouts,

SSL/TLS on the server connection. The third-phase ACLs are used only if mail processing is en-

abled in command-acl. Two types of these ACLs exist. mail-acl is checked once for each mail

transferred from the server to the client. It defines rules of the acceptance or rejection of the mail

according to its content and antivirus/antispam test results. doc-acl is checked once for each

document (MIME part) of a mail. It defines document processing, e.g., filtration or replacement

by a fixed file. See mod-mail-doc(5).

In this example, the no-mail-scanning item in command-acl COMMOK defines that no

mail scanning is to be performed. In this context, as the POP3 protocol is intended only

for download of e-mails, it means that the downloaded mail is not even opened. Were the

no-mail-scanning item absent, the mail would be stored and unfolded to headers and attach-

ments, etc., and various tests could be performed on any part. This alternative will be discussed

in Section 5.15 and Section 5.16.

4.3 Changing the Configuration

In the previous section we described the initial configuration as generated by the configuration

script during the first boot after the installation of Kernun UTM. In this section we will demon-

strate how to modify the configuration. We will make the following changes:

• enable dns-proxy;

• enable http-proxy;

• restrict HTTP to a subset of the internal network;

• allow only the HTTP method GET.

First of all, we want to permit the HTTP traffic. As the transparent mode of the proxy is

used, the clients connect directly to servers. Therefore, the clients must be able to resolve server

addresses, which is why we need to enable DNS as well. The following steps produce a working

configuration with the required changes.

1. Start the GUI and connect to Kernun UTM, as described in Section 3.1.1. If Kernun UTM

is running the unmodified initial configuration, you will see the GKAT window with only a

few components running, as depicted in Figure 4.21.

109

CHAPTER 4. CONFIGURATION BASICS

2. Select Configuration | Edit configuration of the firewall in the menu to open the configuration.

3. In the left-hand part of the configuration window, look for a line containing

hidden dns-proxy DNS. Select the line with the left mouse button, then click the right

mouse button to open the context menu and select Hide/Unhide. The line will change to

dns-proxy DNS.

4. Repeat the same action for the line containing hidden http-proxy HTTP.

5. Select the line acl INTOK and then select Add node next to this node | Section or Item from

the context menu. In the Create Item/Section dialog, select acl as the type of the section

and set the section’s name, for example NET1_DENY. You have created a new global ACL.

6. Now select the newly created ACL and use Add new node as last child | Section or Item from

its context menu repeatedly to add the from, service, and deny items.

7. Select the from item. In the right-hand part of the configuration window you can see the

current value of the item, which is the empty set. Add a new value to the set by clicking on

the button Append Value. Enter the address (with mask) of the subnet that is to be denied,

for example, [192.168.10.128/25].

8. Select the service item. Using Append Value, add HTTP to the list.

9. Now we have the new ACL denying access from a subnetwork ready. However, as the ACLs

are checked in sequence and the first matching is used, we must exchange our two ACLs.

This can be done in several ways. One possibility is to select acl NET1_DENY and click on

Move Up in its context menu.

10. Finally, we want to restrict the HTTP proxy to allow only the GET method. Open

the http-proxy HTTP section by clicking on the small plus sign. Select the

request-acl ALL2 line.

11. Add a request-method { GET } item to this ACL in the same way as when you modified

values in acl NET1_DENY.

12. The configuration should now correspond to Figure 4.22.

13. Save, generate, and apply the configuration by selecting File | Commit the configuration to

the firewall. The Commit configuration window is displayed, as depicted in Figure 3.17.

14. Click Commit to enter a RCS log message with a description of the change you have made.

15. The configuration is saved to Kernun UTM, recorded as a new version in the RCS file,

the low-level configuration files are generated and applied (copied to the locations where

Kernun UTM components will look for them).

16. The Synchronize system with configuration window is displayed, as depicted in Figure 4.23. It

informs you that components DNS and HTTP have been reconfigured and need to be started

for the new configuration to take effect.

110

4.3. CHANGING THE CONFIGURATION

17. Click OK in the synchronization dialog to finish the reconfiguration; Kernun UTM now

contains running DNS and HTTP proxies, see Figure 4.24.

18. Now you can switch to the Log page of the Proxies node in the GKAT window. If you start

a Web browser on a machine in the internal network and try to access a Web server in the

external network, you will see proxy log messages appearing.

Figure 4.21: The Kernun UTM running the initial configuration

Figure 4.22: The modified configuration

4.3.1 Adding TCP Proxies

The process of adding new TCP proxies can be simplified even more using two wizards (for general

information on wizards, see Section 3.1.4). When creating a TCP proxy, you first need to decide

whether you want to enable the connection of clients in the internal network to a server in the

external network (the server must have a public IP address and the clients connect to this address),

or whether you have a server in the internal network (with a private IP address) and clients from

the external network will connect to Kernun UTM, which will forward them to the server. The

111

CHAPTER 4. CONFIGURATION BASICS

Figure 4.23: Activation of the new configuration

Figure 4.24: Reconfigured Kernun UTM is running

112

4.3. CHANGING THE CONFIGURATION

Kernun GUI provides one wizard for each of the alternatives. The following subsections describe

the creation of sample proxies in both cases.

TCP Proxy to Server in External Network

As we have said before, a proxy needs to be created in order to allow communication from the

internal to the external network. The proxy should be transparent, which means that clients in the

local network would not be aware of the fact that they do not connect directly to the server. The

TCP proxy to external network wizard will lead you through the creation of the transparent TCP

proxy. In this example, we will configure the transparent tcp-proxy to allow some privileged

local clients to shop on www.ebay.com. First of all, you need to delete or hide the tcp-proxy

HTTPS from the initial configuration, because it would collide with the proxy we want to create.

Then select Insert | Configuration wizard | TCP proxy to external network to start the wizard.

On the first page, you are asked to choose the tcp-proxy section name, the interface to the

network that contains the clients and the port of the service that is supposed to use the proxy. In

our example, we choose the INT interface and the 443 port, as shown in Figure 4.25.

Figure 4.25: TCP proxy general network settings

On the second page, you define the clients in the internal network that are allowed to connect

using this proxy and the servers in the external network, to which the clients may connect, in the

form of either IP addresses or host names. If you already have an appropriate ACL created in

the configuration, you may select the Use existing accepting ACL radio button and then

choose the ACL to be used for this proxy. As we do not have any usable ACL in the system,

however, we choose to create a new one, and set its name and the IP address of the privileged

client that is allowed to log in to the ebay.com server. The configuration is depicted in Figure 4.26.

The third page contains more advanced connection settings, including several connection time-

outs and a limit of the number of proxy children. If you do not fill in any of these fields, the

corresponding item will not be included in the resulting configuration. Since we know that there

will be no problems with the traffic load, we leave all the limits empty. In order to get more

detailed traffic examination outputs, we choose to monitor the proxy (which i.a. produces graphs

of the proxy usage, see Figure 3.8) and to generate proxy statistics (see Figure 5.26). The filled

page is shown in Figure 4.27.

Finally, the last page (Figure 4.28) shows the recapitulation of the wizard settings in the form

113

CHAPTER 4. CONFIGURATION BASICS

Figure 4.26: TCP proxy ACL settings

Figure 4.27: TCP proxy miscellaneous settings

114

4.3. CHANGING THE CONFIGURATION

of the text configuration that is to be added to the main system configuration. There is also the

outcome of system verification of the configuration with the created proxy. You can click Finish

to commit the proxy into the configuration, Back to return and modify the wizard settings, or

Cancel to close the wizard and discard all the settings.

Figure 4.28: TCP proxy recapitulation

TCP Proxy to Server in Internal Network

Besides the above-mentioned wizard for a transparent proxy, the Kernun GUI also provides a

wizard for a non-transparent tcp-proxy. In this case, clients connect to to a specified port

at Kernun UTM, which forwards the communication to a server behind it. This is useful when

creating servers without a public IP address in the internal network (which is a recommended

practice). We will create an IMAP4S proxy that will allow employees at home connect to a mail

server in the internal company network behind Kernun UTM and read their mail. The wizard is

very similar to the Section 4.3.1 wizard; actually, only the second page differs.

On the first page, we choose the proxy name, the interface on which it is supposed to listen

(this time, it is the external interface EXT) and the port for secure IMAP4, 993. On the second

page, we similarly define the ACL, with a slight difference in the process of its creation. We only

115

CHAPTER 4. CONFIGURATION BASICS

define restrictions concerning clients, as they always connect to Kernun UTM. After choosing the

ACL, we need to specify where to plug the communication in (in our case the IP address of the

IMAP4S server) and the port it listens on. This is specified in a single field as [192.168.10.7]

: 993. Furthermore, we want the server to receive packets with the original client’s IP address

(rather than that of Kernun UTM), so we check the Client source address check box. The

second page is shown in Figure 4.29.

The last two pages are the same as in the transparent proxy wizard.

Figure 4.29: Non-transparent TCP proxy ACL settings

116

Chapter 5

A d v a n c e d f e a t u r e s

This chapter covers the configuration of various advanced features of Kernun UTM. You can find

here instructions on how to configure each feature, along with the description of the most important

configuration parameters; the remaining ones are listed in the relevant parts of the reference

documentation. It is assumed that you know the principles of the Kernun UTM configuration and

how to use the Kernun GUI. If not, consult Chapter 4 and Section 3.1.

5.1 Packet Filter

In addition to the application layer control, Kernun UTM includes a TCP/IP packet filter with

advanced features, such as stateful filtering, network address translation (NAT), traffic normal-

ization, traffic shaping, OS fingerprinting etc. This section offers a general overview of the packet

filter’s capabilities, as well as examples of a few typical packet filter configurations

1

.

5.1.1 Packet Flow

It is very important to consider the way packets are handled in Kernun UTM. When combining

packet filter rules, traffic shaping and application proxy access control lists, we need to take into

account the order, in which network traffic is processed by individual components of the system.

Upon entering the system, network packets get inspected by the packet filter at first. The

packet filter itself consists of a number of components. The order, in which these components

handle network traffic, is always the same:

1. State engine

2. Traffic normalization engine

3. Traffic shaping / queuing engine

4. Network address translation engine

5. Packet filtering engine

1

The packet filter is based on BSD pf.

117

CHAPTER 5. ADVANCED FEATURES

This order applies to both incoming and outgoing traffic, i.e. it is the same whether the packet

is entering or leaving the system. As regards incoming packets, application proxies may take

control only after they are processed by all the packet filter engines. On the other hand, traffic

originated at application proxies goes through packet filter engines and then leaves the system for

the network.

Important

Network address translation rules always create states. If an initial packet of a connection

is translated by an NAT rule and then passed by the packet filter, it is automatically also

passed on its way back, thanks to the created state.

As for packet filtering, states are created only if the rules explicitly specify so using the

keep-state modifier. However, if the raw packet filter rule is specified, the state is kept

by default; if you do not want to keep the state in such a case, you need to add no state

to the raw rule.

The packet filtering rules are defined in the system.packet-filter section. The following

list introduces its items and subsections:

• set-option — a repeatable item containing packet filter specific options, see pf.conf(5);

• timeouts — a non-repeatable section defining various filter timeouts;

• altq— the specification of traffic shaping rules, which assign the traffic to individual queues

defined in the system.pf-queue sections;

• scrub-acl — the traffic normalization rules; by default, all incoming traffic is normalized

and IP fragments are reassembled;

• rdr-acl — redirection NAT rules, applied to incoming traffic, change the destination

address;

• nat-acl — mapping NAT rules, applied to outgoing traffic, modify the source address;

• binat-acl — bidirectional NAT rules combine both redirection and mapping;

• filter-acl — packet filtering, either unidirectional or bidirectional rules (both stateless

and stateful);

• load-anchor — loading of rule subsets from files.

In the following sections we go through several typical configuration examples that involve

capabilities of Kernun UTM’s packet filter. We will start with the initial configuration as described

in Section 4.2. The resulting packet filter configurations can be found in the configuration sample

file packet-filter.cml in the /usr/local/kernun/conf/samples/cml directory.

118

5.1. PACKET FILTER

5.1.2 Packet Filtering

Packet filtering basically means controlling (either passing, or blocking) network traffic based

on basic TCP/IP attributes, including the source and destination IP addresses and ports, the

network interface the packet emerges on, its direction (inbound or outbound), and a few other

protocol-specific characteristics.

Important

Even if the traffic is passed by the packet filter, there must exist an application proxy with

an ACL permitting the communication; otherwise, it is denied. In other words, Kernun UTM

does not forward network packets, but instead, it attempts to transparently grab them and

process them with application proxies. However, the mechanism of traffic grabbing by appli-

cation proxies can be bypassed, as described in Section 5.1.4.

Note

By default, the packet filter rules allow all traffic, but there is only a limited set of application

proxies in the initial configuration, see Section 4.2.

Blocking traffic using the packet filter may be useful in many situations. For example, we

may relieve application proxies of the burden of processing traffic that we know for certain is

undesired. Also, application proxies always grab connections, and only then they may selectively

deny them. This means that the connection is always established at first, and then immediately

closed if denied by a policy. It may be advantageous to pretend to some clients that there is

no application proxy in the way, which can be achieved by resetting those connections using the

packet filter. Furthermore, there are antispoofing rules to block traffic with faked source addresses,

see Section 5.1.3, and it is possible to bypass the application proxy processing and forward some

traffic directly to its destination, see Section 5.1.4.

Individual packet-filtering rules are located in filter-acl subsections within the

system.packet-filter configuration section. The most important items in filter-acl

are summarized here:

• from—A set of hosts, addresses and networks that the packet’s source address must match.

Optionally it may also include constraints concerning source TCP/UDP ports. If omitted,

all source addresses and ports match.

• to — The set of hosts, addresses and networks that the packet’s destination address must

match. Optionally it may also include constraints concerning destination TCP/UDP ports.

If omitted, all destination addresses and ports match.

• iface — The network interface that this rule applies to. Moreover, the direction of com-

munication may be specified, either in for inbound traffic or out for outbound traffic. If

this item is not present, the rule applies to all network interfaces and all directions.

119

CHAPTER 5. ADVANCED FEATURES

• protocol — The IP protocol that this rule applies to. Protocols are accepted with their

symbolic names, such as icmp, udp, tcp, or esp. Moreover, a shortcut tcp-udp has

been added for user comfort, meaning both the TCP and UDP protocols. Similarly, the

shortcut esp-ah is interpreted as both the ESP and AH protocols

2

. Additional protocol-

specific parameters are available for the ICMP and TCP protocols, specifically icmp-type

to match the ICMP message type, and flags to match the TCP flags field.

• deny / accept — The deny item blocks traffic; the accept item is used to pass it.

• keep-state — This item lets the packet filter create a state for the connection as a packet

is passed. The following packets in the same connection will then be handled in exactly the

same way as the first one, without the need to search the ruleset. Another advantage is that

packets of the same connection in the opposite direction are implicitly passed.

Important

Port specification is available only for the TCP and UDP protocols. Thus, if a port constraint

is present in a from or to item, the protocol item must be specified and must be one

of tcp, udp, or tcp-udp.

Example: If we want to block the traffic coming in on our external interface to the TCP port

22, we shall use the to, iface and deny items, as shown in Figure 5.1.

Figure 5.1: A simple blocking packet filter rule

The deny part of the rule means that Kernun UTM will silently discard packets coming in

to port 22. However, this behavior is not very effective, for several reasons. First, everyone

knows that there is a filter blocking those connections, and that can attract unwanted attention.

Furthermore, the standard application will not give up if there is no response to its connection

attempts. Therefore, it is customary to send back information that the port is closed. We will do

so by adding a return item to our filter rule, see Figure 5.2.

Figure 5.2: A blocking packet filter rule with return

2

The ESP and AH protocols are both a part of the IPsec protocol family.

120

5.1. PACKET FILTER

Tip

We can change the packet filter’s default behavior of silently discarding packets by setting

the block-policy return option. If we do so, it will properly react to blocked ports

as if those ports were closed even if there are no return items in individual rules. See an

example in Figure 5.3.

Figure 5.3: Option block-policy instead of return in rule

Should some specific clients be allowed to connect to port 22, we have to add a packet filter

rule before the blocking rule we have just created. Rule evaluation abides by the so-called first-

match principle. This means that rules are evaluated in the order, in which they appear in the

configuration, and as soon as a matching rule is found, the evaluation stops and the remaining

rules are ignored. Therefore, more specific rules must precede those with more generic matching

criteria. Figure 5.4 shows how to add a rule allowing connections to port 22 to a set of IP addresses,

preserving the default behavior of blocking port 22 to other clients.

Figure 5.4: More specific rule must come first

5.1.3 Antispoofing Using Packet Filter

IP address spoofing is an attack based on counterfeiting the source IP address in order to confuse

another computer system. It may be extremely dangerous if attackers from the outside pretend to

have an internal source IP addresses; although they never get a response back, it may be sufficient

to perform a successful denial-of-service or another kind of attack.

The goal of antispoofing is obviously to prevent spoofing attacks. We can stop intruders

from the outside who pretend to have an internal source IP address quite easily. In general,

internal network addresses can appear as the source of communication only on the internal network

interface. As there may exist more than one protected network interface, this rule can be applied

to other networks and interfaces as well.

121

CHAPTER 5. ADVANCED FEATURES

A simple antispoofing rule consists of interface specification followed by the antispoof and

deny items, see Figure 5.5. In effect, the internal network 192.168.10.0/24 is blocked when

it appears as a source IP address on any other interface than INT 3

.

Figure 5.5: Simple antispoofing rule

This simple antispoofing rule works for networks directly connected to named interfaces. How-

ever, if our internal network is not flat, but consists of several routed networks instead, we need to

involve all the internal networks in antispoofing. This can be achieved using the routes modifier

in the antispoof item. The resulting rule is depicted in Figure 5.6.

Figure 5.6: Antispoofing rule including routes

Note

The routes modifier has an effect only if there are some routes within the internal network.

To illustrate this fact, the sample configuration file packet-filter.cml introduces a

second internal network, 192.168.11.0/24, specified in the routes section. Now, both

our internal networks, 192.168.10.0/24 and 192.168.11.0/24, get blocked in the

source address field on all interfaces except the internal interface INT.

5.1.4 Selective Packet Forwarding

Standard routers and filtering gateways accept all network datagrams, and if they are destined for

another host, they send them out in accordance with the system’s routing table. This mechanism

is known under the name forwarding.

Kernun UTM does not forward network packets by default. Only traffic either destined for the

system itself or grabbed transparently by application proxies will find its way through; everything

else is thrown away. See transparency(7) for more detailed information.

It is possible to bypass application proxies and control the communication only with packet

filter rules. To do so, we need to inform the transparent grabbing system which packets should be

3

The internal network is taken from the definition of interface INT.

122

5.1. PACKET FILTER

left untouched. For that purpose, a special tag NOTRANSP has been introduced.

Note

Tagging is a feature of the packet filtering engine; network packets can be assigned a string

value that will accompany those packets on their way through the network stack. Other

Kernun UTM components may then check which tags, if any, are assigned to traffic they are

processing.

Important

The tag name NOTRANSP that the transparency engine uses to recognize bypassing pack-

ets is configurable. By changing kernel sysctl variable net.inet.ip.no_transp_tag,

we can define another tag string to be used to distinguish between standard transparent

proxy traffic and bypassing datagrams. Sysctl variables (also called MIBS) are configured in

system.sysctl configuration section, see Section 5.2.6.

To assign a tag to packets, add a tag item to a filter-acl rule inside the packet-filter

section. Figure 5.7 illustrates a rule causing the packet flow between two hosts to bypass trans-

parent proxy processing, forwarding them directly to the network in accordance with the system

routing table. Note that we have introduced a new interface, DMZ, representing a demilitarized

zone with public accessible servers. The rule bypass-int-dmz permits bidirectional traffic be-

tween an internal host and a host in the DMZ.

Figure 5.7: Selective packet forwarding rule

Apart from tag, two more important filter-acl items are introduced in the sample rule

bypass-int-dmz depicted in Figure 5.7: :

• fastroute— This option means that packets get forwarded through Kernun UTM to their

destination. It is called selective packet forwarding, as opposed to global forwarding, which

is performed by the standard routers and packet filtering gateways. Without fastroute,

packets tagged NOTRANSP would not reach their destinations.

• symmetric — Adds a second rule, allowing traffic in the opposite direction on the same

interface. Source and destination IP addresses are swapped in the second rule, as well as the

123

CHAPTER 5. ADVANCED FEATURES

traffic direction in or out. Considering the fact that we have two interface specifications in

the rule, we end up with four individual packet flow permissions:

1. Incoming packets on interface INT going from 192.168.1.20 to 172.16.31.50 (the

basic rule for iface ˆsystem.INT in).

2. Outgoing traffic on interface INT returning back from 172.16.31.50 to

192.168.1.20 (the symmetric rule for iface ˆsystem.INT in).

3. Outgoing packets on interface DMZ originated at 192.168.1.20 and destined for

172.16.31.50 (the basic rule for iface ˆsystem.DMZ out).

4. Incoming datagrams on interface DMZ traveling from 172.16.31.50 to

192.168.1.20 (the symmetric rule for iface ˆsystem.DMZ out).

Important

If a packet filter rule sets the NOTRANSP tag for a packet, a state is automatically created for

the packet. This accepts all following packets of the same connection in both directions. If

we want to selectively forward some communication via the NOTRANSP mechanism without

creating a state, we need to add an explicit rule that matches the packets and does not

contain keep-state.

5.1.5 Network Address Translation

There are three types of NAT rules: mapping rules (nat-acl), redirection rules (rdr-acl) and

bidirectional NAT rules (binat-acl).

Mapping Rules

Mapping changes source IP addresses (and often ports) of outgoing packets. It always applies

to outbound traffic, but it also creates states for backward incoming communication. The state

engine fully recognizes individual TCP connections, UDP sessions and ICMP control messages that

belong to them. Hence, if a state is created, only legal communication is passed and translated

forth and back.

The nat-acl sections allow for a similar set of items as filter-acl rules. The item from

is used to match source IP addresses and ports, similarly to is matched against destination IP

addresses and ports. The interface specification may not include the in/out direction as mapping

rules apply only to outbound traffic. The deny modifier does not block traffic, but effectively

denies any NAT mapping if matched.

A new important item is introduced for mapping rules: map-to. Its purpose is to specify the

final address and port combination after the translation. A sample mapping rule is depicted in

Figure 5.8. It illustrates the use of the map-to item; it specifies an IP address (using a reference

to the outgoing interface’s address ˆsystem.DMZ.ipv4.host) and a port (0 in our example,

meaning any port number available).

As always, mapping rules are implemented using the first-match principle, i.e. the first match-

ing rule is applied immediately, without consulting the rest of the nat-acl rules.

124

5.1. PACKET FILTER

Figure 5.8: Mapping NAT rule

Redirection Rules

Unlike mapping, redirection deals with destination IP addresses and ports. Redirection rules are

thus applied to the inbound traffic, creating states. The same powerful state engine is in charge of

matching backward outgoing packets and changing their addresses and ports back to their original

values.

Apart from the target redirection address and port combination, which is specified using the

rdr-to modifier, all other item names and features are the same in mapping and redirection rules.

The example in Figure 5.9 assumes connections from the 172.16.31.0/24 network, destined for

the DMZ interface’s local address 172.16.31.1 and port 80. Those connections get redirected

to internal server at 192.168.1.20, port 80.

Figure 5.9: Redirection NAT rule

Bidirectional Rules

Bidirectional NAT rules are not yet fully supported by the CML language. The binat-acl

section accepts only raw specifications of rules, in accordance with the pf.conf(5) manual page.

5.1.6 Packet Forwarding along with NAT

Imagine that we have an NAT network and want to bypass Kernun for some traffic (e.g. ICMP

packets, in order to be able to ping to the internet from the local network). For that special

case we need to create an NAT rule for the NAT and, at the same time, tag the traffic with the

NOTRANSP tag to forward it, rather than give it to Kernun’s proxies. The NAT rule automatically

creates a state, so the reply to the ping should be delivered to the requester without the need to

add any other rule.

However, there is a catch in the PF implementation. The NOTRANSP tag in combination

with NAT rule gets lost and the returning packet is passed to Kernun, rather than forwarded. For

this case, Kernun automatically generates a rule pass any to any tagged NOTRANSP no

state tag NOTRANSP in the pf.conf file, in order to keep the tag. This rule permanently stores

the NOTRANSP tag to the state of the tagged packet and is not applied to any other packets.

125

CHAPTER 5. ADVANCED FEATURES

Figure 5.10: Forwarding of ICMP Packets over NAT

Figure 5.10 shows a configuration of selective forwarding of ICMP packets on Kernun UTM

for clients behind NAT. The filter-acl ICMP section tags the packet by the NOTRANSP tag

to be passed through Kernun without giving it to the proxies, while the nat-acl ICMP-NAT

rewrites the addresses and creates a state for the reply packets to be passed back. The returned

packets are first NATed, then the above-mentioned rule is applied and restores the NOTRANSP

tag, and the packet is therefore forwarded into the local network.

5.1.7 Defending against DoS/DDoS Attacks

The packet filter, together with the network stack in the operating system kernel, provide some

means for defense against Denial of Service (DoS) and Distributed Denial of Service (DDoS)

attacks. Such attacks try to overload a target computer system or network by sending huge

amount of traffic. A DoS attack is originated from a single malicious computer. A DDoS attack is

similar, but data are sent by many computers at the same time. It allows the attacker to magnify

the number of network packets many times in comparison with a single-origin DoS, hence making

the effect on the target network worse and any defense harder.

Basic protection against some (D)DoS attacks on the transport layer of the TCP/IP is built

into the network stack of the operating system kernel in form of the SYN cache and SYN cookies.

They are effective especially against the SYN flood attack, when the attacker sends many TCP

connection requests in the form of TCP SYN segments. The SYN cache keeps information about

TCP connection handshakes that have not been completed yet. A SYN cache entry occupies less

memory than the full state record of an established TCP connection. Hence the system is able to

withstand much more SYNs. SYN cookies take one step further, keeping no state and encoding all

information necessary to complete the handshake into the SYN/ACK segment sent to the client.

The SYN cache is always enabled. By default, SYN cookies are also enabled. They can be

disabled by setting the sysctl variable net.inet.tcp.syncookies=0, see Section 5.2.6 for

instructions on setting sysctl variables. SYN cookies are used when the SYN cache becomes full.

It is possible to disable the SYN cache and use only SYN cookies by setting the sysctl variable

net.inet.tcp.syncookies_only=1.

The SYN cache and SYN cookies protect only against SYN flood attacks on TCP-based ap-

plication protocols handled by a proxy or by a server running locally on the Kernun system.

Additional defenses are provided by the packet filter. They are effective for communication han-

dled by the packet filter and not passing via any proxy, but can be combined with a proxy, too.

They can also block attacks that perform full TCP handshake and then send excessively large

126

5.1. PACKET FILTER

volumes of application-layer data in order to overload a server.

The packet filter allows limiting numbers of simultaneous connections that match a filtering

rule or originate from a single source addres. The limits are configured by adding per-rule options.

There are two variants how to create such packet filter rules:

• A filter-acl is created with item keep-state. A raw option is added by item option

containing limit specifications delimited by comma, for example, option "keep state

(source-track rule, max-src-nodes 100)". Note that “keep state” is speci-

fied here, in addition to the separate keep-state item.

• A filter-acl is created containing the whole packet filter rule written in a raw item, for

example:

pass quick inet proto tcp from any to any keep state (max 100)

Available limit specifications are:

max number It limits the maximum number of simultaneous states (connections) the rule may

create. When this limit is reached, further connection attempts are silently dropped. New

connections are allowed only after some of the existing states time out. Note that a state

times out some time after the related connection is closed.

source-track rule Enables counting the states created for each individual source IP address.

The per-IP limits (e.g., max-src-nodes and max-src-states) are compared to the

number of states created by this rule.

source-track global Enables counting the states created for each individual source IP ad-

dress. The per-IP limits are compared to the sum of states created by all rules that use this

option.

max-src-nodes number It limits the maximum number of distinct IP addresses that can have

states at the same time.

max-src-states number It limits the maximum number of states that can be created for a

single source IP address.

max-src-states number It limits the maximum number of established TCP connections that

can be created for a single source IP address. In contrast to max-src-states, this option

counts only connection that completed the 3-way TCP handshake.

max-src-conn-rate number / seconds It limits the rate of establishing new TCP connec-

tions over a time interval.

overload <table>

overload <table> flush

overload <table> flush global If a source IP address reaches one of the limits

max-src-conn or max-src-conn-rate, it will be added to a named packet filter

127

CHAPTER 5. ADVANCED FEATURES

table. If flush is used, all states created by the matching rule and originating from this

IP address will be deleted, effectively terminating all existing connection from the offending

IP address. If flush global is used, all states from this IP address are deleted,

regardless the rule that created them.

Example: The following rules will block any IP adress that initiates more than 100 HTTP

connections per second.

table <dos_attack> persist

block quick from <dos_attack>

pass in proto tcp from any to any port 80 keep state \

(source-track rule, max-src-conn-rate 100/1, overload <dos_attack> \

flush global)

5.1.8 Honeypot

...

5.2 System Configuration

5.2.1 User Accounts

Figure 5.11: User account configuration

Additional user accounts can be allowed access to the system in the configuration. Each user

is represented by a user section within the users section. The user section must contain a

role item with a value admin or audit. The admin class has full access to the system and

permissions to configure and operate all Kernun UTM components. The audit class can only

view the system configuration and logs. The user section can also contain a ssh-key item,

which generates a corresponding line in the .ssh/authorized_keys file for the user’s ssh key.

5.2.2 Network Interfaces

The Kernun UTM configuration can hold any number of interface sections that correspond to

a physical device. Virtual network interfaces can be created from other tools than Kernun UTM

configuration utilities; these, however, need to be referenced in the Kernun UTM configuration.

For example, an instance of openvpn creates the tun0 interface when started. To be able to use it

in the Kernun UTM configuration, include the virtual parameter in its dev item (as illustrated

in the interface VPN-PRAHA section in Figure 5.12). Such an interface is not generated in the

rc.conf file.

128

5.2. SYSTEM CONFIGURATION

Figure 5.12: Network Interfaces

An interface can be assigned multiple IP addresses. To do so, add an arbitrary number of

alias sections to the interface section. Each of them must contain an ipv4 item that defines

its IPv4 address, as depicted in Figure 5.12 in interface EXT.

See interface(5) for details.

5.2.3 Static Routes

Figure 5.13: Static Routes

Static routes provide the capability to explicitly route packets for a given network to a static

machine, which works as a gateway for this network when this cannot be done automatically by

the system routing table management daemon (such as routed). See route(8) for further info.

A static route is set by a static section in the routes section. The static section must

contain one dest item — the routed network address — and a gw item — the address of the

gateway machine for the routed network.

5.2.4 Dynamic IP routing with BIRD

Kernun UTM supports dynamic IP routing via BIRD’s (The BIRD Internet Routing Daemon)

implementation of OSPF (Open Shortest Path First) protocol. It allows routers to automatically

change routes, so that the path remain functional in case of failure of an router in the path.

BIRD uses separate configuration for IPv4 and IPv6. In the example below, bird4 defines

rules for IPv4 routing of one Kernun UTM in the role of router. This router would be one of

multiple routers in network, either Kernun UTM or any other device that supports OSPF. For

example, two clusters of Kernun UTM with all nodes connected with each other via VPN.

129

CHAPTER 5. ADVANCED FEATURES

Figure 5.14: BIRD dynamic routing

130

5.2. SYSTEM CONFIGURATION

BIRD, or more precisely OSPF, requires each router to be identified by an unique ID. use-id

in the example above, uses IPv4 address of interface INT as this ID. The sections device,

kernel, static and ospf defines different protocols (or pseudo-protocols) which BIRD should

use for import or export of routes. The device protocol is not a real routing protocol. It doesn’t

generate any routes and it only serves as a module for getting information about network interfaces

from the kernel. Except for very unusual circumstances, you probably should include this protocol

in the configuration since almost all other protocols require network interfaces to be defined for

them to work with. The kernel is also a pseudo-protocol. Instead of communicating with other

routers in the network, it performs synchronization of BIRD’s routing tables with the OS kernel.

Basically, it sends all routing table updates to the kernel and from time to time (item scan) it

scans the kernel tables to see whether some routes have disappeared or whether a new route has

been added by someone else. The section static analogically sets rules for static routes defined

in system -> routes -> static.

The ospf section defines, besides import/export rules, one or more areas (area). In OSPF,

the network is divided into areas that are logical groupings of hosts and networks. Each area

maintains a separate link state database whose information may be summarized towards the rest

of the network by the connecting router. Thus, the topology of an area is unknown outside of the

area. This reduces the routing traffic between parts of an autonomous system. An area is identified

by it’s id. "O" in this example, identifies backbone area (or area 0.0.0.0) which forms the core

of an OSPF network. In interface sections we assign different properties for selected network

interfaces. Especially, the cost item. The OSPF routing policies for constructing a route table

are governed by link cost factors associated with each routing interface. Cost factors may be the

distance of a router (round-trip time), data throughput of a link, or link availability and reliability,

expressed as simple unitless numbers. Other items defines different rules for communication with

other routers via given network interface.

For more information on BIRD configuration see

http://bird.network.cz/?get_doc&f=bird-3.html

5.2.5 File /etc/rc.conf

The /etc/rc.conf configuration file is used to automatically perform various actions at the

system startup. It contains information about the configuration of network interfaces, the services

that should be started after a boot and optionally their parameters, the configuration of the

machine’s host name, console settings, etc. See rc.conf(5) for details.

Figure 5.15: rc.conf configuration

The rc.conf file is generated by Kernun UTM and should therefore not be configured directly,

but in rc-conf section of the Kernun UTM configuration. An entry in rc.conf is set through

131

CHAPTER 5. ADVANCED FEATURES

the set-env item. Examples of useful items include set-env fsck_y_enable yes (which

will make fsck answer itself "YES" to all questions and thus make automatic OS booting possible).

It is even possible to extend an already set value by redefinition, such as set-env variable

"$variable ...".

5.2.6 Kernel Parameters in /etc/sysctl.conf

Figure 5.16: sysctl.conf configuration

The /etc/sysctl.conf file is read when the OS enters the multi-user mode and sets default

settings for the kernel. Its contents are generated from the variables items in the syctl section.

Each variable sets one kernel setting. For example, variable net.inet.ip.forwarding

"1" turns on IP forwarding.

5.2.7 Configuration of the cron Daemon

The crontab is the configuration file for the cron daemon, which runs selected commands peri-

odically. Each entry in crontab contains seven fields separated by a white space character:

• minute — permitted values: 0-59

• hour — permitted values: 0-23

• day of month — permitted values: 1-31

• month — permitted values: 1-12 (or names)

• week — permitted values: 0-7 (0 or 7 is Sun, or use names)

• user — user under whom the program should be run

• command — the command to be run and its parameters

A field may be set to "*", which stands for its entire range. Numerical ranges, lists and their

combinations are also allowed. For example, "3-7", "1,2,7,8", "1-3,8-14,20". Step values and more

complex expressions can be used as well, see crontab(5) for details.

There is a sample crontab configuration in samples/include/crontab.cml. It can be

included in crontab by the application of the $default-crontab variable, which is set in

include samples/include/crontab.cml.

Additional entries can be set by plan items in the crontab section. For example plan

"1 2 * * * root /usr/local/kernun/bin/upgradeFBSD.sh" will schedule the script

upgradeFBSD.sh (which automatically synchronizes and compiles the OS source) to be run

every day at 02:01 under the user root.

132

5.3. CACHING NAME SERVER

Figure 5.17: crontab configuration

5.3 Caching Name Server

Figure 5.18: Caching Name Server configuration

Kernun UTM’s dns-proxy is not designed to be used as a name server — it does not cache

DNS queries. A possible solution is a combination of named and dns-proxy. In this scenario,

named listens for DNS queries on the internal interface and provides the cache. It queries dns-

proxy that is bound to the loopback interface and, in accordance with ACLs, permits or denies

the query, sends a response or queries the DNS root servers.

The configuration in Figure 5.18 shows the named daemon configured in the

nameserver section to listen on Kernun UTM’s internal address on port 53 (listen-sock

ˆsystem.INT.ipv4.host : 53), while Kernun UTM uses it as its resolver (server

ˆsystem.INT.ipv4.host : 53 in the resolver section). dns-proxy is bound to the

loopback interface by the non-transparent [127.0.0.1] : 53 item in the listen-on

section of dns-proxy. See named.conf(5) for more details.

The other typical scenario is that one or more name servers exist in the internal network. In

this situation, clients are configured to query the server in the internal network, which queries

133

CHAPTER 5. ADVANCED FEATURES

dns-proxy that is configured to listen on the internal address, while Kernun UTM itself uses the

internal name server as its resolver.

Note that in both of these scenarios it is necessary to have multiple name servers running in

order to provide different DNS responses for different clients, because the response is cached on

the name server and therefore not matched against the ACLs of dns-proxy. Nevertheless, it

is always possible to plug requests coming from particular clients to a host with a different IP

address, ignoring the DNS name in the request for every service.

5.4 DNS and DHCP Services

5.4.1 DNS Server for the Local Zone

In this scenario, named listens for DNS queries on the internal interface and queries dns-proxy,

which provides the response.

Figure 5.19: DNS Server - Proxy configuration

The configuration in Figure 5.19 shows Kernun UTM using named as the resolver (server

ˆsystem.INT.ipv4.host : 53 in the resolver section). dns-proxy is bound to the

loopback interface by non-transparent [127.0.0.1] : 53 in the listen-on section of

dns-proxy. See Section 5.3 for further information.

In the configuration depicted in Figure 5.20, the named daemon is configured in

the nameserver section to listen on the internal address on port 53 (listen-sock

ˆsystem.INT.ipv4.host : 53) and to forward the request to dns-proxy on the loopback

interface (forwarder [127.0.0.1] : 53).

Finally, there is the zone pha section. The name pha.tns.cz item assigns its name and

the generate item makes KGB generate the zone data from hosts-table. The reverse item

makes zone pha-reverse provide reverse DNS records for the local network.

The hosts-table section contains multiple host items, each defining the host name (e.g.

"builder.pha.tns.cz") and the IP address (e.g. "192.168.1.101") for a certain MAC address (e.g.

134

5.4. DNS AND DHCP SERVICES

Figure 5.20: DNS Server - BIND configuration

"00:1D:7D:02:F7:C6").

It is possible to globally force the clients to use SafeSearch functionality for Google, YouTube

and Bing by using samples/include/safe-search.cml.

5.4.2 DHCP Server for the Local Network

The Dynamic Host Configuration Protocol (DHCP) is used by a client to obtain information

necessary to connect to an IP network automatically, with no need of manual administration.

This information includes the client’s IP address, network mask, default gateway, DNS server

address, etc.

Figure 5.21: DHCP configuration

The DHCP server is configured in the dhcp-server section. In this example, the DNS server

address pushed by the DHCP server is 192.168.10.1 (name-server item). The lease time is set to

10 hours (default-lease-time) and the maximum lease time to 1 day (max-lease-time).

Furthermore, there is a setting for the domain name (domain), the router address (router) and

the NTP server (time-server). There is a range of IP addresses (range [192.168.10.50]

[192.168.10.99]) reserved for subnet devel, which also has the domain name altered to

(domain devel.tns.cz). The addresses assigned by DHCP server will therefore by between

192.168.10.50 and 192.168.10.99.

135

CHAPTER 5. ADVANCED FEATURES

The hosts-table section defines a single host with a predefined IP address: the host

u2 with the MAC address 00:17:08:3e:a7:ba is assigned the IP address 192.168.10.22 (host

[192.168.10.22] { u2 } "00:17:08:3e:a7:ba").

See dhcp-server(5) for details.

5.5 Time Synchronization with NTP

It is very important to keep the correct time and date on all computer systems, including firewalls,

internal servers, routers and even workstations. Kernun UTM provides a time synchronization

function by means of an NTP server.

Kernun UTM’s NTP server allows two functions: to synchronize the local time with a remote

NTP server, and to serve this time data to the local systems. It uses the NTP protocol version 4,

but retains compatibility with versions 3, 2 and 1 of the NTP protocol. It can play the client and

server role at the same time. Thus, in a typical scenario, Kernun UTM’s NTP server exchanges

NTP messages with a few public time servers in order to keep its own time and date synchronized,

while offering time synchronization to the whole local network.

Note

Local time zone of the Kernun UTM system is set in the console during the first boot, see

Section 2.5.2.

From now on, we will assume that the initial configuration file is loaded in the GUI, as shown

in Section 4.2. To define NTP server parameters, we add a new ntp section at the system

level, for instance after the ssh-keys section. As a minimum, we need to define one server in

an item within the ntp section, ns2.tns.cz in our example. Furthermore, we want to let the

internal systems synchronize their time with Kernun UTM, which is achieved by adding an extra

restrict item. We use a reference ˆsystem.INT.ipv4.net to specify our local network;

in more complex topologies, we would have to repeat the restrict item and specify internal

networks explicitly or using variables. The nopeer and noquery flags of the restrict item

are used to allow only client synchronization requests. Figure 5.22 shows the relevant part of

configuration.

Figure 5.22: Minimum NTP server configuration

Reliance on a single external time server may lead to time synchronization outages. Therefore,

it is quite common to use more than one time server. The server item can be repeated, which

results in a stabler configuration. Moreover, if there are more firewalls or parallel network servers,

it is sometimes beneficial to let them know about each other’s NTP server, acting together as

peers. An NTP peer is not an authoritative source of time data, but may serve for minor time

corrections upon Internet blackouts. We achieve this effect by specifying another NTP server with

a peer item within the ntp section, as shown in Figure 5.23.

136

5.6. MONITORING OF KERNUN UTM OPERATION

Figure 5.23: Peer for NTP server

If the drift-file item is used, Kernun UTM’s NTP server attempts to compute the error

in the intrinsic frequency of the local on-board clock. The item must be accompanied with a

filename, e.g. /var/ntp.drift. The NTP server also includes support for local reference clocks,

if available.

4

The on-board system clock itself may be used as a reference clock. An example of

its use is depicted in Figure 5.24. The clock item accepts three parameters:

1. Type—number 1 for local on-board clock.

2. Unit—number 0 as the first (the only) unit of local on-board clock.

3. Stratum—the distance in hops from an accurate authoritative time source; for the local

on-board clock, we use number 10 to make it higher than standard Internet NTP servers.

Figure 5.24: On-board clock with NTP server

The resulting configuration file is available among Kernun UTM samples under the name

ntp.cml in /usr/local/kernun/conf/samples/cml.

5.6 Monitoring of Kernun UTM Operation

5.6.1 Logging Configuration

All Kernun UTM proxies write information about their state and progress into the log. The log

can be used later to analyze the traffic, generate statistics, find out why a certain connection was

refused, or look for system errors. Logging is switched on for all proxies by default. To alter the

log settings of a proxy, add a log section with desired items (see below) into it.

Logging can be done either by the standard syslog daemon (the default is the LOCAL4 facility,

which logs into the /var/log/kernun-debug file), or directly into a specified file. Moreover,

there is a possibility to log a small amount of the last data for each proxy into a memory-mapped

file, which can be used for system failure analysis. The facility item is used to change the

4

Currently, Kernun UTM appliance does not allow for optional hardware reference clock delivery, but this is

subject to future changes.

137

CHAPTER 5. ADVANCED FEATURES

facility number, the file item to enable logging into a file and the mem-file item to specify

the memory-mapped file.

There are 9 levels of log messages (the lower the number, the higher the severity) and the

administrator can choose the level of logging. The log level of a proxy can be set either in the

configuration using the level item, or at runtime by sending a SIGUSR1/SIGUSR2 signal to the

proxy process to increase/decrease the level. The proxy logs only messages with a level lower or

equal to its log level. The log message level is appended to the MsgID column of the message, so

you can easily filter only messages of a certain log level in the log browser (Section 3.1.3).

Each log message contains the MsgID column, which stands for the type of the message. For

every log message type, there is a manual page in the section 6. The Message ID consists of a

component code (an application name, possibly with a suffix), message number and message log

level. Most of the information on normal traffic can be gathered from the level I (information

statistical messages) and level N (noticeable conditions), which are both logged with any log level

set. For example, a simple HTTP 1.1 request is started by TCPS-706-N which informs about a

new TCP connection and assigns the connection to a child, then a session is started (HTTP-710-I)

and proceeds with the first phase of acl. If the session is accepted, then the HTTP request is started

(HTTH-702-I), request-acl is evaluated (HTTH-811-I) and the client is connected to the server

(MNIO-710-N). When the answer, the document, arrives from the server, doc-acl is evaluated

and the message HTTH-893-I is added to the log. If the document was accepted, the request

end message HTTH-713-I is added and the proxy waits for other requests on the same socket

(we are communicating over the multi-request HTTP 1.1 protocol). Then, possibly, more requests

are served and, eventually, the session is ended (HTTP-711-I), the proxy finishes the connection

and waits for a new one (messages TCPS-707-N and TCPS-715-N). The log of the described

situation is shown in Figure 5.25.

Figure 5.25: Log of an HTTP request

For more information on logging, see logging(7). For details concerning configuration of

logging, see the log(5) manual page.

138

5.6. MONITORING OF KERNUN UTM OPERATION

5.6.2 Log Rotation

The created log files grow enormously and might fill all the free disk space. Another problem of

logging is that manipulation with big files is more difficult (and slower) than with smaller ones.

Kernun UTM provides tools for log rotation as a method of solving the above-mentioned problems.

Log files are regularly (daily, weekly or monthly) renamed and the system starts afresh with an

empty log file. The old log files are thrown away after a certain period. The administrator can

configure log rotation by adding an rotate item into the system-level rotate-log section for

the entire Kernun UTM or into the log section of a particular proxy, if it logs into a separate

file. In the rotate item you can specify the owner, group and rights of the file, the number of

coexisting history logs, the compression method and the time of log creation. The logs can be

rotated either periodically (daily, weekly or monthly), or when the size of the log exceeds a specified

limit. The log rotation will only work if you have it scheduled in the crontab, as illustrated e.g.

in the sample crontab file /usr/local/kernun/conf/samples/include/crontab.cml.

5.6.3 Monitoring of Active Sessions

Each of the connection-oriented proxies (http-, ftp-, imap4-, pop3-, smtp-, sip-, sqlnet- and tcp-

proxy) and udp-proxy are able to write information about the current sessions (connections they

are currently serving) into special binary files that can be used to monitor their current state. A

log does not provide all the necessary information when huge files are being downloaded: we are

informed that the request has started, but do not know anything until it ends. This is the right

time to use the monitor(1) application, which collects information about the current session’s

progress and is able to present it to the user (either as plain text, or in the HTML format).

Monitoring is best accessible from the GKAT window of the Kernun GUI via the Monitor tab in

the detail of a proxy (or the Proxies root node). The information in the monitor include the

name and type of the proxy, the PID of the proxy process, the duration of the current session, the

server and client IP addresses and names, the number of bytes transferred and delivered in both

directions, the connection speeds, and the URI of the document (in the case of http- or ftp-proxy).

Monitoring is only available for proxies that contain the monitor section in their configuration.

Monitoring information is also stored in a database that is used for graph generation; for more

details see Section 5.6.5.

5.6.4 Proxy Statistics Generation

Every proxy can generate statistics of its usage; these statistics are then shown in the statistics

browser window (Figure 5.26), which is accessible via the File | Statistics menu in the GKAT. In

the browser, the tree on the left-hand side shows the available statistics (for each of the available

periods and all the proxies that generated statistics in that period). The right-hand part of the

window shows the statistics of the selected period, date and proxy as an HTML page.

To enable the generation of statistics for the desired proxies or the whole system, insert

stats-daily, stats-weekly and/or stats-monthly sections into their configurations.

Inside these sections, you can specify the number of top results for each watchable parameter

(if not set, the default value will be used). By default, the generation scripts for each of

139

CHAPTER 5. ADVANCED FEATURES

Figure 5.26: Statistics browser window

the periods are scheduled in the crontab. Therefore, no changes should be necessary.

Figure 5.27 shows a sample statistics configuration for an http-proxy. Sample configuration

with generation of statistics for most of the proxies and the whole system is included in

/usr/local/kernun/conf/samples/cml/statistics.cml.

5.6.5 Monitoring of System Parameters

Kernun UTM is able to monitor various system parameters, from hardware temperature to proxy

loads, and store their values in a database. Later it is possible to create and view graphs generated

from these values and thus examine the traffic load history. The graphs are generated by the

command line tool rrd, described in the rrd(1) manual page, which can be also used to view the

available graph types and intervals. The easiest way to access the graphs is using the Graphs tab

in the GKAT window of the Kernun GUI. It is available for all the proxies and network interfaces,

and for several system components. All the system parameters are displayed in the Graphs tab

of the top-level GKAT node, as depicted in Figure 3.8. While system components other than

proxies generate their graphs automatically, you have to insert a monitoring section into the

configuration of a proxy to generate its graphs.

Chosen graphs can be added to the Favorite graphs tab in the Graphs tab of the top-level

GKAT node to make them more accessible; the period of the displayed graphs can be changed

using a combo box.

140

5.7. NETWORKING IN PROXIES

Figure 5.27: Configuration of statistics

5.7 Networking in Proxies

In general, a proxy can listen in two modes: non-transparent and transparent. In the non-

transparent mode, the client must be aware of Kernun UTM, as it is connecting explicitly to some

of its IP addresses. For example, the proxy address and port must be entered in the preferences

dialog of the Web browser. According to the configuration of the protocol and of Kernun UTM,

the proxy typically connects to a server and mediates the communication.

In the transparent mode, on the other hand, Kernun UTM captures clients’ connections and

hands them over to the proxies. Although the client thinks to be connected directly to the

server IP address, it is in fact communicating with the proxy. Hence, the client does not have

to be configured for using the proxy. The proxy typically creates the connection on its own and

mediates the communication. According to the configuration, the proxy can either connect to a

server (the one the client was connecting to, or even to another one), or it can react otherwise,

e.g. deny the connection.

5.7.1 Transparent Proxies

Transparency for Clients

Incoming transparency (i.e., proxy listening in the transparent mode) is configured by specifying

the transparent item in the listen-on section in the proxy configuration.

Let us demonstrate the transparency aspects on the example of http-proxy. It is configured

to listen in the transparent mode on port 80 and in the non-transparent mode on port

3128, as depicted in Figure 5.28.

Figure 5.28: HTTP Proxy listening both in transparent and non-transparent mode

141

CHAPTER 5. ADVANCED FEATURES

When one proxy listens in both modes simultaneously, clients can choose whether to con-

nect in the transparent mode (by connecting directly to the Web server to its port 80), or non-

transparently (by connecting to the proxy to port 3128). Examples of Web browser configuration

dialogs are shown in Figure 5.29.

Figure 5.29: Configuration of non-transparent mode in Firefox and Microsoft Internet Explorer

Web browsers

After the configuration is applied to Kernun UTM and the proxy is restarted, it starts to listen

on the two given sockets. This can be verified in the Network | sockstat tab of the GKAT window,

as depicted in Figure 5.30. We can see sockets listening for connection in the transparent mode

(rows marked ❶) and in the non-transparent mode (rows marked ❷). These sockets occur in the

list more than once as they are shared by the parent process and all the child processes. The

listening sockets show *:* in the ForeignAddr column. The non-transparent listening sockets show

the IP address they listen on in the LocalAddr column. The transparent listening sockets show the

special symbol >> in the LocalAddr column, preceded by the name of the interface, from which

they accept connections.

In this example we can also see two clients to be actually connecting through the proxy, both

to the Web server at 194.228.50.79. Client from IP 192.168.1.31 is connecting via the

non-transparent proxy. We can see the connection from the client to Kernun UTM’s internal IP

address (row marked ❸), and the connection from Kernun UTM’s external IP address to the server

(row marked ❹).

Client from the IP address 192.168.1.12 is connecting transparently. We can see the con-

nection from the client to the server, which was grabbed by Kernun UTM (row marked ❺) and

the connection from Kernun UTM to the server (row marked ❻).

The realized connections can be traced in the log, as is shown in Figure 5.31. We have filtered

the log messages that inform about the session—see the filters box in the screenshot. The complete

track of the session is more detailed, concerning matching of ACLs, requests, documents, etc. The

selected message (HTTP-710-I) denotes the start of the session in http-proxy, and informs

142

5.7. NETWORKING IN PROXIES

Figure 5.30: Sockstat tab showing the list of all sockets

about the facts that are known at the time the session is being established (client address, server

address and the transparency flag). The session end message (HTTP-711-I) would also provide

other informations concerning the session (the number of requests, the length of the session, etc.).

Figure 5.31: Tracking transparent and non-transparent connections in the http-proxy log (the

log was filtered, in order to save space).

Transparency for Servers

When a client is connecting to a server, the question is what IP address the server sees as the

client IP address. Different approaches can be useful in different situations.

If a network with private addressing is hidden behind Kernun UTM, Kernun UTMmust connect

from its own (external, public) IP address. When the client network uses public IP addresses, both

approaches can be desired: either the internal addressing should be hidden (the traffic should be

formally realized from Kernun UTM’s IP address), or not. On the other hand, a server protected

143

CHAPTER 5. ADVANCED FEATURES

in a DMZ may need to know the IP address of the real client.

By default, Kernun UTM proxy connects to the server from Kernun UTM’s IP address (i.e.

hiding the client’s real IP address). However, there are two other options, which can be specified

in the first-layer ACL (see Section 4.2.5 for details on ACLs):

• source-address client denotes that the IP address of the real client should be used

as the source address;

• source-address force address denotes that the given address should be faked as the

source address for the connection to the server.

The source-address item can be either specified on the system level of the configuration,

in which case it influences all the proxies that reference the ACL, or in the session-acl section

of the particular proxy.

In Figure 5.32, the real client address is configured to be used as the source address for all the

named proxies, because it is specified in the system ACL.

Figure 5.32: Transparency for servers (source-address client)

5.7.2 A Proxy and a Server on the Same Port

In Kernun UTM, a single port can be shared by several proxies or servers, provided that they do

not collide in their listen sockets. For example, it is desirable to provide a transparent SSH proxy

for connecting to SSH servers in the Internet and, at the same time, to provide an SSH server for

administration of Kernun UTM. Both should be available from the protected network.

An example of such configuration is shown in Figure 5.33.

When a packet arrives, Kernun UTM kernel delivers it to the most specific socket that is suitable

for it. Consult transparency(7) for more information, including the definition of conflicting sockets

and the socket preference. This way, it is possible to provide services on their traditional ports as

well as transparent proxies on the same ports.

Figure 5.33: A port shared by two applications

144

5.8. H.323 PROXIES

5.7.3 Listening on a port range

Kernun UTM proxy can be configured to listen on a set of contiguous ports. This ability is

also known as listening on a port range and is available for TCP and UDP-based proxies. If a

transparent proxy listens on a port range (and ACLs do not specify otherwise), the proxy connects

to the port the client was connecting to. If a non-transparent proxy listens on a port range, the

situation is similar to the regular non-transparent proxy (one that listens on a single port): the

port (as well as the server IP address) would be either provided in some ACL in the Kernun UTM

configuration (for example, in the plug-to item), or it is a part of the application protocol. An

example of sip-proxy configured to listen on a port range is shown in the Figure 5.34.

Figure 5.34: The sip-proxy configured to listen transparently on a port range 5060-5062

Warning

Proxies cannot listen on ranges of ports that collide with the system default port ranges.

The system normally assigns ports to connections with unspecified source port from three

port ranges, which can be modified by the portrange-default, portrange-high,

portrange-low items in the system.sysctl section. None of those ranges may over-

lap with the range of ports that a proxy is listening on. In the case of a port range collision,

the system would not know, which ports are free to use and which are occupied.

Note that this problem does not occur when the proxy listens on separate ports. In this

case, the single ports are reserved for the use of the proxy (even if they are inside one of the

system port ranges).

5.8 H.323 Proxies

h323-proxy and gk-proxy are the proxy daemons for a set of multimedia communication

protocols called H.323 protocols. Kernun UTM supports them only for backward compatibility,

because this protocol family is now widely replaced by the SIP protocols (see Figure 5.35 be-

low). Therefore, this manual does not cover this topic. For more information, see h323-proxy(8),

h323-proxy(5), gk-proxy(8) and gk-proxy(5).

5.9 SIP Proxy

sip-proxy is the proxy daemon for the Session Initiation Protocol (RFC 3261 et al.), i.e. mainly

Internet telephone calls and related services.

The proxy is configured in the sip section. In the sample configuration depicted in Figure 5.35,

chroot-dir defines directory into which it should be chrooted. The proxy listens transparently

for requests at Kernun UTM’s internal address at port 5060. However, due to the hop-by-hop logic

145

CHAPTER 5. ADVANCED FEATURES

Figure 5.35: SIP Proxy

of the protocol, the proxy must listen on this port non-transparently on all internal and external

interfaces as well. As usually, the proxy must be referenced by at least one ACL in the system

section. In order to enable incoming calls, we will need to allow also sessions from the external

network.

sip-proxy uses two-phase ACLs. The first phase, session-acl, is checked once for each

client connection. It permits or denies client access and sets some connection parameters. This

is where the administrator can specify that some important data that is usually stored in SIP

messages headers (e.g. internal addresses) is to be hidden. The second phase, request-acl, is

checked once for each request and it can be used e.g. to change the target server according to the

Request-URI.

sip-proxy requires specification of the maximum of sessions and data channels used in paral-

lel. An estimate is three times number of the phones for sessions-table-size and two times

number of the phones for sockets-table-size. Finally, the proxy requires a file to store the

registration data of clients (local phones).

The complete resulting configuration can be found in

/usr/local/kernun/conf/samples/cml/sip-proxy.cml. See sip-proxy(8) and

sip-proxy(5) to learn more about sip-proxy.

5.10 SQLNet Proxy

sqlnet-proxy is the proxy daemon for the proprietary Oracle SQL*Net Protocol. The proxy

can handle features, such as session redirection, or database user checking.

The proxy is configured in the sql section. In the sample configuration depicted in Figure 5.36

chroot-dir defines directory into which it should be chrooted. The proxy listens transparently

for requests at Kernun UTM’s internal address at port 1521. As usually, the proxy must be

146

5.11. UDP PROXY

Figure 5.36: SQL*Net Proxy

referenced by at least one ACL in system section.

The sqlnet-proxy uses two-phase ACLs. The first phase, session-acl, is checked once

for each client connection. It permits or denies client access and sets some connection parameters.

The second phase, service-acl, is checked once for each CN (connect) or RD (redirect) message

and it can be used e.g. to change the target server according to the SERVICE name.

The complete resulting configuration can be found in

/usr/local/kernun/conf/samples/cml/sqlnet-proxy.cml. Since the protocol is

proprietary, clients often violate it and it is necessary to avoid some checks using configuration

directives, such as connect-string-charset. See sqlnet-proxy(8) and sqlnet-proxy(5) to

learn more about sqlnet-proxy.

5.11 UDP Proxy

Kernun UTM provides a generic proxy for handling application protocols based on UDP. Its

philosophy is similar to the generic TCP proxy, which is used for the HTTPS and SSH protocols

in the initial configuration, as described in Section 4.2.9. The proxy waits on one or more ports,

transparently or non-transparently, for datagrams from clients. Although UDP is a stateless

protocol, the UDP proxy defines logical sessions that group together related datagrams. See

udp-proxy(8).

We will demonstrate the UDP proxy on the DNS protocol. It is one of typical applications

of the UDP proxy

5

. Kernun UTM provides the DNS proxy (refer to Figure 4.11), which is a

better choice for accessing DNS servers in the Internet, because it performs thorough checks of

the protocol. However, if Kernun UTM connects two trusted internal networks and clients in one

of them send DNS requests to a server in the other, the use of the UDP proxy may be sufficient.

The DNS proxy in the sample configuration in Figure 5.37 was replaced by the UDP proxy. It

listens on the internal network interface on the DNS UDP port 53 non-transparently. The item

max-sessions in section udpserver limits the maximum number of logical sessions that can

be handled by the proxy simultaneously. All DNS requests from the internal network are accepted

by global acl INTOK. This ACL is extended in the proxy by the plug-to item, which forwards

all requests to a single DNS server. As DNS is a request-reply protocol, we define that each logical

session contains at most one request (client to server) and one response (server to client) datagram.

5

Another standard use of the UDP proxy is forwarding the OpenVPN protocol via Kernun UTM.

147

CHAPTER 5. ADVANCED FEATURES

Figure 5.37: UDP proxy

The setup described in this section can be tested by specifying in plug-to a DNS server that

accepts and recursively solves requests from Kernun UTM. The client machines must be configured

to use Kernun UTM as their DNS server.

5.12 Cooperation of HTTP and FTP Proxies

Web browsers support access to FTP servers by using URLs beginning with ftp:. If no proxy is

configured for FTP in the browser parameters, the browser accesses FTP servers using the native

FTP protocol. Such communication can be mediated by a transparent FTP proxy. Another

situation is the non-transparent case, when a proxy for FTP is specified in the browser settings.

Then the browser communicates with the proxy using the HTTP protocol, rather than FTP.

Hence, the communication is processed by the HTTP proxy, which gets a URL starting with

ftp:. The proxy must act as a FTP client, contact an FTP server, and send the result to the

browser via HTTP. The HTTP proxy does not support FTP directly. Instead, it communicates

with the FTP proxy using an internal protocol

6

. The FTP proxy handles the FTP part of the

communication.

Both http-proxy(8) and ftp-proxy(8) need to be reconfigured in order to cooperate in

the processing of ftp: requests from Web browsers. In the ftp-proxy section, a new

non-transparent listening socket should be added to the listen-on section. The two

proxies run on the same system and they communicate via the loopback interface. Hence, the

socket for HTTP-FTP cooperation listens on the localhost address and on an arbitrarily

chosen port. It is necessary to allow connections from the HTTP proxy to the FTP proxy by

adding a system-level acl and to tell the FTP proxy in the corresponding session-acl that it

should expect requests from the HTTP proxy instead of the standard FTP. The HTTP proxy

must be told to pass FTP requests to the FTP proxy by adding a ftp-proxy item to section

http-proxy.

An example of FTP and HTTP configuration is shown in Figure 5.38. Port 8022 has been

chosen and stored in variable HTFTP_PORT. A new acl HTFTP section has been created, which

permits connections in the FTP proxy from the local host to the HTFTP port on the local

host. In the ftp-proxy FTP section, the FTP proxy is switched (by item htftp-mode) to the

HTFTP mode for connections accepted on the HTFTP socket. The HTTP proxy is instructed

how to contact the FTP proxy by item ftp-proxy. The complete resulting configuration can be

6

Kernun UTM refers to the HTTP-FTP cooperation protocol as HTFTP.

148

5.13. SECURE COMMUNICATION USING SSL/TLS

Figure 5.38: Cooperation of HTTP and FTP

found in file /usr/local/kernun/conf/samples/cml/htftp.cml. After applying these

configuration changes and restarting the HTTP and FTP proxies, it should be possible to set the

HTTP proxy as the proxy for FTP in the Web browser and to start using ftp: URLs.

5.13 Secure Communication Using SSL/TLS

Kernun UTM supports network communication securing using the standard SSL (Secure Sockets

Layer) protocol and its newer version TLS (Transport Layer Security). As the SSL/TLS protocol

ensures end-to-end security, Kernun UTM cannot read or modify data from an SSL/TLS con-

nection between a client and a server. This means that protocols using SSL/TLS encapsulation,

e.g., HTTPS, POP3S, or IMAP4S, cannot be processed by a protocol-specific proxy. Instead,

generic TCP proxy is usually used to forward such communication. In the case of HTTPS, a non-

transparent HTTP proxy can be utilized for tunneling HTTPS data in an HTTP connection with

the CONNECT HTTP request method. Sometimes, however, we need to have access to encrypted

data for the purposes of analysis or even modification. An example is antivirus checking of files

transferred via HTTPS.

The configuration described in this section is useful for fixed secure tunnels, e.g., via tcp-

proxy, or for securing a single HTTP server by http-proxy. It is unsuitable for inspecting

HTTPS traffic between ordinary HTTP clients (browsers) and servers, because the proxy presents

a single server certificate (containing a single fixed host name) for any server accessed by a client.

Common behavior of browsers is to compare the accessed server host name with the name in the

server certificate and to issue a security warning if they do not match. If you need to handle this,

HTTPS inspection, introduced in Section 5.19, is a viable option.

To access data protected by SSL/TLS, a proxy must split the communication into two SSL/TLS

connections. Data from a client is first sent to the proxy via the first secure connection terminated

on Kernun UTM. The encrypted data stream is decrypted by the proxy, processed, encrypted

again and sent to the server via the second secure connection. Data from the server is passed

via the two connections in the opposite direction. It is also possible to convert the unencrypted

version of an application protocol (for example, HTTP) used by a client to the encrypted version

149

CHAPTER 5. ADVANCED FEATURES

(for example, HTTPS) accepted by a server, or vice versa.

An example of a proxy that uses SSL/TLS security is presented in Section 5.14.7, and its

configuration is shown in Figure 5.51. This proxy converts a secured connection from a client

to plain HTTP sent to the server. Another example is depicted in Figure 5.39. It is an HTTP

proxy that enforces authentication of the remote server and also authenticates Kernun UTM to

the remote server.

Figure 5.39: SSL/TLS security configuration

The parameters of an SSL/TLS connection are defined by the section ssl-params . All

the available parameters are explained in ssl(5). In our example, this section selects the X.509

certificate with the related private key used by the proxy to authenticate itself to clients and

servers (item id), and the list of certification authority certificates (auth-cert) with the related

certificate revocation lists (crl) for verification of certificates provided by peer clients and servers.

The verify-peer item forces the proxy to request and verify certificates of peers. If a peer does

not provide a certificate or the certificate cannot be verified, the SSL/TLS handshake fails and

the session is terminated.

The client-ssl SSL item in the session-acl INTOK section switches the connection

from the client to the SSL/TLS mode and sets the protocol parameters. If the client establishes

an encrypted connection and sends a valid certificate, it can send an HTTP request. Otherwise,

the session is terminated. After receiving an HTTP request, the proxy searches for a request ACL.

It selects request-acl TNS-CERT only if the client’s certificate contains “SSL access” in the

subject field, because of the client-cert-match item. The request ACL enables SSL/TLS on

the connection to the server and sets the protocol parameters. The server-cert-match item

defines conditions that must be fulfilled by the server’s certificate (it must contain a common name

150

5.14. USER AUTHENTICATION

ending by “kernun.com” in our example). Note that if the client-cert-match item is not

matched, the single ACL is skipped and the search continues at the next request ACL, whereas if

the server-cert-match item is not matched, the request is terminated immediately.

If you apply this kind of configuration and access a Web server via the proxy, your Web browser

will show that the peer certificate is that of the proxy. In the proxy log, you will see details of the

client’s and server’s certificates as received by the proxy.

5.14 User Authentication

Kernun UTM applies different rules to network traffic depending on the identity of the commu-

nicating parties. A client or a server can be identified in several ways. The basic one is the

IP address and the port number, which are available for any network connection. The IP-based

identity is used very often, but it distinguishes between computers, not users. Sometimes it is

necessary to apply different rules to different users, while each user can work on several machines

and each machine can be utilized by more than one user. In such situations, we need to identify

individual users, independently on the IP addresses of the computers they use. Kernun UTM

provides various means of user authentication. An authenticated user name can be used as one of

the conditions tested when searching for an applicable ACL.

Some application protocols allow the passing of user credentials to a proxy within the normal

protocol data flow. In Kernun UTM, such type of authentication is supported by the HTTP and

FTP proxies. Many other proxies are able to use out-of-band (OOB) authentication, which binds

a user name to a client machine IP address. Kernun UTM also provides a special authentication

mode usable for protecting access to protected HTTP servers from clients in the external network—

the HTTP authentication proxy.

Examples of configuration for all variants of authentication except NTLM

described in this section are summarized in the sample configuration file

/usr/local/kernun/conf/samples/cml/auth.cml.

5.14.1 Authentication Methods

Figure 5.40: Authentication methods

151

CHAPTER 5. ADVANCED FEATURES

Kernun UTM supports several methods, described in detail in auth(7). Section

ftp-proxy FTP in Figure 5.40 contains sample auth items for different authentication

methods. To switch to another authentication method, simply hide the single not hidden auth

item and unhide another one.

None No user authentication is performed.

Password file The user provides a user name and a password, which are compared to name-

password pairs in a password file stored locally on Kernun UTM. The administrator must

create—by utility fwpasswd(1)—a file containing valid user names with encrypted pass-

words (/etc/proxy-passwd in the example configuration).

RADIUS The user name and password are verified by a RADIUS server. There are two variants:

name/password (the user enters his name and the password) and challenge/response (the

user enters her name, the RADIUS server generates a challenge, and the user replies by a

response derived from the challenge and some secret information, e.g., using an authentica-

tion token hardware). If the radius method is chosen in an auth item, it must reference

a radius-client section that defines the parameters needed to connect to a RADIUS

server.

LDAP The user name and password are verified in an LDAP database. If the ldap method

is chosen in an auth item, it must reference an ldap-client-auth section that defines

the parameters needed to connect to an LDAP server. If a secure connection to the LDAP

server is used (the LDAP server URI begins with ldaps), the certificates to be used must

be specified in the ldap-client-auth.ssl subsection.

Kerberos The Kerberos authentication is specific to the http-proxy. If a user is authenticated

in an Active Directory domain (or has a Kerberos TGT), a Web browser uses the user’s

Kerberos tickets and does not require any interaction with the user (name and password

entry).

NTLM The NTLM authentication is specific to the http-proxy and HTTP clients (Web

browsers) running on Microsoft Windows client operating systems. If a user is

authenticated in an Active Directory domain, a Web browser uses the user’s credentials

known by the system since the login time and does not require any interaction with the

user (name and password entry). It can be combined with other authentication methods

for clients that do not support NTLM.

Note

If a proxy runs in chroot, the paths in auth passwd and ldap-client-auth.ssl are

interpreted in the context of the chroot directory.

5.14.2 Authentication in FTP Proxy

User authentication in the FTP proxy can be enabled using the auth item that specifies an

authentication method other than none in session-acl. For example, a proxy with the config-

uration shown in Section 5.14.1 will use a local password file. If authentication is enabled and the

152

5.14. USER AUTHENTICATION

user does not provide valid credentials, the proxy terminates the session. Otherwise, it is possible

to match user name or group using a user item of command-acl. There are several ways of

sending authentication data to the proxy, see ftp-proxy(8). An example FTP session initiation

with authentication, using a command line FTP client:

$ ftp fw.pha.tns.cz

Connected to ftp.tns.cz.

220-fw.pha.tns.cz KERNUN FTP Proxy (Version KERNUN-3_0-RELEASE) Ready.

Target server name/address and authentication to proxy required.

You can use loginname in form of proxy_user@server_user@server.

220 Log in with USER and PASS command.

Name (192.168.10.1:user): guest@anonymous@ftp.tns.cz

331-USER command successful.

Proxy user: ’guest’.

Target-server user: ’anonymous’.

Target server: ftp.tns.cz, port: 21.

Enter password in form proxy_user_password@server_user_password.

331 Enter password or response, please.

Password: ****@****

230-User ’guest’ succesfully authenticated.

230-pha.tns.cz KERNUN FTP Proxy (Version KERNUN-3_0-RELEASE) Ready.

230-Welcome to ftp.tns.cz FTP service.

230----- proxy connected to [194.228.50.76]/ftp.tns.cz port 21 ----

---- proxy connected to ftp.tns.cz port 21 ----

230-Please specify the password.

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

A similar, but unsuccessful session initiation (due to a wrong password):

$ ftp fw.pha.tns.cz

Connected to ftp.tns.cz.

220-fw.pha.tns.cz KERNUN FTP Proxy (Version KERNUN-3_0-RELEASE) Ready.

Target server name/address and authentication to proxy required.

You can use loginname in form of proxy_user@server_user@server.

220 Log in with USER and PASS command.

Name (192.168.10.1:user): guest@anonymous@ftp.tns.cz

331-USER command successful.

Proxy user: ’guest’.

Target-server user: ’anonymous’.

Target server: ftp.tns.cz, port: 21.

Enter password in form proxy_user_password@server_user_password.

153

CHAPTER 5. ADVANCED FEATURES

331 Enter password or response, please.

Password: ****@****

421 User ’guest’ not authenticated.

ftp: Login failed.

ftp>

Selected log messages related to these two FTP sessions are displayed in Figure 5.41.

Figure 5.41: Log of authentication in FTP proxy

5.14.3 Basic Authentication in HTTP Proxy

The HTTP proxy supports proxy authentication using the Basic authentication method, i.e.,

a name and a password entered by the user. The technical details of the authentication are

described in http-proxy(8). Proxy authentication in HTTP works as follows: the first request

sent by the client (browser) is unauthenticated, the proxy replies with response code 407 “Proxy

Authentication Required”; upon reception of this response code, the browser displays a dialog (see

Figure 5.42) asking for user credentials; the browser then repeats the request with the user name

and password attached.

Figure 5.43 contains an HTTP proxy configuration with user authentication. The authentica-

tion is enabled and the authentication method (a password file in this case) is selected by the auth

item in session-acl. If a request contains user credentials, they are checked and if correct,

the user name—and the list of groups the user belongs to—is remembered for matching with the

user item in a request-acl. Unlike in the case of FTP proxy, a request containing invalid

or no credentials is not rejected. The processing continues, but no request-acl containing a

user item matches, except for the one with user none. There should be a request-acl

154

5.14. USER AUTHENTICATION

Figure 5.42: Proxy authentication dialog in a Web browser

Figure 5.43: User authentication configuration in the HTTP proxy

that matches unauthenticated requests and returns the 407 response. In the example configura-

tion, there are two request-acl sections. The first one, request-acl ALL-2, matches any

successfully authenticated user. The request is processed normally, i.e., forwarded to the target

server. The other, request-acl ASK-AUTH, matches if the request does not contain valid user

credentials

7

. The 407 response is forced by the auth-req item. This item also sets the realm

(prompt) that is usually displayed by the browser in the authentication dialog, as depicted in

Figure 5.42.

If we apply this sample configuration to Kernun UTM and invoke a new request in a Web

browser, the log will contain messages similar to those in Figure 5.44. The first request was unau-

thenticated. The two orange messages inform us that request-acl ASK-AUTH was selected and

response 407 was returned to the browser. After the user filled in the authentication dialog, the

request was repeated. The user name and password were correct, user guest was authenticated

successfully, and request-acl ALL-2 was selected, as indicated by the two green messages.

7

This happens in the case of the first request or a wrong name or password entered by the user.

155

CHAPTER 5. ADVANCED FEATURES

Figure 5.44: Log of user authentication in the HTTP proxy

Important

Because many Web browsers do not expect to be required to perform proxy authentication

when no HTTP proxy is configured in the browser, proxy authentication may not work with

a transparent proxy. It is possible in such a case that users are displayed a 407 error page

instead of the authentication dialog. Use proxy user authentication with a non-transparent

HTTP proxy only, unless you check that Web browsers on your client machines handle it

correctly with a transparent HTTP proxy.

5.14.4 Kerberos Authentication in HTTP Proxy

The Kerberos authentication is an alternative to the Basic authentication described in

Section 5.14.3. It provides a single-sign-on capability for clients authenticated in an Active

Directory domain or a Kerberos realm. If a user is logged in a domain, or has a valid Kerberos

ticket, a Kerberos-capable Web browser can authenticate the user to the proxy automatically,

without asking the user for a name and a password.

Kerberos authentication in Active Directory is supported for Microsoft Windows server and

Samba 4 acting as an Active Directory domain controller. Older Samba versions (3.x) cannot be

configured as an AD domain controller.

Warning

Authentication to a Samba server uses different authentication mechanism than a MS Win-

dows Server by default. This authentication mechanism (GSS-SPNEGO) fails and may

allocate all available memory. Hence, the client (Kernun http-proxy) should be configured

to use GSSAPI instead. This can be done by adding file .ldaprc to the root directory and

to home directories of users involved in authentication (root and kernun). The file should

contain line:

SASL_MECH GSSAPI

156

5.14. USER AUTHENTICATION

Important

If an HTTP proxy uses the Kerberos authentication, it cannot be run chrooted, because it

needs access to some system components that are not contained in the standard Kernun

chroot environment.

An example of a Kerberos configuration is stored in the sample configuration file

/usr/local/kernun/conf/samples/cml/kerberos-auth.cml. The system section

contains global configuration related to the Kerberos authentication in section kerberos-auth,

Figure 5.45. Two parameters are required: the name of the Active Directory domain (or

Kerberos realm) domain and the address of the domain controller (or the Kerberos KDC)

ad-controller. The Kerberos authentication itself provides the name of an authenticated

user to the proxy. A request-acl can be selected according to the user name or group

membership. For the latter option, the proxy needs to know the list of groups the user belongs

to. The list can be obtained from an LDAP server. As the Active Directory contains all

the necessary information and provides LDAP interface, the Active Directory controller is

usually used as the LDAP server. Obtaining group membership can be configured by unhiding

the hidden item ldap and section ldap-client-auth in the sample configuration in

Figure 5.45. The URL of the LDAP server references the Active Directory controller. The

proxy authenticates itself to the LDAP server by Kerberos using the machine account of the

Kernun system in the Active Directory. The Kerberos authentication for LDAP is enabled by

ldap-client-auth.kerberos. Alternatively, the proxy can authenticate itself using a name

and a password of a user with the permission to access the Active Directory contents for reading.

The user’s credentials must be specified in the bindinfo item in place of ADUser, and the

corresponding password in place of ldap-password. The Active Directory stores user account

data in a different format than other LDAP servers used for LDAP authentication. The Active

Directory format must be selected by item active-directory, which also specifies the

domain name.

Important

The Active Directory domain name must be written using UPPERCASE LETTERS in the

configuration.

Warning

A user’s primary group name (usually Domain Users) is neither logged nor matched by

request-acl.user.group.

The Kerberos configuration can be enabled in an HTTP proxy by item

session-acl.kerberos-auth. Outcome of the Kerberos authentication is processed like the

Basic authentication. The user name, optional list of groups, or the fact that the authentication

failed, can be used as conditions in request-acl sections. There is usually one or more request

ACLs that permit access to successfully authenticated users and one request ACL that denies

157

CHAPTER 5. ADVANCED FEATURES

Figure 5.45: Kerberos authentication — section system

access to unauthenticated users and asks for authentication. The sample configuration in

Figure 5.46 allows access to any authenticated user (request-acl AUTH-OK). Users that are

not authenticated are requested to perform authentication by request-acl AUTH-REQ.

Figure 5.46: Kerberos authentication — section http-proxy

In the Kerberos and LDAP configurations presented so far, user and group names

are matched in ACLs and written to logs in a short form, without information about

domains they belongs to. This may not be sufficient in a multi-domain environment, where

different domains may contain users and groups with the same names. Such a multi-domain

environment can comprise either domains in a single Active Directory forest, or even

domains from several forests if there are explicit trusts between forests

8

. Configuration item

kerberos-auth.user-match full switches to using long user name in logs and ACLs in

format “user@REALM” instead of the default short format “user”. Likewise, adding value

“group-match domain” to item ldap-client-auth.active-directory enables using

long group names “group@domain”.

The LDAP server on each Active Directory controller returns only data from its own domain.

Hence, group membership of a user must be queried in the domain which the user belongs to. The

proxy is able to select the LDAP server according to the domain name of the authenticated user. To

do this, there must be an ldap-client-auth section for each domain. Section kerberos-auth

must contain item ldap domain, instead of naming a single ldap-client-auth section. Then

the ldap-client-auth section will be selected by its Active Directory domain name (specified

in item active-directory).

8

Trusts are needed because the Kernun system authenticates itself in only one Kerberos realm, but it must be able

to accept authentication from other domains and also to authenticate itself to LDAP servers in other domains.

158

5.14. USER AUTHENTICATION

Information about membership of Kerberos-authenticated users in groups can be cached in

order to decrease load of LDAP servers. Configuration of caching consists of adding the

global section oob-auth OOB and referencing it by item http-proxy.oob-auth-srv.

Cached group membership information for a user name expires after a timeout controlled

by items kerberos-auth.timeout-idle (expiration after a period of inactivity) and

kerberos-auth.timeout-unauth (unconditional expiration).

The Kerberos authentication requires some initialization steps before in order to start working.

There are two supported methods of initialization.

Important

In order to work correctly, Kerberos authentication requires several conditions to be fulfilled:

• The Kernun system and the Active Directory domain controller must have their system

time synchronized. By default, maximum allowable clock difference is 5 min. It is pos-

sible to synchronize Kernun system’s clock to the Active Directory time by configuring

the domain controller as an NTP server in the Kernun configuration.

• The Kernun system must resolve the domain name of the Active Directory domain

controller to the correct IP address. The reverse resolution of this IP address must

also work and yield the original domain name used for the forward resolution as the

first name of the response.

Initialization by msktutil

The first method adds the Kernun system to the Active Directory domain by deleting its machine

account if it already exists and creating a new machine account. Then it sets up the Kerberos

keytab with all keys necessary for authentication and obtaining group membership information.

A user account user in the Active Directory with Domain Admins rights is required for this

task. The initialization process is performed by issuing shell commands on the Kernun system:

kinit user

ldapdelete -v -H ldap://ADC cn=COMPUTER,cn=Computers,dc=D1,dc=D2...

msktutil -c --computer-name ‘hostname -s‘ -s HTTP/‘hostname‘ \

-h ‘hostname‘ --server ADC --no-pac

chown kernun /etc/krb5.keytab

where ADC is the address of the domain controller, and D1, D2, ... are components of the

Active Directory domain name (e.g., for domain example.com, we use dc=example,dc=com).

The computer account name COMPUTER will be the value of -computer-name with appended

character ’$’. If the default computer account name ‘hostname -s‘ is used, a command for

automatic password renewal (msktutil –auto-update) will be added to /etc/crontab. It is

possible to choose another computer account name. A non-default name must be configured in

the http-proxy by setting kerberos-auth.kinit to "computername$". In this case, the

machine account password renewal must be handled manually, or (better) password expiration

must be turned off for the account by option -dont-expire-password of msktutil.

159

CHAPTER 5. ADVANCED FEATURES

Important

The computer account name must be entered to the configuration with the appended char-

acter ’$’.

Example: The initialization commands will be, for the domain administrator admin, the Ac-

tive Directory domain EXAMPLE.COM, the domain controller ad.example.com, and the Kernun

system kernun.example.com:

kinit admin

ldapdelete -v -H ldap://ad.example.com \

’cn=kernun$,cn=Computers,dc=example,dc=com’

msktutil -c --computer-name ‘hostname -s‘ -s HTTP/‘hostname‘ \

-h ‘hostname‘ --server ad.example.com --no-pac

chown kernun /etc/krb5.keytab

If clients should access the proxy via a name different from the fully qualified host name

of the Kernun system, that name must be specified in the -s argument of the msktutil

command. The same name must be configured in kerberos-auth.proxy-host or

session-acl.kerberos-auth.

Instead of saving the created keytab into the default location /etc/krb5.keytab, another

file name can by set by adding option -k keytab_file to the msktutil command line.

The custom keytab location must be configured as a shared-file referenced from

kerberos-auth.keytab.

If the system is to be removed from the domain later (when Kerberos authentication is no more

required or if the system will be moved to another domain), remove file /etc/krb5.keytab and

delete the machine account on the Active Directory Controller.

Initialization by Generating a Keytab Manually

The second method of Kerberos initialization comprises generating a keytab on the Active Direc-

tory controller, transferring the keytab to the Kernun system, and configuring Kernun to use the

keytab. The initialization procedure consists of several steps:

1. Create a user account in the Active Directory. The account must be configured so that its

password never expires and it must have enough rigths to read user and group information

from the Active Directory (usually, membership in the Domain Users group suffices).

2. Generate the keytab using the command line on the domain controller:

C:\> ktpass /out KEYTAB /princ HTTP/PROXY@AD_DOMAIN

/mapuser USER@AD_DOMAIN /pass * /crypto All

/ptype KRB5_NT_PRINCIPAL

where the parameters are:

KEYTAB The file name for the created keytab file.

160

5.14. USER AUTHENTICATION

PROXY The proxy name used by clients. If it it not the fully qualified host name of the

Kernun system, the name must be configured in kerberos-auth.proxy-host or

session-acl.kerberos-auth.

AD_DOMAIN The Active Directory domain name, in upper case.

USER The name of the user created in step 1. The command will request entering this

user’s password. Alternatively, the password may be specified on the command line by

/pass PASSWD instead of /para *.

3. Copy the keytab to the Kernun system or to the computer running Kernun GUI.

4. Configure the keytab as a shared-file and add a reference to this shared file into

kerberos-auth.keytab. The keytab shared-file should be stored in a location included

in backup and upgrade, for example, /usr/local/kernun/conf.

5. Set kerberos-auth.kinit to the proxy principal name HTTP/PROXY .

Example: The keytab creation command will be, for the Kernun user account kernun, the

Active Directory domain EXAMPLE.COM, the Kernun system kernun.example.com, and the

output keytab file krb5.keytab:

C:\> ktpass /out krb5.keytab /princ HTTP/kernun.example.com@EXAMPLE.COM

/mapuser kernun@EXAMPLE.COM /pass * /crypto All

/ptype KRB5_NT_PRINCIPAL

Note

Configuring a keytab as a shared file makes easy distribution of the keytab to cluster nodes.

If Kerberos authentication is no more required, remove the keytab from the Kernun system

and delete the user account from the Active Directory controller.

5.14.5 Kerberos Authentication in Transparent HTTP Proxy

As was already mentioned, web browsers usually refuse proxy authentication on a transparent

HTTP proxy. This problem can be solved by redirecting an unauthenticated transparent HTTP

request to an authentication server. The server performs authentication, remembers the associ-

ation of an IP address to a user name in the out-of-band authentication table, and redirects the

request back to the origin server. As the Kerberos authentication is done in the background, it is

invisible to the user.

An example of a Kerberos transparent proxy configuration is stored in the sample configuration

file /usr/local/kernun/conf/samples/cml/kerberos-auth-transp.cml. The proxy

must be configured as an OOB authentication server by adding the oob-auth global configuration

section and referencing it by item http-proxy.oob-auth-srv. Kerberos and optional LDAP

configuration is like in the non-transparent case, see Figure 5.45.

The HTTP proxy configuration is shown in Figure 5.47 and Figure 5.48. Global

acl INTOK-AUTH and the corresponding session-acl INTOK-AUTH handle transparent

161

CHAPTER 5. ADVANCED FEATURES

requests to origin servers. These requests are authenticated using out-of-band authentication.

Authenticated users are passed by request-acl HTTP-OK. If a user is not authenticated,

the request will be redirected to the authentication server by request-acl HTTP-RDR.

Redirected requests are handled by global acl HTTP-AUTH and the corresponding

session-acl HTTP-AUTH. The client is asked for Kerberos authentication by

request-acl AUTH-REQ. Authentication is performed by the browser without asking the

user for a name or a password. Then request-acl AUTH-OK stores the IP address of the

successfully authenticated user into the out-of-band table and redirects the browser to the

originally requested URI. Further requests use OOB authentication and are handled without

redirection to the authentication server.

Figure 5.47: Transparent Kerberos authentication — session ACLs

Figure 5.48: Transparent Kerberos authentication — request ACLs

162

5.14. USER AUTHENTICATION

Important

In Firefox, Kerberos authentication must be explicitly enabled for each server, in our ex-

ample fw.pha.tns.cz. It can be done by typing a special uri about:config into

the address line to show advanced settings, and then setting the server name to option

network.negotiate-auth.trusted-uris.

Important

Internet Explorer, Chrome and Opera users may be prompted for a password to authenticate

to the authentication server. To avoid it they must configure the browser for automatic

logon. To do this

• Go to the Internet Options dialog box, on the Security tab select Local

intranet, and then click Custom Level.

• In the Security Settings dialog box, under Logon, select Automatic logon

only in Intranet zone, and then click OK.

• In the Internet Options dialog box on the Security Settings tab with

Local intranet still selected, click Sites.

• In the Local intranet dialog box, click Advanced.

• In the next dialog box (also titled Local intranet), type the URL of the authen-

tication server http://fw.pha.tns.cz:8080/ in the Add this Web site to the

zone box, and then click Add.

5.14.6 NTLM Authentication in HTTP Proxy

The NTLM authentication is an alternative to the Basic authentication described in Section 5.14.3.

It provides a single-sign-on capability for Microsoft Windows clients authenticated in an Active

Directory domain. If a user is logged in a domain, an NTLM-capable Web browser can authenticate

the user to the proxy automatically, without asking the user for a name and a password. The

NTLM authentication can be used instead of the Basic authentication, or both authentication

methods can be used together. In an NTLM-only configuration, clients incapable of the NTLM

authentication cannot authenticate. In a configuration with both authentication methods, an

NTLM-capable client uses NTLM and other clients use Basic.

Important

If an HTTP proxy uses the NTLM authentication, it cannot be run chrooted, because it

needs access to some system components that are not contained in the standard Kernun

chroot environment.

163

CHAPTER 5. ADVANCED FEATURES

Important

The DNS domain name of the Active Directory controller must correspond to the Active

Directory domain name. For example, a domain controller for the domain tns.cz should

be named like ad.tns.cz.

An example of an NTLM configuration is stored in the sample configuration file

/usr/local/kernun/conf/samples/cml/ntlm-auth.cml. The system section contains

global configuration related to the NTLM authentication in section ntlm-auth, see Figure 5.49.

Two parameters are required: the name of the Active Directory domain (domain) and the

address of the domain controller (ad-controller). The NTLM authentication itself provides

the name of an authenticated user to the proxy. A request-acl can be selected according to

the user name or group membership. For the latter option, the proxy needs to know the list of

groups the user belongs to. The list can be obtained from an LDAP server. As the Active

Directory contains all the necessary information and provides LDAP interface, the Active

Directory controller is usually used as the LDAP server. Obtaining group membership can be

configured by unhiding the hidden item ldap and section ldap-client-auth in the sample

configuration in Figure 5.49. The URL of the LDAP server references the Active Directory

controller. A user with the permission to access the Active Directory contents for reading must

be specified in the bindinfo item in place of ADUser, and the corresponding password in place

of ldap-password. The Active Directory stores user account data in a different format than

other LDAP servers used for LDAP authentication. The Active Directory format must be

selected by item active-directory, which also specifies the domain name.

Figure 5.49: NTLM authentication — section system

The NTLM configuration can be enabled in an HTTP proxy by item

session-acl.ntlm-auth. Outcome of the NTLM authentication is processed like the Basic

authentication. The user name, optional list of groups, or the fact that the authentication failed,

can be used as conditions in request-acl sections. There is usually one or more request

ACLs that permit access to successfully authenticated users and one request ACL that denies

access to unauthenticated users and asks for authentication. The sample configuration in

Figure 5.50 allows access to any authenticated user (request-acl AUTH-OK). Users that are

not authenticated are requested to perform authentication by request-acl AUTH-REQ.

Administrators often want to enable the more user-friendly NTLM authentication and to pro-

vide an alternative for clients that are not capable of the NTLM authentication. Such a configu-

ration can be created by setting both items ntlm-auth and auth in the same session-acl,

164

5.14. USER AUTHENTICATION

Figure 5.50: NTLM authentication — section http-proxy

for example, by unhiding the line “hidden auth passwd ...” in Figure 5.50. The proxy will

offer both NTLM and Basic authentication schemes. The client can choose any of them

9

.

After the NTLM authentication is configured and the configuration applied to a Kernun system,

it is necessary to add the Kernun system to the Active Directory domain. A user account user in

the Active Directory with Domain Admins rights is required for this task. The Kernun system

is added to the domain by the shell command

net ads join -U user

The system should then be rebooted in order to initialize and start the system components

that provide an interface between the proxy and the Active Directory controller

10

. If the NTLM

authentication is no more required, or if the Active Directory domain or the domain controller

changes, the system should be removed from the domain by the shell command

net ads leave -U user

It can be later added to another domain by net ads join. Membership of a Kernun system

in an Active Directory domain can be tested by the shell command wbinfo -t. If the system

has been successfully added to a domain, we get:

wbinfo -t; echo $?

checking the trust secret via RPC calls succeeded

0

Otherwise, the output is:

9

The client should choose the strongest implemented authentication scheme, in this case NTLM.

10

Kernun uses Samba for communication related to the NTLM authentication between a proxy and the Active

Directory.

165

CHAPTER 5. ADVANCED FEATURES

wbinfo -t; echo $?

checking the trust secret via RPC calls failed

error code was NT_STATUS_NO_TRUST_SAM_ACCOUNT (0xc000018b)

Could not check secret

1

Results of NTLM authentication can be cached by out-of-band authentication (see also

Section 5.14.8), in order to decrease load of Active Directory and LDAP servers. Each new client

is authenticated by NTLM. The combination of the client IP address, the user name and the list

of groups is remembered in the OOB session table. Following requests from the same IP address

will be authenticated as the same user and groups, without contacting the AD controller and the

LDAP server. Computer accounts (i.e. users whose name ends with a dollar) are not added to

the OOB session table.

Configuration of NTLM caching consists of adding the global section oob-auth OOB, ref-

erencing it by item http-proxy.oob-auth-srv, and adding item auth oob OOB to each

session-acl that contains item ntlm-auth. Cached user and group information for a client

IP address expires after a timeout controlled by items ntlm-auth.timeout-idle (expiration

after a period of inactivity) and ntlm-auth.timeout-unauth (unconditional expiration).

Tip

The preferred authentication method in Active Directory environment is Kerberos, see

Section 5.14.4.

5.14.7 HTTP Authentication Proxy

The HTTP proxy can be used to control access to a Web server in the protected network

11

from

clients in the external network. A typical situation is a Web interface to a corporate mail server

accessed by employees from machines in the Internet, for example from their homes. In such

a case, the security policy often requires the use of sessions with limited lifetime authenticated

by a strong mechanism, such as a challenge-response protocol that utilizes one-time passwords

generated by hardware authentication tokens. Also, as we mentioned in Section 5.14.3, HTTP

proxy authentication does not often work if the proxy is not configured in the browser explicitly.

For such situations, there is a special operation mode of the HTTP proxy, called the HTTP

authentication proxy, or AProxy for short.

A typical AProxy configuration is displayed in Figure 5.51. It is a configuration for access from

clients in the Internet to the server intweb.tns.cz in the internal network. As the Internet is

an untrusted network, the connections from clients are secured by TLS, which is enabled by the

ssl-params APROXY-SSL section and the client-ssl item in session-acl APROXY-EXT.

The internal network is considered secure, therefore plain unencrypted HTTP is used. (For de-

tailed explanation of SSL/TLS in Kernun UTM, see Section 5.13.) The configuration section

11

usually in the internal network or in the demilitarized zone

166

5.14. USER AUTHENTICATION

Figure 5.51: Configuration of the HTTP authentication proxy

167

CHAPTER 5. ADVANCED FEATURES

aproxy APROXY defines various parameters of the AProxy. The example contains only the auth

item, which defines that the AProxy will verify user credentials against a local password file. The

default maximum session time after a successful authentication is one hour. After that time, the

user is logged out and must authenticate again. Also, if the session is idle—the client does not issue

any request—for more than 5 minutes, the user must reauthenticate. These default timeout values

can be changed by items timeout-unauth and timeout-idle of section aproxy. Further

configurable AProxy parameters are described in http-proxy(5). The AProxy mode is activated

by the aproxy item of a session-acl. The user name obtained during AProxy authentication

can be used to select a request-acl, by matching an aproxy-user item. In the sample con-

figuration, a client accesses the AProxy by connecting to the external IP address of Kernun UTM.

If authentication succeeds, the HTTP requests from the client are passed to the internal server

defined by plug-to.

Warning

An AProxy session cookie is a sensitive piece of information and should be kept secret,

because an attacker could use it to steal the identity of an authenticated user. Hence,

the AProxy is usually configured so that the connections between clients and the proxy are

secured by SSL/TLS (see Section 5.13). It is possible to operate the AProxy using plain

HTTP by enabling aproxy.insecure-cookies and not configuring client-ssl on

the client side of the proxy, but it is strongly recommended not to so unless the clients are

connected to Kernun UTM via a trusted network.

Figure 5.52: The user authentication dialog of the HTTP authentication proxy

A user starts by entering an AProxy URL to a Web browser. The AProxy returns an au-

thentication dialog, as displayed in Figure 5.52. The user fills in their login name and password

and clicks Submit. If a challenge-response authentication protocol is used

12

, the user must fill

in the login name only. The AProxy then displays a challenge and the user enters the response

(obtained, e.g., from a hardware authentication token). If the authentication succeeds, a new

session is initiated and the AProxy forwards the original HTTP request to the destination server.

12

implemented only for authentication method RADIUS

168

5.14. USER AUTHENTICATION

Figure 5.53: The logout confirmation message of the HTTP authentication proxy

Further requests do not require reauthentication and are transparently passed to the server. The

user must authenticate again only if the session expires because of a timeout. It is also possible

to log out and terminate the session explicitly by accessing a special logout URL, as shown in

Figure 5.53.

The HTML authentication forms displayed by the AProxy are very simple,

but their appearance is easy to modify. Form templates are stored in the

/usr/local/kernun/conf/samples/error_documents directory. The template files

are: aproxy-password-form.html (the form with user name and password fields),

aproxy-password-form.html (the form with a response field for challenge-response

authentication), and aproxy-logout.html (the logout message).

Important

The AProxy uses cookies to track sessions. The cookies are added to HTTP response

messages by the proxy, but they appear to the client as coming from the server. The session

cookies are then extracted by the proxy from the requests. As a cookie received from a server

is never sent to other servers, it is impractical to use the AProxy for authentication of clients

in the internal network accessing Web servers in the Internet.

5.14.8 Out of Band Authentication

Many application protocols do not support user authentication on a proxy. Even in protocols with

a proxy authentication mechanism it may be undesirable to use it in some situations. Nevertheless,

we may still want to perform access control and network usage monitoring for individual users.

The out-of-band authentication (OOBA) provides a solution in such cases. It is based on the fact

that for any network protocol, the proxy knows the IP address of the client machine. The OOBA

simply binds user names with IP addresses. There is an OOBA server, which maintains a table

containing pairs of user names and IP addresses. When a proxy accepts a new network connection,

it sends the client IP address to the authentication server and receives the corresponding user name

or the information that no user is authenticated from that IP address. As is the case with other

authentication methods, the user name can be used as a condition for ACL selection.

169

CHAPTER 5. ADVANCED FEATURES

Note

As the out-of-band authentication cannot distinguish connections from a single IP address,

more than one user cannot be authenticated on a single client machine at the same time.

For this reason, computer accounts (i.e. users whose name ends with a dollar) are not auto-

matically added to the OOB session table. On the other hand, one user can be authenticated

on many machines simultaneously.

Figure 5.54: Configuration of the out-of-band authentication

A sample configuration of the OOB authentication is displayed in Figure 5.54, with

http-proxy HTTP-OOBA serving as the OOB authentication server, and tcp-proxy HTTPS,

which allows access only to users authenticated by the OOBA. The oob-auth OOBA section

defines parameters of the OOB authentication. Only the authentication method is specified in

this example. See auth(5) for description of all available parameters. This session is referenced in

http-proxy HTTP-OOBA by the oob-auth-srv item. The HTTP proxy is switched to the

OOBA mode by adding the oob-auth item to an aproxy section and referencing this section

by a session-acl. In the sample configuration, a password file is used to check user names

and passwords. As the OOBA is performed in the internal network, which is assumed to be

secure, plain HTTP without SSL/TLS is used, which is why insecure-cookies needs to be

added to the aproxy section.

The html-form OOB authentication method is selected in the sample configuration. It au-

thenticates users interactively in the same way as the AProxy (Section 5.14.7). The alternative

option, external (marked as hidden in the sample configuration), is to import the list of au-

thenticated users from a server in the network. The external OOBA is fully transparent. Users

do not have to do anything special, they just log in to the server that provides data to the Ker-

nun UTM OOB authentication server. Out of the box, Kernun UTM contains the ooba-samba(1)

script, which implements integration with Samba.

170

5.15. ANTIVIRUS CHECKING OF DATA

The tcp-proxy HTTPS proxy uses the OOB authentication and accepts authenticated users

only. The OOBA is activated by setting the oob method in the auth item. The OOBA server and

proxies that provide OOBA communicate via a session table file. Therefore, they must all reference

the same file in the oob-auth sessions they use. If no file is specified, as in our example, a common

default file will be used. The authenticated user name could be matched by a session-acl.

Another way to reject unauthenticated users without creating a denying ACL for them is to add

the required parameter to the auth item. It causes immediate termination of sessions initiated

by unauthenticated users, even before ACL matching begins.

Figure 5.55: Login to the OOB authentication server

When the html-form OOBA method is used, a user must access the authentication page

(Figure 5.52) by opening the OOBA server URL in a Web browser. After entering a valid

name and password, a login confirmation page is displayed, see Figure 5.55. It contains a

link that can be used to log the user out. Like in the case of AProxy, the authentication

pages displayed by the OOB authentication server can be changed by modifying template

files in /usr/local/kernun/conf/samples/error_documents. There are two more

OOBA authentication forms, ooba-login-confirm.html (login confirmation) and

ooba-logout-confirm.html (logout confirmation), in addition to the AProxy ones, which

are reused.

5.15 Antivirus Checking of Data

Kernun UTM can cooperate with the Dr.WEB or ClamAV antivirus programs and any other

antivirus program that supports ICAP protocol, e.g. Kaspersky Anti-Virus for Proxy Server.

This tutorial describes the configuration of Kernun UTM only (that is, not the installation

and configuration of the antivirus programs). The complete configuration file is located in

/usr/local/kernun/conf/samples/cml/antivirus.cml.

5.15.1 Connecting with ClamAV

The ClamAV antivirus program can be installed either directly on Kernun UTM or on any other

machine connected via the network. The administrator of Kernun UTM can choose either of two

ways to transport files between Kernun UTM and ClamAV:

171

CHAPTER 5. ADVANCED FEATURES

• clamav-net: Files to be checked by the antivirus are sent to the antivirus via the TCP

connection.

• clamav-file: Files to be checked by the antivirus are stored on the local file system.

This option can be only used if the antivirus program is running on the same machine as

Kernun UTM. The directory where the files are stored is defined by the comm-dir element

(which defaults to /data/tmp/antivirus). Kernun UTM does not create the directory

(it must be explicitly created by the administrator), and proper permissions need to be set

(i.e., the directory must be writable by proxy-user).

The IP address and the port the antivirus program listens on are specified in the section

antivirus on the system level of Kernun UTM’s configuration, as shown in Figure 5.56

(we suppose ClamAV listens on localhost’s port 3310). It is possible to limit the size

(max-checked-size) of files scanned by the antivirus program. In the sample configuration, it

is 1 MB. Larger files are not scanned and the antivirus module immediately reports the result as

SKIPPED.

Figure 5.56: Configuration of the connection to the antivirus program

5.15.2 Connecting via ICAP protocol

The Internet Content Adaptation Protocol (ICAP) is a lightweight HTTP-like protocol used to

communicate with antivirus program. Kernun UTM makes use of it’s Response Modification Mode

to send data to be checked. Antivirus program sends back it’s test results.

The IP address and the port the antivirus ICAP server listens on are specified in the section

antivirus on the system level of Kernun UTM’s configuration, as shown in Figure 5.57 (in this

example it’s 10.0.0.33 and standard ICAP port, 1344). The third parameter of connection

item (/av/respmod in this example) is an URI of the antivirus’ Response Modification Mode

handler. Again, it is possible to limit the size (max-checked-size) of files scanned by the

antivirus program.

Figure 5.57: Configuration of the connection to the antivirus program via ICAP

5.15.3 Antivirus Results

There are five possible results of a check of content by the antivirus:

172

5.15. ANTIVIRUS CHECKING OF DATA

Free The antivirus has scanned the data and has not found any virus.

Found At least one virus has been found.

Skipped The antivirus has not scanned the data. Either the antivirus itself has decided not to

scan, or the file has been larger than the limit specified by max-checked-size. No virus

has been found, but the antivirus has not confirmed that the data is virus-free.

Unknown The proxy has received a result from the antivirus, but does not understand it. It is

not known whether there is any virus in the data, or not.

Error The proxy cannot communicate with the antivirus. This is usually caused by the antivirus

not running or by misconfigured antivirus connection in the proxy.

5.15.4 Antivirus in Proxies

The antivirus program can be used for online scanning of the content transferred via ftp-proxy,

http-proxy, imap4-proxy, pop3-proxy and smtp-proxy. There is a slight difference be-

tween mail-processing proxies (imap4-proxy, pop3-proxy and smtp-proxy) and the other

two (http-proxy and ftp-proxy). In the latter case, a special functionality is implemented

that prevents clients from reaching a timeout while very long files are being scanned. The client

is fed with chunks of the file at specified intervals until the scanning of the file is completed.

Document scanning for the HTTP and FTP proxies is configured in their doc-acl. The

antivirus item specifies the name of the antivirus section to be used. The interval,

chunk and limit items can be used optionally to specify that if scanning takes more than a

certain time (5 seconds in the example), a chunk of the (as yet unscanned) file of a certain size

(up to 2,000 bytes) is to be sent to the client at a certain interval (5 seconds). By default,

only documents for which the antivirus returns the result free are passed by the proxy. The

doc-acl.accept-antivirus-status item can be used to specify additional result codes, for

which the checked data are to be passed, in addition to free.

Figure 5.58: Use of antivirus in the FTP and HTTP proxies

5.15.5 SMTP Proxy: Discarding Infected Mails

We will describe two variants of smtp-proxy configuration, differing in the way they handle

infected mail. In this section, we show the case when infected mail is discarded, i.e. not sent to

the recipient(s), but stored in quarantine.

173

CHAPTER 5. ADVANCED FEATURES

In smtp-proxy, the item use-antivirus is used to define antivirus.

Infected mail is detected in the mail-acl sections. One of them, a mail-acl accepting

all e-mails (MAILOK), already exists in the Kernun UTM configuration. We will create more

to process messages with various antivirus scan results (see Figure 5.59). When smtp-proxy

processes mail, the first matching ACL is used. We must therefore place new mail-acl sections

before the existing MAILOK.

Figure 5.59: Discarding infected messages in the SMTP proxy

The first added mail-acl, VIRUS, discards infected mail and puts it in quarantine. Its only

entry condition is virus-status. It is matched if the virus-status of the message is found

(i.e., it contains a document that is infected by a virus). We define three actions: discard

the message (i.e., the sender is not returned an error), deny it (the message is not sent to the

addressee) and store the e-mail in quarantine.

The quarantine directory must be defined (the quarantine item in the smtp-proxy section)

and created in the file system (e.g., /usr/local/kernun/root/var/quarantine, keeping

in mind the smtp-proxy runs in chroot), and writable by kernun-user. For more information

about ways of handling mail stored in quarantine, see quarc.sh(1).

There are two more mail-acl sections. AV-ERROR reports a transient error to the client

if the the antivirus is unable to check the message. The client can retry sending the mail later.

AV-UNKNOWN discards and quarantines the message if the antivirus does not scan it or if the proxy

cannot understand the antivirus’ reply.

5.15.6 SMTP Proxy: Replacing Infected Documents

Contrary to the previous example, this section describes a way to prevent infected mail from being

discarded. This example refers to smtp-proxy SMTP-2, which is marked hidden in the sample

file

13

.

13

Keep either SMTP, or SMTP-2 hidden—they are not designed to work in parallel.

174

5.15. ANTIVIRUS CHECKING OF DATA

This time, smtp-proxy removes the infected documents from the message and delivers the

e-mail to the addressee, sending a BCC copy to a special (administrator’s) e-mail address. More-

over, the subject is changed to make it obvious that a virus was removed from the message.

smtp-proxy also stores infected mail in quarantine. The configuration is depicted in Figure 5.60

Figure 5.60: Replacing infected documents in the SMTP proxy

The removal of infected document is ensured by creating a special doc-acl DOC-INFECTED

section that matches the infected documents. We place it in front of the existing doc-acl DOCOK

in order to match before the more generic doc-acl DOCOK. The entry condition virus-status

found limits the acl scope to the infected documents (documents marked by the antivirus program

as containing a virus). We add the action item replace so that the matched (and therefore

infected) document is replaced by the given file. The administrator must explicitly create this file

if it does not exist. Because the proxy is configured to run in chroot environment, the file must

be stored in the particular subdirectory of the directory specified as chroot-dir (in this case,

/usr/local/kernun/root/etc/shared/error_documents/).

The special behavior for infected e-mails (i.e., the messages that contain an infected document)

is defined in mail-acl VIRUS. The entry condition virus-status found limits the acl scope

to infected e-mails. The accept item specifies that the e-mail should be delivered to the addressee.

We specify that the message is to be stored in the quarantine, that a BCC copy be sent to a special

e-mail address (the copy-to item) and that the subject be prefixed with a specified text (the

prefix-subject item).

Like in SMTP, there is an additional mail-acl AV-ERROR that returns a transient error to the

client if the mail cannot be checked by the antivirus. Finally, doc-acl REPLACE-AV-UNKNOWN

replaces documents that are skipped by the antivirus.

175

CHAPTER 5. ADVANCED FEATURES

5.15.7 Antivirus in POP3 and IMAP4 Proxies

In this section, we show the POP3 and the IMAP4 proxies configured to replace infected docu-

ments. See the Figure 5.61 and Figure 5.62

Figure 5.61: Replacing infected documents in the POP3 proxy

Figure 5.62: Replacing infected documents in the IMAP4 proxy

First, we instruct Kernun UTM to scan the documents transferred through the proxy with the

antivirus by specifying the item use-antivirus. The item is specified directly in command-acl

for the POP3 proxy, whereas for IMAP4 proxy, it is specified separately for the download and

for the upload case.

In the second-level acl (mail-acl MAILOK), we specify that all e-mails should be accepted. In

the third-level acl, we specify that we want to replace infected (doc-acl REPLACE-INFECTED)

176

5.16. ANTISPAM PROCESSING OF E-MAIL

and unscanned (doc-acl REPLACE-AV-UNKNOWN) documents, and to accept all other docu-

ments (DOCOK)14.

5.16 Antispam Processing of E-mail

Kernun UTM can cooperate with the SpamAssassin antispam software to reject or mark spam.

Three more methods can be used in addition to the SpamAssassin protection: black-listing (rejec-

tion of mail from senders with addresses listed in an external database), white-listing (authorisation

of the sender on his or her domain server) and grey-listing (an automatic method based on a lo-

cal database). We will discuss the configuration of antispam first, and then briefly describe the

individual methods in the next sub-chapter.

5.16.1 Antispam Engine

Like the Dr.WEB or ClamAV antivirus programs, you can install SpamAssassin either directly

on Kernun UTM or on any other machine connected via the network. The antispam

configuration in Kernun UTM is analogous to the antivirus configuration. We define the

antispam section on the system level, and we reference this section in the mail processing

proxies (smtp-proxy, pop3-proxy, and imap4-proxy). We can use the results of the

antispam check in the spam-score item

15

in the mail-acl section of the spam-checked proxy.

Antispam with POP3

Having configured the SPAMASSASSIN section, we now reference it in the proxies. We replace

the item no-mail-scanning (in the command-acl section) with use-antispam enable

SPAMASSASSIN 100K.

Tip

Antispam checking is a very demanding operation, and typical spam mails are quite small.

You may therefore want to check only messages below a certain limit size, such as 100 kB

in our case.

Because we deleted the no-mail-scanning item, Kernun UTM will search for matching

mail-acl and doc-acl sections and we must therefore create them. (Otherwise, Kernun UTM’s

default reaction would be to reject the mail.) We create a mail-acl section that will mark

spammed e-mails, but deliver them to the recipient(s). We do so by adding an acl condition

spam-score and setting it to accept e-mails with a spam score exceeding 5.0 (we use the relational

14

Note that the file referenced in the replace item must exist in the system (if it does not exist, it must be

created).

15

In fact, the score returned by SpamAssassin is multiplied by 1000, because the Kernun UTM configuration does

not handle floats. This feature also allows the future compatibility with other antispam software.

177

CHAPTER 5. ADVANCED FEATURES

operator ge; the Kernun UTM spam score of 5000 corresponds to SpamAssassin’s score of 5.0 mul-

tiplied by 1000). We specify that such messages will be accepted, but define a prefix-subject

item that adds a text prefix to their subject. Finally, we add accepting mail-acl and doc-acl

and we get the configuration shown in Figure 5.63.

Figure 5.63: Antispam protection for POP3 proxy

Antispam with IMAP4

Analogously, we can add antispam support to the IMAP4 proxy. We add the use-antispam

items to both download and upload sections, and then create the mail-acl and doc-acl

sections. Figure 5.64 shows the antispam configuration of imap4-proxy.

Figure 5.64: Antispam protection for IMAP4 proxy

Antispam with SMTP

The configuration of smtp-proxy is, again, similar to the previous cases, only this time we

define the use-antispam item right inside the proxy. In this example we show how to deny

mails with too high a spam score and store them in quarantine on the server. We do so by

178

5.16. ANTISPAM PROCESSING OF E-MAIL

specifying a quarantine item in the proxy and setting it to the path of the quarantine directory.

Remember that we work under a chrooted environment, so we need to create that directory

inside the chroot (in our example, /usr/local/kernun/root/var/quarantine). We add a

mail-acl SPAMQUARANTINE with items deny to not deliver messages with SpamAssassin score

exceeding 10, discard to not inform the sender about the delivery failure and quarantine to

place the mail into the quarantine directory. Another mail-acl, SPAMMARK, is used to pass

e-mails with the score of 5-10, but mark it with a subject prefix. The relevant part of the SMTP

proxy configuration with antispam is shown in Figure 5.65.

Figure 5.65: Antispam protection for SMTP proxy

The resulting configuration of mail proxies with antispam is available in the

/usr/local/kernun/conf/samples/cml/antispam.cml sample file. For more

information on antispam configuration, see the mod-antispam(5) manual page.

5.16.2 White-, Grey-, and Blacklists

Kernun UTM’s smtp-proxy provides configurable client identity checking as protection against

unsolicited mail. White-listing implemented in Kernun UTM is based on the Sender Policy

Framework (http://www.openspf.org), which checks if the sender is allowed in the

sender policy of the return path domain and thus authorizes the sender. After inserting a

white-listing item into session-acl, the result of the matching can be used in the

delivery-acl section using the spf condition. On the other hand, the black-listing method

checks the sender’s address against an external database of forbidden IP addresses. The

sender’s presence in such a database (for example http://www.spamhaus.org) means

that the e-mail is denied during the session-acl phase. The configuration of black- and

white-listing is depicted in Figure 5.66. The list of the main black-listing databases is defined in

/usr/local/kernun/conf/samples/include/smtp-blacklist.cml.

179

CHAPTER 5. ADVANCED FEATURES

Figure 5.66: White- and black-listing for SMTP proxy

Grey-listing is a mail-filtering method that does not rely on any external database or domain

information. Instead, it creates its own database of triplets (sender IP, sender e-mail address,

recipient e-mail address) and behaves according to the state of triplet in the database. New e-mail

is saved as blocked and a temporary error answer is sent to the sender. If the sender tries to

redeliver the mail within a predefined period (e.g., after some time, but not too late), the state

of the triplet changes to granted and all mail with the same triplet will then be passed without

any blocking time. The grey-listing method is configured by the grey-listing section in the

delivery-acl, and the grey-listing section with a path item set to the filename of the

grey-listing database in smtp-proxy. A sample grey-listing configuration is shown in Figure 5.67.

For more detailed information about the method, see the description of the triplicator(1) tool.

Figure 5.67: Grey-listing for SMTP proxy

5.17 Content Processing

Kernun UTM provides tools to investigate and filter the contents of the passing packets. These

tools make it possible for the administrator to filter the contents of the HTML and mail traffic.

5.17.1 Content Type Detection

The third-level ACL, doc-acl, has as an entry condition mime-type specification (see

access-control(7), configuration(7) manual pages). The content type detection can be performed

180

5.17. CONTENT PROCESSING

using several different methods; the administrator can set the order of the used methods globally

for the whole proxy, or separately for each of its doc-acls.

The following content-type detection methods are available:

content-type (Original Content-Type) — the proxy uses the type declared by the document

originator in the Content-Type header;

extension (File Name Extension Mapping) — the proxy tries to guess the MIME type from the

name of the document (if specified);

magic (Magic Number Recognition) — the proxy reads the initial block of the document and

tries to guess the file type from it with help of the magic number file (see magic(5) manual

page).

Note

Method magic is skipped in the http-proxy when the response is partial and

does not contain its beginning. Partial HTTP response either contains HTTP

header Range or has content-type multipart/byteranges. The method magic

is always skipped when the content-type is multipart/byteranges. Item

request-acl.delete-req-hdr-range can be used to make the server send the en-

tire response.

The common usage of mime-type conditions is in the http-proxy, where the administrator

can forbid selected types of documents (e.g., video, applications). In our example, we will start

with the initial configuration file, as shown in Section 4.2, and deny all documents recognized as

any of the video mime-types for the http-proxy HTTP.

First, we need to specify the order of the used Content-Type detection methods. We add the

doctype-identification section into the http-proxy HTTP, insert the order item into

it and select the intended methods in its detail. In order to do so, we append three values magic,

extension and content-type into the doctype-ident-method-list order field, leav-

ing the field direction-set for unchecked (it can be used to define different order for each

of the traffic directions — upload and download).

The magic and extension methods need further configuration: the former a magic file and

the latter a file that contains the extension to the content-type mapping database. We specify

them by adding two shared-file items pointing to the corresponding configuration files. In our

example, we will use the sample configuration file for magic located in samples/shared/magic

and the extension configuration file located in samples/shared/mime.types. We config-

ure the selected methods to use these shared files by inserting two new items into the added

doctype-identification section. The magic item points to the name of the magic config-

uration shared-file and the mime-types item to the name of the extension configuration

shared-file.

Having configured the order of the used Content-Type detection methods, we can proceed

to the filtering of all video documents. We do so by inserting new doc-acl called VIDEO into

the http-proxy HTTP section. We will add it right above the doc-acl DOCOK section, so

181

CHAPTER 5. ADVANCED FEATURES

that VIDEO takes precedence. We restrict the ACL to the video MIME type by inserting the

mime-type option. We define the set of matching MIME types in str-set type. In this

example we insert a single item, video. In a more complex situation, regular expressions can be

used to define all the types to be matched for the ACL. Finally, we need to add the deny item

into the inserted doc-acl VIDEO. Figure 5.68 shows the relevant part of configuration.

Figure 5.68: Content Type detection configuration for HTTP proxy

The resulting configuration file can be found among Kernun UTM samples under the name

doctype-detection.cml in /usr/local/kernun/conf/samples/cml. For more

detailed information on Content Type detection, see the doctype-identification(7) manual page.

5.17.2 HTML Filtering

Besides other tools used to filter whole packets and documents (URL filtering, antivirus checking,

etc.), Kernun UTM provides an HTML filter that filters (or replaces) elements and attributes

inside an HTML document. The filter is applied to every passing document on the third level of

ACL processing, so it is applicable with all proxies that have the doc-acl section (http-proxy,

imap4-proxy, pop3-proxy, etc.). The filter gets the whole HTML document, and deletes (or

replaces) undesirable elements and attributes according to the specified rules. If there are no rules

in the HTML filter, the document will be passed “as-is”. If we create a rule of some type, all the

matching elements (or attributes) will be accepted/denied according to the matching rule. If no

rule matches, but there is a rule of the element/attribute type specified, the element/attribute

will be denied.

For example, the administrator may want to deny all the Adobe Flash animations and replace

all the URIs that refer to “suspicious” Web sites. We create a system-level html-filter section

and name it HTMLFILTER. Now we need to add rules that will filter the elements and attributes

of the document. First, we want to filter all the Flash animations. These can be contained in

two HTML elements, embed and object, so we need to delete these two elements, but not all

182

5.17. CONTENT PROCESSING

of them – only those with the application/x-shockwave-flash Content-Type. We add

an embed-tag-type item, which represents a filter rule that applies to embed tags with the

corresponding content type. Now, we need to specify the content types we want to filter (either

as whole Content-Type names or using regexps) and the action that is to be done (accept or

deny). We append one value, “application/x-shockwave-flash” to str-set val and select deny

from the action combo box. Now, we have filtered all the embed HTML elements with flash

animations. We can do the same with the object elements using the object filter item set to

the same values.

The items added so far filter out the undesirable contents. However, it may be useful to

warn the users that we have changed the documents they are viewing. We can do so using the

replace- filter items, which define the content that will replace a deleted element/attribute.

For elements that can appear in both the head and body HTML elements (such as embed and

object) we can set the replace text separately for each of the two cases. In our sample, we will

create a replace-body-embed-tags item and set its value to “Flash embed tag DENIED” and

a replace-body-object-tags item and set its value to “Flash object tag DENIED ”.

We must not forget to create accepting rules for both object and embed-tag-type that

will accept all the Content Types. Otherwise, the previously added rules would delete all the

embed and object elements.

Clickjacking protection can be implemented by filtering IFRAME elements. This is done by

adding iframe-tag-src rules, which follow the convention stated above. The SRC of the

IFRAME element is being matched as a regexp (/ˆhttp:\/\/([ˆ.]+\.)*kernun.com\//

in the example matches the domain kernun.com and its subdomains). The replacement text can

be set by replace-iframe-tags.

The HTML filter provides another type of useful rules: attribute filters. These can be used

to delete (or replace) whole attributes from the document. In our example, we want to re-

place all the “suspicious” URI attributes with a neutral one. We will add a new uri item rule

and set it to deny the undesired URI regexps, in our case /.*photo.*/, /.*video.*/ and

/.*warez.*/. Again, as we have created a new filter rule, we need to allow all other URIs that

do not match this rule. We add a new uri item and set it to accept all the URIs (*). Now we

add the replacement for the whole URI attribute (not only the value that is matched in the uri

item) by inserting a new replace-uri item rule and setting it to a neutral URI, for example

"href=’http://www.kernun.com’"16.

Having created the whole HTML filter, we can use it in any proxy that has a third-level ACL

doc-acl. We tell the proxy to use an HTML filter by inserting an html-filter item with

the filter’s name into the proxy’s doc-acl. The use of a slightly more complex HTML filter

blocking all the Flash documents and the specified URIs in the http-proxy HTTP is depicted

in Figure 5.69.

The complete resulting configuration can be found in

/usr/local/kernun/conf/samples/cml/html-filter.cml. More complex HTML filter

rules are created in /usr/local/kernun/conf/samples/include/html-filter.cml.

16

This rule might replace attributes other than href (such as src or action) with a href, but such a change

will not “damage” the document more than simple deletion of the attribute would.

183

CHAPTER 5. ADVANCED FEATURES

Figure 5.69: HTML filter example

184

5.18. FILTERING HTTP REQUESTS BY URI

For more information on HTML filtration, see the mod-html-filter(5) manual page.

5.17.3 MIME Processing

In Section 4.2, we created simple mail-handling proxies (smtp-proxy, imap4-proxy and

pop3-proxy), which just passed the e-mail and did not check it in any way. Kernun UTM

provides tools to decode the e-mail MIME structure and examine each document. The mail may

be scanned for viruses (see Section 5.15) and for spam content (see Section 5.16). These scans

are added to the proxy by inserting a use-antivirus and/or use-antispam item into the

proxy and setting them to the respective antivirus/antispam section name.

Kernun UTM has also a mail filter, which can be used to repair the MIME structure and

headers of the e-mail according to corresponding RFCs, so that other mail servers could

process the mail and possibly deliver it to the recipient(s). Errors in e-mails that are to be

corrected can be specified in the mail filter. The relevant part of a sample configuration

with a mail filter is shown in Figure 5.70; the entire configuration can be found in

/usr/local/kernun/conf/samples/cml/mime-processing.cml.

Figure 5.70: Mail filter example in use with IMAP4, POP3 and SMTP proxies

For more information on MIME filtration, see the mod-mail-doc(5) manual page.

5.18 Filtering HTTP Requests by URI

Kernun UTM’s HTTP proxy provides several methods that can be used to change

requestURIs passed to servers and make decisions based on URIs. A URI can be matched

against regular expressions, searched in a local database (blacklist), or evaluated by the

Kernun Clear Web DataBase or by an external Web filter. The sample configuration

185

CHAPTER 5. ADVANCED FEATURES

/usr/local/kernun/conf/samples/cml/url-filter.cml contains an HTTP proxy

with all URI filtering methods.

5.18.1 URL Matching and Rewriting

Figure 5.71: Request URI matching and rewriting

An example of the HTTP proxy that matches HTTP requests by the request URI is depicted

in Figure 5.71. If a request URI matches one of the regular expressions in the string specified in

the request-uri item of request-acl URI-REWRITE, this ACL will be selected. It accepts

the request and applies the rewrite item(s). There can be several rewrite items. Each of them

contains a regular expression and a string. A request URI that matches the regular expression

in a rewrite clause will be rewritten to the string. Pairs of characters dollar+digit ($1, $2. . .)

in the string will be replaced by parts of the original URI matched by parenthesized parts of the

regular expressions. The rewrite item in Figure 5.71 matches any URI containing kernun.cz

and rewrites cz to com, leaving the rest of the URI unchanged.

In a request-acl, there are two more types of URI-matching conditions. We have already

seen request-uri, which matches the whole URI. The other conditions are: request-scheme

(matches the scheme part of the URI) and request-path (matches the path part of the URI).

Figure 5.72: Log of URI matching and rewriting

Figure 5.72 shows a log of an HTTP proxy running with the configuration from Figure 5.71 and

processing a request with URI http://www.kernun.cz/. The two most important messages

are marked. The HTTH-811-Imessage informs that request-acl URI-REWRITE was selected.

The following message confirms that the URI was rewritten to http://www.kernun.com/.

186

5.18. FILTERING HTTP REQUESTS BY URI

5.18.2 Blacklists in HTTP Proxy

A security policy may require to deny access to large groups of Web servers. Adding a very

large number of servers to a request-acl.request-uri item may slow down ACL processing

significantly. A better strategy is to create a blacklist of forbidden servers in a special format

processed more efficiently by the HTTP proxy. A blacklist must be prepared in a text file in

the format described in mkblacklist(1). The textual blackist is then transferred to a binary

form usable by the HTTP proxy by utilities resolveblacklist(1) and mkblacklist(1). A binary

blacklist file can be converted back to the text format by printblacklist(1).

A blacklist contains a list of Web server addresses (domain names or IP addresses) with an

optional initial part of a request path. A list of categories is assigned to each address. It is possible

to select a request-acl based on a matching blacklist item with the set of categories assigned

to the request URI by the blacklist.

Figure 5.73: A blacklist in the HTTP proxy

An HTTP proxy will use the blacklist database file specified by blacklist-db in the

http-proxy section, see Figure 5.73. If a request URI belongs to the category chat or news,

then request-uri BLACKLIST will be selected and the request will be denied. Other requests

will be processed according to request-uri WEB-FILTER, described in the next section.

Note

If a proxy runs in chroot, the path blacklist-db will be interpreted in the context of the

chroot directory.

A log of an HTTP proxy configured according to Figure 5.73 is displayed in Figure 5.74.

The log messages are related to two requests. The first request to server www.example.com

does not match categories selected in request-acl BLACKLIST and the request is accepted by

request-acl WEB-FILTER. The second request to news.example.com matches a category

from request-acl BLACKLIST, which rejects the request. Note the ACL names reported in

ACL PHASE=2 messages and the log markers that colorize accepting and rejecting messages.

5.18.3 Kernun Clear Web DataBase

Continuous updating of a blacklist so that it covers as many prospective unwanted Web servers

as possible is a challenging task, greatly exceeding the capabilities of a typical company network

administrator. Therefore, there are commercially available services that provide regularly updated

187

CHAPTER 5. ADVANCED FEATURES

Figure 5.74: A log of blacklist usage in the HTTP proxy

databases of Web servers classified into many categories according to content. Kernun UTM

contains one such service—the Kernun Clear Web DataBase.

Configuration of the Kernun Clear Web DataBase consists of two parts. One is used to detect

URL categories and select ACLs according to the categories, the other deals with updating of the

database of URLs.

Clear Web DataBase in HTTP Proxy

The Clear Web DataBase takes a request URI and assigns to it a set of categories. The categories

can be matched by item request-acl.clear-web-db-match in the process of request-acl

selection during an HTTP request processing. Two examples of sections request-acl with

condition clear-web-db-match are shown in Figure 5.75. There are three possible modes of

category matching, selectable in each condition item:

• any— at least one category of the request URI matches the set of categories in the condition;

• all— all categories in the condition are contained in the set of categories which the request

URI belongs to;

• exact — the request URI belongs to all the categories from the condition and does not

belong to any additional category.

If the selected request-acl contains a clear-web-db-match condition (CLEAR-WEB in

the sample configuration) and the deny item, the proxy will return an error HTML page containing

information that the request has been denied by the Clear Web DataBase and the list of matching

categories.

As an alternative to denying a request URI matching given categories absolutely,

the proxy provides the bypass feature, a sort of “soft deny”. It is activated by item

188

5.18. FILTERING HTTP REQUESTS BY URI

Figure 5.75: Kernun Clear Web DataBase in the HTTP proxy

request-acl.clear-web-db-bypass (used in CLEAR-WEB-BYPASS in the sample

configuration). When a user attempts to access a Web server restricted by the bypass, an error

page is returned by the proxy, containing a link, through which the user can obtain limited-time

access to the requested server and all Web servers that belong to the same categories. After the

bypass expiration time, which can be changed using item duration, the error page will be

displayed again. The user can then reactivate the bypass. Each bypass activation is logged.

Bypass sessions activated by users are tracked by an internal table managed by the

proxy. The maximum number of simultaneously active bypass sessions is controlled by

http-proxy.max-bypass-sessions. If this number is set to 0, the number of bypass

sessions will become unlimited, and the sessions will be tracked by cookies. In this case, an

activated bypass is valid for the target server and all servers in the same domain, but not for

other servers, even if they belong to the same categories.

Internal Servers in the Clear Web DataBase

Clients often use the HTTP proxy also for access to intranet WWW servers. These internal

servers can be located in the internal network, using private IP addresses from ranges defined by

RFC 1918 (networks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16). Or they may be

accessible from the Internet, but restricted to internal users.

Such internal servers are not contained in the Clear Web DataBase and would be categorized

as unknown. In order to distinguish internal servers from public web servers with unknown

categories, host names or IP addresses of the internal servers can be listed in the configuration by

item clear-web-db.internal-servers. Private IP addresses from RFC 1918 are included

by specifying internal-servers private-ip, so they need not be written explicitly.

If a server from an HTTP request matches some element of the list of internal servers, it will

be assigned category internal-servers. This category is not used for any public web server

included in the standard Clear Web DataBase.

189

CHAPTER 5. ADVANCED FEATURES

Updating the Clear Web DataBase

The Clear Web DataBase file location in controlled by clear-web-db.db, which defaults to

/data/var/clear-web-db if not set. The database file is copied (or hardlinked, if possible)

automatically to any chroot directories by the database update script and when the configuration

is applied.

Although it is possible to update the Clear Web DataBase data manually by copying an updated

clear-web.db file to the database directory, it is recommended to use the provided update script

clear-web-db-update.sh for this purpose. It downloads the most appropriate full database

and/or applies any incremental updates to get the most recent version of the database, minimizing

the amount of downloaded data. To use this feature, you need to have valid download credentials.

These are configured by clear-web-db.credentials. If not set, the serial number from the

license file is used as both the username and the password.

The Clear Web DataBase data update script can be executed either manually by running

clear-web-db-update.sh from the root console (Kernun console in the GUI), or automatically

by cron in periodic intervals. Periodic updates are enabled by placing the clear-web-db (usually

empty) section in the system configuration.

Automatic Categorization of Web Servers

If no record is found for a requested URL in the Clear Web DataBase, the “unknown” result is

reported and matched in ACLs. A valid list of categories will be returned for repeated requests

to the same URL only after the server becomes a part of the Clear Web DataBase downloaded in

some future update. As an option, there is a faster way how to obtain categories for servers not yet

known. It is possible to enable the cwcatd daemon that performs automatic local categorization

of web pages.

If categories for a requested URL are not found in the Clear Web DataBase, the URL is

appended to a queue that is processed by daemon cwcatd. The daemon reads uncategorized URLs

from the queue. For each URL, it tries to download the referenced web page. The downloaded

page is passed to an automatic categorizer, which tries to assign categories according to heuristics

applied to the page content. If it succeeds, the result is stored in a local database. Future requests

to a locally categorized server will get categories assigned according to the local database. If

categories of the server appear in the downloaded Clear Web database in its periodic update, the

result of the automatic local categorization will not be used any more.

Categories discovered automatically by the cwcatd daemon are not as correct and reliable as

the contents of the Clear Web DataBase maintained by experienced human operators. But on

the other hand, results of the automatic categorization are available almost immediately after the

access to a web page with unknown categories.

Automatic categorization of web servers is enabled by adding subsection local-db to the con-

figuration section clear-web-db. It instructs the http-proxy and the icap-server to enqueue

URLs with unknown categories for processing by cwcatd and to use the results of automatic

categorization. The cwcatd daemon is enabled by adding section cwcatd.

190

5.18. FILTERING HTTP REQUESTS BY URI

Clear Web DataBase category list

The Clear Web DataBase or the local database contain the following set of categories:

Advertisement Advertising agencies, servers providing advertising banners

Alcohol / Tobacco Alcohol, tobacco, breweries

Arts Galleries, theaters, exhibitions

Banking Banks, Internet banking

Brokers Stock exchange information, stocks purchase and sale

Building / Home Construction, architecture, e-shops with construction materials and equip-

ment

Business Corporate websites, offering actual services and products, Web pages referring to com-

panies (parked domains)

Cars / Vehicles Web pages of motorists, motorcyclists, aviators, sailors, producers, vendors and

enthusiasts of transportation vehicles

Chats / Blogs / Forums Chats, personal blogs, discussion forums

Communication Information and communication technology, services of Internet providers, tele-

phone operators, SMS gateways, phonebooks

Crime Committing crime, crime protection

Education Education, science, research

Entertainment Entertainment and sports centers

Environment Weather forecasts, live webcams, environment protection, ecology

Erotic / Adult / Nudity Erotic acts, half-naked up to naked bodies, erotic tales

Extreme / Hate / Violence Attacks against individuals or groups of people, deviations

(sadism, masochism, etc.), violence on humans or animals

Fashion / Beauty Clothing, body care, make-up

Food / Restaurants Restaurants, recipes

Foundations / Charity / Social Services Help to handicapped, addicted, underprivileged

people or people with special needs, families and children

Gambling Gambling for money

Games Online and offline games

Government Government organizations, agencies, ministries, communes

191

CHAPTER 5. ADVANCED FEATURES

Hacking / Phishing / Fraud Web pages of cracking groups, malicious software, exploitation

guides. Does not include anti-hacking and anti-phishing protection

Health / Medicine Electronic pharmacies, hospitals, relaxation, massage, spa

Hobbies Thematic hobby/interests pages

Humor / Cool Humor, jokes, pranks

Illegal Drugs Drugs, narcotics

Instant Messaging Real-time message transfer

Insurance Insurance companies

Internal Servers Internal web server, includes private (RFC 1918) IP addresses and servers

declared as internal in the configuration

IT / Hardware / Software Hardware and software retail, service, support

IT Services / Internet IT and Internet products, services, domain names

Job / Career Human resource agencies, job offers

Kids / Toys / Family Advice, instructions, websites for kids and family

Military / Guns Historic information, army-shops

Mobile Phones / Operators Mobile phones and accessories, telephone operators

Money / Financial General financial consultancy, financial servers

Music / Radio / Cinema / TV Web pages of music bands, pages about music and movies,

TV guides, cinema programme

News / Magazines Live news, tabloids, journals. Does not include Web pages aggregating news

from other sources

Peer-to-peer Peer-to-peer networks for data transfer (software, music, movies)

Personal / Dating / Live Styles Personal Web pages, pages of musicians and bands, gossips

Politics / Law Web pages of political parties, pages about politics and law

Pornography Videos for download, photos, e-shops

Portals / Search Engines Internet search engines, covering either a large number of areas or

specific fields. Does not include Web pages searching their own site only

Proxies Servers that provide access to other Web pages to their clients, e.g. in order to hide the

client’s identity or to circumvent network access restrictions

Real Estate Real estate servers, companies

Regional Web pages of municipalities and regions

192

5.18. FILTERING HTTP REQUESTS BY URI

Religious / Spirituality Churches, religious themes, esoteric pages

Sale / Auctions Auctions, bazaars, sale and purchase

Sects Sects

Sex Education Professional information about sex

Shopping Stores, advertising sites, e-shops with a shopping cart, which must be operated at the

top-level domain

Social Networks Social structures made up of people connected by friendship, family, common

interests and other relations

Sports All sports and disciplines, including extreme sports

Streaming / Broadcasting Internet TV and radio

Swimwear / Intimate Lingerie, underwear, swimsuits, e-shops, producers and sellers

Translation Services Online translation, translational services

Travelling / Vacation Timetables, travel agencies, public transportation companies, castles,

chateaus

Uploading / Downloading Online data storage, photo albums, file-sharing servers

Warez / Piracy Illegal distribution of copyright-protected content, links to software, serial num-

bers, movies, password exchange forums

Web Based Mail Free Web-based mail providers

Web Hosting Web sites providing space on their servers to third parties

5.18.4 Using External Web Filter

In addition to using the internal Kernun Clear Web DataBase, it is possible to cooperate with

an external Web filtering service. Only one type of such a service is supported—the Proventia

Web Filter. It is considered a legacy feature and Kernun Clear Web DataBase is recommended as

replacement.

Proventia Web Filter runs separately from Kernun UTM on a machine with a Microsoft Win-

dows, Linux, or FreeBSD (with Linux emulation) operating system. It is configured by its own

graphical management console, available for Microsoft Windows. In order to work with Ker-

nun UTM, Proventia Web Filter must be configured as described in section Web Filter of manual

page http-proxy(8). Especially, ICAP Integration must be enabled. Moreover, if the Web filter

rules take user names into account, User Profile Support must be enabled.

The relevant part of HTTP proxy configuration is depicted in Figure 5.76. The parameters

of the connection to the Proventia Web Filter server are specified by section web-filter. Note

the port number 1344, which is used by default for the ICAP protocol by Proventia Web Filter.

The sample configuration contains also a fail-ok item, which means that all requests are to

193

CHAPTER 5. ADVANCED FEATURES

Figure 5.76: An HTTP proxy configured for use of an external Web filter

be accepted if Kernun UTM cannot communication with the Web filter. Without this item, all

requests would be rejected until the connection to the Web filter would be restored. Requests

that are accept-ed by a request-acl with a web-filter item will be forwarded to the Web

filter server. If the Web filter accepts the request, the proxy will continue with the normal request

processing

17

. If the Web filter rejects the request, the proxy will terminate the processing of the

request and return an error HTML page to the client. An example of a Web site blocked by the

Web filter is shown in Figure 5.77.

Figure 5.77: A Web server blocked by the Web filter

17

The request will be sent to the destination server and its response will be returned to the client.

194

5.19. HTTPS INSPECTION

5.19 HTTPS Inspection

Kernun UTM, namely the http-proxy, provides means for inspection of the HTTPS traffic.

HTTPS inspection is available for both transparent and non-transparent connection mode.

An example of the http-proxy configured for HTTPS inspection is available in the

/usr/local/kernun/conf/samples/cml/https-insp.cml file. The example

demonstrates the following scenario:

• Both HTTP and HTTPS requests are handled by the proxy.

• Both transparent and non-transparent mode is provided.

• The server certificate is verified by the proxy.

• There is a list of server exceptions, for which the inspection is not performed.

• There is a list of client exceptions, for which the inspection is not performed.

The configuration described in this section is intended for providing access to an a priori

unknown set of HTTPS servers. For example, access of clients in the internal network to HTTPS

servers in the Internet. If you need a secure tunnel between two points or HTTPS to a single

server, the SSL/TLS configuration from Section 5.13 may be more appropriate.

5.19.1 Certificates

HTTPS uses certificates as a means to verify the server identity. HTTPS inspection (by its nature)

breaks into the connection between the client and the server, which would be detected by the client

and reported as an “Untrusted connection” warning to the user. To prevent this issue, the proxy

generates a new certificate which mimics the original certificate. It is issued by the certification

authority (CA) controlled by the Kernun UTM. By importing this CA to the list of trusted CAs

of the client browser the above mentioned “Untrusted connection” warning is prevented.

There are two CAs needed for proper work of the HTTPS inspection: GOOD and BAD. The

HTTP proxy selects one of them for signing the certificate that is presented to the client as the

server certificate.

The GOOD CA is used for servers, whose certificates were successfully verified by the proxy.

The clients are expected to import the GOOD certificate as the trusted certification authority.

The BAD CA is used for servers, whose certificates cannot be verified by the proxy. The clients

MUST NOT import the BAD certificate.

As the result, the web pages, whose server certificate was succsessfully verified by the proxy

are presented with certificates signed by the GOOD CA to the client. The client accepts them

without complains, because the client trusts the GOOD CA.

By contrast: web pages, whose server certificate cannot be verified by the proxy, trigger the

“Untrusted connection” alarm, since they are presented to the client with the certificate signed by

the BAD CA, which the client does not trust.

The configuration is shown in figure Figure 5.78. The GOOD CA and the BAD CA are

provided to the proxy in the section fake-cert as item fake-cert.auth-ca (the GOOD

195

CHAPTER 5. ADVANCED FEATURES

CA), and item fake-cert.fail-ca (the BAD CA). Besides the two CA, there is also a private

key needed for signing the faked certificates. The key is specified in section fake-cert.key.

The proxy uses the list of the trusted CAs for verifying the server certificates. The list is

presented in the section SSL-INSP-SERVER-SSL. The default list of the trusted CA is provided

by Kernun in /usr/local/kernun/conf/samples/cert/dist_auth_cert.pem. This list

is the root certificate bundle with certificates merged from Internet Explorer and the Mozilla

Project. Main Czech and Slovak certification authorities are included as well. If you need to

modify the list, copy the file to another location and change the path for the shared-file

SSL-INSP-AUTH appropriately. The file contains concatenation of certificates in the PEM format,

so you can delete existing certificates or append new ones using any text editor.

Figure 5.78: Certification authorities for HTTPS inspection

Note

The CA can be created by command mkcert.sh, for example:

mkdir /usr/local/kernun/conf/ssl-insp-certs

cd /usr/local/kernun/conf/ssl-insp-certs

mkcert.sh -g . -c "Kernun SSL Inspection" -F good.crt -K good.key

mkcert.sh -g . -c "Server verification failed!" -F bad.crt -K bad.key

The private key needed can be created by command openssl, for example:

cd /usr/local/kernun/conf/ssl-insp-certs

openssl genrsa -out private-key.pem 2048 -nodes

5.19.2 HTTPS inspection ACL flow

When both transparent and non-transparent HTTPS is used in a single http-proxy, several

session-acls and request-acls are used to internally transform the non-transparent traffic

to transparent as well as to transform the HTTPS to HTTP by inspecting the SSL, or to apply ac-

196

5.19. HTTPS INSPECTION

cess control without inspecting the SSL. After the transformations, a single set of request-acls

is used to implement the security policy.

HTTPS traffic can be:

• Accepted without HTTPS inspection. The proxy establishes TCP tunnel between client and

server, ending the ACL processing at request-acl level.

• Blocked without HTTPS inspection. In transparent mode, TCP connection to the client is

reset before connecting to the server. In non-transparent mode, an error message is sent to

the client.

• Accepted in HTTPS inspection. The proxy decrypts the SSL/TLS, processes the HTTP

communication and re-encrypts it afterwards. The decrypted HTTP communication is pro-

cessed the same way as (both transparent and non-transparent) HTTP. When different

behaviour is desired, session-acl item connect-session-acl can be used to detect

the session-acl that accepted the HTTPS connection.

• Denied in HTTPS inspection. Proxy decrypts and re-encrypts the HTTP communication.

Proxy can either send the client properly encrypted error document or send the requested

server response signed by BAD CA as described by Section 5.19.1.

Figure 5.79 provides the schema of ACL flow during the processing of HTTP and HTTPS

traffic in both transparent and non-transparent mode.

5.19.3 Transparent mode

The http-proxy by default expects the client to send an HTTP request, it can be told to expect

TLS by specifying either sni-insp or client-ssl in the session-acl.

In transparent HTTPS, server hostname is specified in HTTP protocol which is encrypted.

However, it is usually also specified in SNI in the first TLS message which is not encrypted yet.

See Section 5.19.5 for more details. In order to obtain the server hostname from TLS layer before

HTTPS inspection, item sni-insp is used. If an exception from HTTPS inspection takes effect,

the proxy establishes TCP tunnel to the server.

If the traffic is to be HTTPS inspected, item capture-connect is used to make the proxy

virtually close the current session and reexute it. Afterwards, HTTPS inspection is turned on by

referencing the client-ssl section which defines item fake-cert. Subsequent request-acl

processes the request as if it was plain HTTP.

The configuration of both transparent and non-transparent modes is shown in Figure 5.80.

The session-acl S-HTTPS-TRANSP uses the item sni-insp to obtain server name as well

as to validate the first SSL/TLS message. Exceptions from SSL inspection are defined in

request-acls R-HTTPS-NO-INSP-CLIENTS and R-HTTPS-NO-INSP-SERVERS. Item

request-method with value CONNECT can be used here because of item sni-insp

which simulates the CONNECT method. Item capture-connect in request-acl

R-HTTPS-INSP makes the proxy virtually close the current session and reexute it, which results

in session-acl S-HTTPS-INSP getting matched because of item captured-connect.

The session-acl S-HTTPS-INSP uses the client-ssl SSL-INSP-CLIENT-SSL and

197

CHAPTER 5. ADVANCED FEATURES

Figure 5.79: HTTPS inspection ACL flow

198

5.19. HTTPS INSPECTION

server-ssl SSL-INSP-SERVER-SSL. See Section 5.19.1 for details on these ssl-params

sections.

5.19.4 Non-transparent mode

In non-transparent mode, HTTPS is recognized by HTTP request method CONNECT. Server

hostname is specified in the enveloping HTTP so SNI inspection is not needed. Special item

capture-connect is used for handling CONNECT requests. Afterwards, it is handled by the

means described above in Section 5.19.3.

5.19.5 SNI inspection in HTTPS

This section describes Server Name Indication (SNI) inspection that can be used to obtain server

name from TLS handshake for usage in request ACLs. It is intended to be used in transparent

HTTPS, because in non-transparent HTTPS, server hostname is specified in the enveloping HTTP.

When a client connects to an HTTPS server, the first message (SSL/TLS ClientHello) usually

contains server hostname (SNI) that the server uses for detecting service requested by the client,

because multiple hostnames can be hosted on a single IP address. SNI was introduced in TLS

1.0 and is optional, it is missing for example when user accesses an HTTPS web server using IP

address instead of a hostname.

When SNI inspection is configured in session ACL, the first message from client is parsed.

When it does contain SNI, server hostname and URI is changed from an IP address to a hostname

for usage in request ACL. Afterwards, as described at Section 5.19.2, HTTPS inspection can be

performed, the connection can be accepted without HTTPS inspection or the connection can be

denied.

The result of SNI inspection can be used in request ACL item sni-result which has values:

specified The request was a TLS 1.0 or higher ClientHello that contained SNI. Server hostname

and URI for the subsequent request ACL was changed from an IP address to the hostname

from SNI.

unspecified The request was a TLS 1.0 or higher ClientHello that did not contain SNI. Server

hostname and URI remained unchanged for request ACL matching.

ssl3 The request was a SSLv3 ClientHello that did not contain SNI because it is not in the

SSLv3. Server hostname and URI remained unchanged for request ACL matching.

skype The request was traffic specific for Skype. Server hostname and URI remained unchanged

for request ACL matching. The request was either an invalid empty TLS 1.0 handshake

message or TLS 1.0 ClientHello in SSLv2 record layer. Skype uses these requests for regis-

tration to the Skype network and for authentication. For the communication itself, Skype

uses standard HTTPS so both skype and specified must be permitted in order for Skype

to work. Skype can handle HTTPS inspection as well.

unknown-protocol The request was an unknown protocol or malformed request so the SNI was

not inspected. Server hostname and URI remained unchanged for request ACL matching.

199

CHAPTER 5. ADVANCED FEATURES

Figure 5.80: HTTPS inspection configuration

200

5.20. ADAPTIVE FIREWALL

5.19.6 TLS termination

The http-proxy can be used to provide access to an internal web server for clients in the Internet.

When HTTPS is used, the proxy responds to the client with a TLS server certificate immediately

after receiving the first message from the client, the ClientHello. If the proxy provides access to

multiple internal web servers, it is necessary to select the correct server certificate for sending.

That can be achieved by inspecting the SNI received in the ClientHello.

An example of reverse HTTPS proxy configuration is shown in

Figure 5.81 and Figure 5.82. The full configuration is located in

/usr/local/kernun/conf/samples/cml/https-termination.cml. It describes an

http-proxy that provides access to two web servers, server A and server B, located in internal

network for clients in Internet. The clients are forced to use HTTPS when communicating, the

proxy uses HTTP with server A and HTTPS with server B.

The proxy listens on the external network interface for connections from clients in the In-

ternet. When a client connects, session-acl HTTPS-REVERSE-SNI-INSP performs SNI

inspection. After the SNI inspection, the following request-acls have its value available

in item server. The proxy chooses a request-acl from CAPTURE-CONNECT-CRT-A or

CAPTURE-CONNECT-CRT-B which both perform capture-connect.

During the capture-connect, the proxy virtually closes the session and reexecutes it, en-

tering session-acl phase once again. One of session-acls HTTPS-REVERSE-OK-CRT-A

and HTTPS-REVERSE-OK-CRT-B is selected based on the request-acl that performed the

capture. The selected session-acl also responds to the client’s ClientHello with the specified

server certificate and finishes the TLS handshake.

Now the proxy has TLS layer terminated and it is processing plain HTTP. It selects either

request-acl A-PERMIT or B-PERMIT based on the address specified in HTTP request line.

The selected request-acl relays the HTTP request to one of the servers located in the internal

network. The server can be either HTTP or HTTPS. In the example server A is HTTP while

server B is HTTPS.

5.20 Adaptive Firewall

Kernun UTM provides module Adaptive Firewall that detects and blocks suspicious traffic.

According to the configuration, it can either detect and log suspicious network traffic (in IDS

mode), or also block it (in IPS mode). For detailed description of the IDS/IPS system, see

adaptive-firewall(7) and ips(7).

An example of Adaptive Firewall configuration is shown in Figure 5.83. The complete sample

configuration is available in the /usr/local/kernun/conf/samples/cml/ids.cml file.

Adaptive Firewall consists of two parts, ids and ips. IDS is composed of several possible

detectors, agent, honeypot and watchdog. Both IDS and IPS have their own databases that

contain detected IP addresses (in case of IDS) or blocked IP addresses (in case of IPS).

IDS agent is an application that performs advanced inspection of network traffic by using com-

plex rules downloaded from a central server to monitor traffic on interfaces specified by item iface.

The rules are configured in section system.adaptive-firewall.ids.agent.rules while

201

CHAPTER 5. ADVANCED FEATURES

Figure 5.81: HTTPS termination global configuration

202

5.20. ADAPTIVE FIREWALL

Figure 5.82: HTTPS termination proxy configuration

203

CHAPTER 5. ADVANCED FEATURES

Figure 5.83: Adaptive Firewall

the rules download is configured in section system.update. IDS agent uses configuration file

samples/shared/ids-agent.yaml by default. It is possible to provide a custom configura-

tion file by specifying a shared-file agent.engine-cfg-file. Note that the file is processed

by Kernun to propagate CML configuration, namely it adds logging, specified interfaces and path

to the downloaded rules.

Honeypot is a detector that listens on given IP address that is not used for any other purpose.

A client that tries to connect to this IP address is assumed to be an attacker and is reported to

the IPS part of Adaptive Firewall.

Watchdog is a detector that monitors given files for occurences of given string patterns. It

can be used for example to detect attackers that are trying to brute-force an SSH autentication.

Configuration of this scenario can be seen in samples/include/sshd-watchdog.cml

IPS is enabled by the presence of section adaptive-firewall.ips. When enabled, the

IP addresses reported by various IDS detectors are blocked by packet filter. Every minute, IPS

decides which addresses to add from the IDS database to the IPS database and which addresses

to remove from the IPS database because they were not seen for a long enough time, which can

be controlled by item record-lifetime.

5.20.1 IDS agent variables

In order to increase the success rate of rules, it is possible to tell the IDS agent more about the

network it is operating in. Sections agent.address-groups and agent.port-groups are

designed for this purpose. Most rules refer to variables that can be defined here.

5.20.2 Rules update

Traffic analysis is based on rules that describe suspicious traffic. It is desirable to update the rules

regularly. An automatic rule download system is available in Kernun UTM. This option can be

configured with the rules-download section, which describes the rules download policy. By

default, it is enabled and it uses Kernun rules. Use item schedule to define the update schedule.

204

5.21. TRAFFIC SHAPING

Item source defines the source of the rules. More items can be specified in order to finetune the

rules download.

If you are using Kernun rules, it is highly recommended to enable feedback-upload to send

the feedback containing matched rules back to Kernun server. The matched rules are used to

improve the Kernun rules database in order to achieve high success rate of the IPS module.

5.20.3 Rules modification

Even though the rules provided by Kernun are thoroughly tested to eliminate false positive

matches, they can still happen. Therefore, the administrator can modify the downloaded rules by

items in the rules section. It is also possible add custom rules by specifying items add-rule

or include-rules.

A rule that is distributed as disabled can be enabled by item enable-rules. A disabled rule

is commented out in the downloaded rule file so the IPS engine would otherwise ignore it.

When disabling a rule, the administrator has more options. A rule can be disabled uncondi-

tionally by item disable-rule or only for certain IP addresses by item rule-suppress. It

is also possible to disable all rules for certain IP addresses by item global-suppress.

In IPS mode, it is sometimes desired to change the rule action from alert to drop or reject.

This can be done by items change-rules-to-drop and change-rules-to-reject.

Items rule-rate-filter and global-rate-filter can be used to change the rule action

after the rule matched a certain number of times within a specified time frame. Similarly, items

rule-threshold and global-threshold alter the rule so it is applied only after it matches

a certain number of times within a specified time frame.

When the above methods are not sufficient, it is also possible to modify a certain rule by

providing a regular expression and a replacement string in item modify-rules.

5.21 Traffic Shaping

Kernun UTM can control the amount of bandwidth consumed by various types of network com-

munication. This feature is known as traffic shaping. Traffic shaping is based on a division of the

available network bandwidth into queues of various capacity. The traffic shaping rules then assign

outgoing network packets to queues. A queue controls how fast a packet will be sent out. Traffic

shaping in Kernun UTM is implemented using the altq(4) framework.

Important

Traffic shaping works only for packets sent by Kernun UTM to a network, internal or external.

It is not possible to limit the rate of reception of incoming packets. It is therefore impossible

to limit the download speed from the external to the internal network by queuing received

packets on the external interface; packets sent by the internal interface must be queued

instead.

We will describe a simple traffic shaping configuration aimed at limiting the bandwidth usage

by SSH communication of clients in the internal network with servers in the external network, and

205

CHAPTER 5. ADVANCED FEATURES

limiting the download speed of selected HTTP communication. We assume that the maximum

speed of both the internal and external network interfaces is 100 Mbits/s.

Let us specify our sample objectives more precisely: 1. For any SSH connection, i.e., a connec-

tion to a server in the external network on port 22, we want to limit the data flow to 10 Mbits/s

in each direction. 2. Clients from a subset of the internal network accessing HTTP servers in the

external network are to have the download speed limited to 10 Mbit/s for selected request URIs at

certain time intervals. The 10 Mbit/s limit will be shared by the SSH and HTTP communication.

Figure 5.84: Configuration of traffic shaping queues

The first step in traffic shaping configuration is to define the set of queues. This is done

by adding sections system.pf-queue and system.packet-filter.altq, see Figure 5.84.

All our queues use the cbq (Class Based Queueing) scheduler, i.e., the bandwidth of a network

interface is divided into a hierarchically organized tree of queues. We define a parent queue on

the internal network interface by section pf-queue INQ-ALL and subsection altq of section

packet-filter. The pf-queue section selects the cbq scheduler and specifies (using the

default parameter) that the queue will get all packets that are not explicitly assigned to another

queue. The queue can use all 100 Mbits/s available for the interface. Subsection altq specifies that

the parent queue, and also its child queues, will handle packets sent to the internal network via the

INT interface. The bandwidth is split between two child queues defined by pf-queue INQ-FAST

(90 Mbits/s) and pf-queue INQ-SLOW (10 Mbits/s). Moreover, queue INQ-SLOW can borrow

unused bandwidth from other queues. Similarly, there are three queues OUTQ-ALL, OUTQ-FAST,

and OUTQ-SLOW18 for handling packets sent to the external network via the EXT interface.

18

Unlike INQ-SLOW, this queue cannot borrow bandwidth.

206

5.21. TRAFFIC SHAPING

The /usr/local/kernun/conf/samples/cml/altq.cml file contains the complete

sample configuration. For detailed description of ALTQ parameters, refer to packet-filter(5) and

pf.conf(5).

Traffic shaping can be done at two levels, using either packet filter, or queue selection in proxy

ACLs. We will use each of the levels for one of our sample objectives.

Figure 5.85: Traffic shaping by packet filter ACLs

The SSH communication speed can be limited using packet filter ACLs, as depicted

in Figure 5.85. Packets in the direction from the server to the client are matched by

filter-acl SLOW-SSH-IN as they are sent by tcp-proxy SSH to the internal network.

This filter-acl matches packets sent (direction out) on interface INT, from any

server IP address and from the server port 22. The packets are accepted and queued via

queue INQ-SLOW. Similarly, filter-acl SLOW-SSH-OUT matches packets in the direction

from the client to the server as they are sent by tcp-proxy SSH to the external network. It

matches packets sent (direction out) on interface EXT, to any server IP address and to the

server port 22. The packets are accepted and queued via queue OUTQ-SLOW.

Figure 5.86: Traffic shaping by proxy ACLs

The HTTP communication speed cannot be limited by the packet filter, because the de-

sired conditions for queue selection cannot be expressed in a filter-acl. Hence, we utilize

the possibility to specify a queue in an ACL of a proxy. In Figure 5.86, request-acl SLOW

matches response data returned by Web servers for requests issued by clients from the subnet

192.168.10.0/25 each day between 8 and 22 hours. Requests with URI path beginning with

the string /download are exempted from traffic shaping. The matching response data are queued

to client-altq INQ-SLOW as they are sent to the client by the proxy. If we wanted to limit

207

CHAPTER 5. ADVANCED FEATURES

speed of request data sent by the client, we would use server-altq OUTQ-SLOW to queue data

when they are sent to the server by the proxy.

There are several ways how to check that traffic shaping is working correctly. The command

pfctl -s queue -v executed on the shell command line displays the numbers of packets and bytes

passed via individual queues. The proxy online monitoring, described in Section 5.6.3, reports

the current data transmission rates of all active sessions. The amount of transferred data and the

session duration are reported in a SESSION-END log message for each terminated session.

5.22 Virtual Private Networks — OpenVPN

Kernun UTM supports creation of virtual private networks using OpenVPN. There can be any

number of the virtual networks configured for a single Kernun UTM system. Each instance is

described in its own openvpn section of the configuration. When applied to the system, each

instance is displayed in the GKAT as a running application.

Each OpenVPN instance uses an interface, TUN or TAP. The interface, referenced from the

openvpn section by item openvpn.interface, is dedicated to the particular openvpn instance.

When applied to the system, the interface is displayed separately from the openvpn application,

among other interfaces in the system. Data that comes from the virtual network and is sent to

the virtual network appears at this interface (or is sent to it). An example of GKAT window

with OpenVPN-related components is depicted in Figure 5.87. There is an OpenVPN instance

OPENVPN-RAS and its related interface OPENVPN-RAS-IF, which serves as the Remote Access

Server (RAS). Another OpenVPN instance is OVPN-BRANCH, which provides a virtual link to

branch.

Figure 5.87: OpenVPN components in a GKAT window

Examples of the OpenVPN configuration described here are available in the sample configura-

tion file /usr/local/kernun/conf/samples/cml/openvpn.cml.

208

5.22. VIRTUAL PRIVATE NETWORKS — OPENVPN

5.22.1 Remote Access Server

Remote Access Server is an OpenVPN server that allows creation of Virtual Private Network

between clients outside the company (Road Warriors) and the company server. These clients, if

properly configured, can access internal resources (servers) that are not accessible via the external

interface, as if the clients were located inside the company. In this chapter we will configure

OpenVPN Remote Access Server to create the virtual network using a wizard, which can be

started using Insert | Configuration wizard | OpenVPN Remote Access Server. Ways of granting

road warriors access to the internal resources are outlined in Section 5.22.3.

OpenVPN creates a virtual device, and all the VPN communication goes through this device

and is encrypted/decrypted. After choosing the section names, we need to decide whether to use

the tap, or the tun interface. TAP works with Ethernet frames and is used to create a network

bridge, while TUN works with IP packets and is used with routing. We opt for tun and choose

an unused device number, 1 in our case. Then we need to define the virtual network, in which

the server and clients will communicate. We choose [10.8.0.1/24], thus assigning the server

(us) IP address 10.8.0.1. It is very important to choose a network address that does not collide

with any other network, from which the client would connect. Finally, we specify the virtual IP

address that will be assigned to the other point of the tunnel; we choose 10.8.0.2. The result

is shown in Figure 5.88.

Figure 5.88: RAS: Virtual network settings

On the second page we choose the IP address to bind the openvpn server to. We choose the

option any, which listens on all the interfaces in the system. The other option, addr, allows the

user to specify a single address for binding. We leave the port option set to the default value,

1194. OpenVPN is typically used with the UDP protocol. The result is shown in Figure 5.89.

OpenVPN is used to create secure connection, and therefore needs to authenticate the con-

nected clients. We need to define a certificate of the used certification authority, a server certificate

and a key signed by this authority. As we have these certificates in separate files in the PEM for-

mat, we check the second radio button on the third page of the wizard and create new shared

files by clicking the icon and selecting the Create new shared-file option. A dialog depicted

209

CHAPTER 5. ADVANCED FEATURES

Figure 5.89: RAS: Physical network settings

in Figure 5.90 opens. There we set the shared-file name and upload a local certificate file

to Kernun UTM. We do not have any certificate revocation list (a list of compromised client

certificates) and we leave the Diffie Hellman parameters unchanged (the parameters are already

distributed with Kernun UTM and this parameter is not a secret). Finally, the third page should

look like Figure 5.91.

Figure 5.90: Shared file creation dialog

On the Client settings page we can control the interaction between the clients and the server,

and among clients. We allow clients to connect among each other and we specify that we accept

only connections from clients configured on the clients. In the bottom part of the window, we

configure two clients, client1 and client2, and set the IP addresses to be pushed to them.

If we do not specify the IP addresses, they will be assigned automatically. On the first page, we

chose the tun interface, which creates a /30 network for each client. In each of these networks,

the 0. address is the network address, the 3. address is the broadcast address and the middle

two remain for the server and client. Therefore, we need to choose one of these middle two IP

addresses for the clients, for example [10.8.0.10] and [10.8.0.14]. The tap interface

does not create such networks, so if we chose it, we would be able to choose the IP addresses freely

from the specified [10.8.0.0/24] network (except the network, broadcast and the server ones). In

the middle part of the page there are several IP addresses that can be pushed to each connected

client; we choose to push only the default gateway. The resulting page is depicted in Figure 5.92.

210

5.22. VIRTUAL PRIVATE NETWORKS — OPENVPN

Figure 5.91: RAS: Authentication settings

Figure 5.92: RAS: Client settings

211

CHAPTER 5. ADVANCED FEATURES

Finally, on the Miscellaneous page, we can modify the predefined timeouts, encryption algo-

rithm, compression and log level. In our example, however, we leave the default values of these

parameters and proceed to the recapitulation, where we can check the selected choices and either

finish the wizard, or return back to previous pages and modify them. The resulting OpenVPN RAS

along with the OpenVPN Net2Net configuration can be found in the sample file openvpn.cml in

the /usr/local/kernun/conf/samples/cml directory. The resulting configuration is shown

in Figure 5.93

Figure 5.93: RAS OpenVPN wizard: The resulting configuration

RAS Client Configuration

In order to create a configuration for the client to make it able to connect to the created RAS

server, it is first necessary to create the client certificate and key with the certification authority

that is used for the OpenVPN, and get the certificate of the authority and the two created files to

the client computer. Then we create the configuration file of the openvpn program and start the

openvpn daemon with this configuration file on the client. An example of the configuration file:

we are a client

client

name of the device on the client computer, needs

to be the same type as on the server (tun/tap)

dev tun1

communicaton protocol

proto udp

remote access server hostname (or IP address) and port

remote kernun.kernun.com 1194

212

5.22. VIRTUAL PRIVATE NETWORKS — OPENVPN

certificate of the Certification Authority (the same

as on the server

ca /etc/openvpn/keys/ca.crt

client certificate file and key signed by the CA

cert /etc/openvpn/keys/lj.crt

key /etc/openvpn/keys/lj.key

additional options

resolv-retry infinite

nobind

comp-lzo adaptive

5.22.2 Network to Network

OpenVPN can be used to create a secure point-to-point connection either between two Ker-

nun UTM systems, or between a Kernun UTM system and another system. A virtual point-

to-point tunnel interface tun is created in the system.

This chapter covers the procedure of configuring the point-to-point connection using the Open-

vpn Network to Network wizard (Insert | Configuration wizard | Openvpn Network to Network wizard).

Suppose we want to establish an OpenVPN connection between systems fw and branch. Let

us show the configuration for fw ; the other side is to be configured complementarily.

We start with describing the parameters of the virtual network to be created (see Figure 5.94).

We choose a name for the openvpn section (OVPN-BRANCH) and for the respective interface

(OVPN-BRANCH-IF), the ID of the tun interface (5), and the IP addresses to be assigned to

the virtual ends ([192.168.155.1/32] and [192.168.155.2]). Note that the local end is

specified with the /32 mask.

Important

The IP addresses of the virtual endpoints can be chosen almost arbitrarily. However, the

address should be chosen so that it does not collide with any of the used/accessible networks.

Important

The TUN interface should be used in the point-to-point mode. In this mode, the mask /32

should be used for the local peer virtual address, which denotes that no subnet should be

routed into this interface by default. If a different mask was specified, an implicit route for

the given network would be created.

On the following page of the wizard (see Figure 5.95) we set the physical network parameters:

the protocol to be used (UDP), the local address and port the OpenVPN server would listen on

(the external IP address ˆsystem.EXT.ipv4.host and port 2194). We also set the remote

host to be branch.tns.cz, port 1194. Finally, we add the network [192.168.25.0/24] to

be routed through this tunnel

19

.

19

Given that this is the network that is used in branch.

213

CHAPTER 5. ADVANCED FEATURES

Figure 5.94: Net-to-Net OpenVPN wizard: Virtual network settings page

Figure 5.95: Net-To-Net OpenVPN wizard: Physical network settings page

214

5.22. VIRTUAL PRIVATE NETWORKS — OPENVPN

The following page of the wizard (see Figure 5.96) is used to specify authentication options.

We can choose between the TLS mode

20

and the Preshared static key file

21

. We have chosen

to use the TLS-Server mode and provided the CA certificate, the Local certificate and the Local

private key. Finally, on the last page, we can adjust miscellaneous settings; we keep the default

values.

Figure 5.96: Net-To-Net OpenVPN wizard: Authentication settings page

The resulting configuration is depicted in Figure 5.97. We have shown the configuration for

one of the peers; the complementary configuration should be used on the other.

5.22.3 Accessing the virtual network

We have shown how to create virtual connections between peers (1:N in Section 5.22.1 or 1:1 in

Section 5.22.2). If the network traffic is supposed to “go through” the Kernun UTM system, it

must be explicitly configured so. There are several ways to achieve this.

One way to set the policy for the network traffic that comes through the virtual network is

to provide a proxy for each service that should be accessible from the other side of the virtual

network. The proxy would be configured like any other regular proxy.

Another method of interconnecting two (or more) networks is to arrange ip-forwarding among

them. See Section 5.1.4 for more details.

20

Either a single PKCS12 or the tuple of PEM files (certification authority’s certificate, local peer’s certificate and

the local peer’s private key) should be specified. In this case, one peer must be specified to be the TLS server,

and the second to be TLS client.

21

The same secret key is supposed to be used for both peers. It can be generated from the “Create new shared

key” dialog.

215

CHAPTER 5. ADVANCED FEATURES

Figure 5.97: Net-To-Net OpenVPN wizard: The resulting configuration

5.22.4 Logs

Logs of the openvpn process are stored in the system log (/var/log/messages). Logs generated

by the Kernun OpenVPN parent and other auxilliary processes are stored in the Kernun log

(/var/log/kernun-debug).

5.23 Virtual Private Networks — IPsec

Kernun supports IPsec in the transport and tunnel modes, using the ESP protocol. In the trans-

port mode, Kernun requires a tunnel (GIF or GRE) interface and uses IPsec to encrypt the

encapsulated traffic passed via this interface. In the tunnel mode, IPsec encrypts traffic between

the specified networks. IPsec in Kernun consists of several parts, represented by components in

GKAT. IPsec packets are handled by the operating system kernel according to the SPD (Secu-

rity Policy Database) and SAD (Security Association Database). The SPD entries for individual

IPsec tunnels are controlled by the ipsec Kernun components. Security associations are created

by ISAMKP daemon Racoon, presented also as a separate component.

A GKAT window with IPsec-related components is depicted in Figure 5.98. There is a GIF

tunnel network interface called GIF-IPSEC, which is used by the IPsec tunnel represented by the

TRANSPORT component. Another IPsec tunnel, the TUNNEL component, uses IPsec in the tunnel

mode (without a related tunnel interface). The RACOON component is the ISAKMP daemon.

The examples of IPsec configuration described here are available in the sample configuration

216

5.23. VIRTUAL PRIVATE NETWORKS — IPSEC

Figure 5.98: IPsec components in a GKAT window

file /usr/local/kernun/conf/samples/cml/ipsec.cml.

5.23.1 IPsec Configuration

Figure 5.99: IPsec configuration

The resulting IPSec configuration in both modes is shown in Figure 5.99. When applied, IPsec-

related components GIF-IPSEC, RACOON, TRANSPORT, and TUNNEL will be created and become

visible in GKAT (see Figure 5.98). For IPsec in the transport mode, the configuration contains

the tunnel interface GIF-IPSEC. Its configuration section defines the interface device name, local

and remote logical IP addresses, and the tunnel addresses (the physical IP addresses used for the

encapsulation of tunneled packets). Section ipsec-global can contain global parameters of the

ISAKMP daemon. There is a section for each IPsec tunnel. Section ipsec TRANSPORT config-

217

CHAPTER 5. ADVANCED FEATURES

ures IPsec in the transport mode for encryption of packets travelling via interface GIF-IPSEC.

The authentication utilizes X.509 certificates. Other ISAKMP phase 1 and phase 2 parameters

have the default values. Section ipsec TUNNEL sets up IPsec in the tunnel mode. It is not

related to any network interface, hence the networking parameters — local, remote, and tunnel

(physical) addresses, set of protocols handled by IPsec, and security association mode — are de-

fined inside the ipsec section. A pre-shared secret key for authentication is specified. Again, the

remaining ISAKMP parameters have the default values.

5.24 High Availability Clusters

To reduce the risk of system failure, Kernun UTM allows to build hot stand-by clusters. As the

name suggests, apart from the main Kernun UTM system, there is a copy of it, usually equipped

with the same features and configuration, ready to step up and start handling the communication

automatically if the main node fails.

Important

When running Kernun in the virtual environment (like VMWare, VirtualBox, Hyper-V etc.),

the network adapter to be used for the shared IP address MUST be set the Promiscusous

Mode.

VirtualBox: Settings -> Network -> Adapter -> Promiscuous Mode: Allow All

Microsoft Hyper-V: Settings -> Network Adapter -> Advanced Settings -> Enable Spoofing

of MAC Addresses

VMWare vSphere: ESXi/ESX Host -> Configuration -> Hardware -> Networking -> Prop-

erties -> Edit -> Security tab -> Promiscuous mode -> Accept

Citrix Xen 6.5: no special settings needed

In this chapter, we assign the systems labels “node A” and “node B”. The system that is

currently in charge of traffic control is called master node within the cluster, while its idle peer

is backup node. Under normal circumstances, node A is master and node B is backup. Naturally,

both nodes must be connected to the same networks, so we assume that the number of active

network interfaces on both nodes is the same. Figure 5.100 illustrates a typical cluster topology

consisting of nodes fw-a and fw-b, securing communication between an internal network (let us

call it INT) and the external network—Internet (EXT).

As we can see, at least three IP addresses are needed for each network to build a two-node

cluster; each node must have its own IP address, and a shared cluster IP address must be present.

For example, in the network INT, node A has got IP address 10.0.2.1, node B 10.0.2.2, and

the shared cluster address is 10.0.2.3. In the external network, node A has been assigned the

address 192.0.2.1, node B 192.0.2.2, and the shared address is 192.0.2.3.

There also needs to be a special “heart-beat” link (simple ethernet connection between nodes)

for cluster nodes to see each other. A dedicated deamon pikemon listens on this interface on

both nodes and informs each other of their state and priority. In this example node A has address

169.254.1.1 and node B has address 169.254.1.0.

218

5.24. HIGH AVAILABILITY CLUSTERS

Figure 5.100: Simple cluster with two nodes and two networks

Important

The pikemon daemon determines his peer address on heart-beat network by performing

XOR on the last bit of his own IP address. If unsure which addresses to choose, use addresses

from this sample configuration.

It would be tedious to keep configurations of both cluster members up-to-date. To simplify

cluster administration, Kernun UTM makes it possible to specify multiple system sections in

the same configuration file. Normally, such a configuration file resides one of the nodes, say node

A in our example. When the configuration is to be applied, we need to recognize which of the

systems is local and which is remote, and how to reach the remote system. The apply-host

configuration directive serves this purpose. If not present, the system configuration is applied

locally. Otherwise, its parameter specifies the host name or address and the SSH daemon’s port

the system configuration should be applied to. Figure 5.101 illustrates the use of the apply-host

option.

Figure 5.101: apply-host is used to distinguish the local system from the remote one

The existence of two system configurations in the same file would not relieve us of the burden

of keeping both system configurations up-to-date. We shall use a section variable (as defined in

Section 4.1) to simplify cluster administration further.

First, let us create a system variable called CLUSTER. Figure 5.102 shows its definition. Apart

from its name, there are four parameters that distinguish individual nodes of the cluster:

219

CHAPTER 5. ADVANCED FEATURES

Figure 5.102: Definition of system variable CLUSTER

220

5.24. HIGH AVAILABILITY CLUSTERS

• sysname — The name of the system.

• int_addr — The internal IP address of the system (not the shared one).

• ext_addr — The external IP address of the system (not the shared one).

• heartbeat_addr — The heart-beat IP address of the system.

The system variable CLUSTER includes what both nodes have in common, which is practically

the whole of their configuration. They differ only in the four parameters described above, and in

the way the configuration is applied. The parameters are used on their appropriate places within

the CLUSTER definition, as shown in Figure 5.103. For instance, the $sysname parameter is

used within the hostname directive to define the system’s host name (the row marked ❶). The

real internal address, specified in parameter $int_addr, is used inside the interface INT-ETH

definition (row ❷). Similarly, parameter $ext_addr is used to specify the IP address of interface

EXT-ETH (row ❸) and $heartbeat_addr is used for interface HEART-BEAT (row ❹).

Figure 5.103: Usage of parameters inside CLUSTER definition

The section variable CLUSTER defined above needs to be referenced to use its contents to define

a real Kernun UTM system. Upon referencing the variable, its parameter values must be filled in.

221

CHAPTER 5. ADVANCED FEATURES

In our example, we use the variable CLUSTER twice to define two nodes: system fw-a and system

fw-b, as depicted in Figure 5.104.

Figure 5.104: Use of variable CLUSTER to define two nodes

Cluster functionality, as described above, ensures that if node A fails, node B takes over

automatically, causing minimal communication blackout (a few seconds at the most). However, if

the failure is related only to one of the network interfaces (i.e. switch port fault, cable or network

interface failure), say on interface EXT of node A, we would end up with node A still being master

for network INT, but node B being master for network EXT. This is incorrect, as packets going

from internal clients out would go through node A (master for the internal network), which is not

properly connected to the external network.

222

5.24. HIGH AVAILABILITY CLUSTERS

To handle such conditions, Kernun UTM makes it possible to tie cluster interfaces together. A

self-detector monitors the state of its interfaces by pinging other hosts on all relevant networks. By

pinging a remote host, Kernun UTM makes sure that the network interface is working properly,

including cabling and switch port.

Figure 5.105: Definition of pikemon and virtual clusters

Shared IP addresses (alias “virtual ip addresses” or “cluster addresses”) are not bound to any

physical network interface, instead they are assigned to a virtual bridge interface (row ❺)

22

.

The pike item (row ❻), binds particular virtual interface to a physical one. As the virual IP

can migrate from one node of cluster to another, it is necessary for both nodes to advertise same

MAC address for this IP, as defined in mac item (row ❼).

Important

For the shared IP address to migrate properly, it is necessary on some switched to allow one

MAC address to be present on multiple switch ports. On Cisco switches, this requires setting

the port-security option off for those ports.

The pikemon section defines one or more virtual clusters and a listen socket for it’s daemon

to listen on (row ❽). You can choose any free port on the HEART-BEAT interface.

22

The interface is created automatically when used in an interface.dev item.

223

CHAPTER 5. ADVANCED FEATURES

The virtual-cluster section (row ❾) defines a logical group of virtual IP addresses and

their properties. In this example we want the EXT and INT interface to be part of one virtual

cluster, so that in case of disruption of communication of one node with internal network, the

node also give up it’s master role on EXT interface. Such disruption is detected by timeout of

ping request for defined group of hosts. When more addresses are defined in one ping item, all

of these addresses must fail to respond to ping request for a cluster node to lower it’s priority. In

this example, unavailability of 198.51.100.22 will result in a node loosing master role, on the

contrary unavailability of 10.0.2.11 would not, because all of the 3 hosts in the second ping

item must be down.

Tip

When choosing hosts for cluster monitors, take into consideration that the remote host

should be always up. The best choice is a router or switch, network servers being the next

best option.

Next, we define a switch command (row ❿) which enables us to use different configuration

for each node (fw-a and fw-b). We set node A (fw-a) to by primary node of this sample cluster.

In the virual-cluster section, it is possible to influence another aspect of cluster behavior.

Suppose node A had a failure, and node B has become master. Once node A is recovered, node B

could either remain the master node, or hand the master status back to node A. By default, the

former is true, but we may force the latter by adding the preemptive directive.

Tip

It is highly recommended to use the preemptive option in all cluster configurations.

Important

In cluster configuration, both transparent and non-transparent proxies need to listen on

the virtual bridge interface (INT and EXT interfaces in this sample). The same

applies to all packet-filter rules except for nat-acls which must be set on

physical network interface (INT-ETH or EXT-ETH). It is also suitable for some ser-

vices to listen on physical interface addresses. for example SSH daemon should lis-

ten on physical IP address, so it would be possible to connect to both nodes. See

/usr/local/kernun/conf/samples/cml/cluster.cml for more examples.

5.24.1 Controling multiple systems from GUI

In order to control more systems from a single GUI, set up the following daemons: icamd(8) and

icasd(8). The master (icamd) allows the slaves (icasd) to be controlled. The situation is shown in

Figure 5.106: the GUI is connected to the system pha (bold font in the tree view). The systems

pha-b and bno can be controlled, because they are connected to the system pha via icamd/icasd.

224

5.24. HIGH AVAILABILITY CLUSTERS

Figure 5.106: Multiple systems can be controlled using icamd / icasd daemons

There is a simple way to setup icamd/icasd daemons for the cluster of two systems. Both

daemons are configured by the single item SYSTEM.ica-auto. See Figure 5.107. The rsa key

pair is provided for mutual authentication. The communication port is provided.

The more complicated topologies are described in the configuration explicitly by the configu-

ration of the icamd/icasd daemons, as shown in Figure 5.108: The configuration for two systems

(pha-a and pha-b) is provided. They can control each other. Morover, there is a third system

(bno), which is also connected via icamd/icasd (but system bno does not share the configuration

with pha-a and pha-b). The configuration is symetric for pha-a and pha-b. Both define the icamd

(for being able to control the other systems), and icasd (for being controlled by the other systems).

The ssh-key pair is provided for each system’s icamd and each system’s icasd (6 key pairs in total:

3 key pairs for icamd daemons, 3 key pairs for icasd daemons). The listen port is provided for the

icamd daemons. The address and port is provided for each icasd’s master section.

5.24.2 Sharing the configuration among systems

Should the configuration be shared among several Kernun systems (for example in the clusters

(Section 5.24) or KBA (Section 5.25), the SYSTEM.config-sync configuration item should be

used. This item implies that the configuration is automatically synchronized to the remote system,

whe being remotely applied.

225

CHAPTER 5. ADVANCED FEATURES

Figure 5.107: Simplified icamd/icasd configuration using item ica-auto

226

5.24. HIGH AVAILABILITY CLUSTERS

Figure 5.108: Full icamd/icasd configuration

227

CHAPTER 5. ADVANCED FEATURES

5.25 Kernun Branch Access

Kernun Branch Access is a device with the primary task to provide a remote branch of a company

with a secure connection to a central Kernun UTM. In addition, Kernun Branch Access provides

another security features for the perimeter of the network such as network packet filtering and

VPN. Optionally, the device can also serve as a Remote Access Server for VPN. Kernun Branch Ac-

cess is designed to be used together with Kernun UTM and should not be used separately.

5.25.1 Description and Plug-in

Figure 5.109: A schema of the front and the back face of Kernun Branch Access

1. Status LEDs (1a, 1b, 1c) — Three LEDs, which are intended to indicate the status of some

key functions of the device.

2. Button — Serves for confirming configuration application and starting the Remote Help Ser-

vice. In order to press the button, use a paperclip or a similar tool.

3. A serial console connector

4. Ethernet ports (4a, 4b, 4c) — Kernun Branch Access is equipped with three Ethernet ports.

The ports serve for connecting the device to LAN and WAN.

5. USB ports — Kernun Branch Access is equipped with two USB 2.0 ports.

6. Power supply input

In order to power Kernun Branch Access on and connect it to the network properly, the

following steps should be taken:

• Plug-in a power supply connector to the power supply input (6)

• Plug-in an Ethernet cable connected to LAN into an Ethernet port (4b)

• Plug-in an Ethernet cable connected to WAN into an Ethernet port (4a)

228

5.25. KERNUN BRANCH ACCESS

5.25.2 Installation

In order to install Kernun Branch Access, you need a Kernun Branch Access installation medium

23

.

Since the device is equipped with serial console output only, it is also necessary to modify instal-

lation process according to the guide described in Section 2.5.5. After this modification, the

operating system will output to serial console while booting and the installation will be similar to

the installation of Kernun UTM from standalone installer described in Section 2.5.1.

5.25.3 Configuration

Configuration of Kernun Branch Access can be performed in two different ways:

1. Initial configuration using a USB flash drive, which is typically applied when

Kernun Branch Access is configured for the first time.

2. Standard configuration applied remotely from a central Kernun UTM.

Both of the configuration options will be described in the following sections.

Initial Configuration

Kernun Branch Access is usually supplied in the form of a compact device configured to default

factory settings. Since the supplied device has no active network connection available yet, no

remote configuration technique similar to the one described in Section 5.24 can be used. In order

to configure the Kernun Branch Access for the first time, it is necessary to apply the configuration

using a USB flash drive.

The procedure consists of two steps. Firstly, the configuration for Kernun Branch Access is

defined on the central Kernun UTM and then, using a series of commands, it is exported into a

special configuration file. Secondly, the exported file is copied to an arbitrary USB flash disk and

the disk inserted into one of USB ports on the device. The whole procedure is described in details

in the following paragraphs:

1. Exporting a configuration file from a central Kernun UTM

• Defining configuration for Kernun Branch Access on central Kernun UTM

The configuration is defined as a single system section (see Section 4.2.2 for more

details on system configuration basics).

• Generating and exporting the system configuration into a file using the kat(8) com-

mand line tool

The tool can be launched either directly using an SSH remote access to the terminal of

the central Kernun UTM or by pressing the GUI Console icon (marked as number 6 in

Figure 3.14).

23

You can use dd on Linux / BSD or https://github.com/openSUSE/kiwi/downloads on Windows to copy

the USB flash drive image to the device.

229

CHAPTER 5. ADVANCED FEATURES

KAT@central-utm> cml

CMLR-710-K File ’/usr/local/kernun/conf/kernun.cml’ loaded

CML> /generate

...

CKGB-710-N ---- Preparing files for system ’kba-office’...

...

CKGB-719-N ---- System ’kba-office’ successfully generated

CML> /quit

CMLI-709-N CLI interactive mode closed

KAT@central-utm> export kba-office

CMLK-821-N [root] Exporting ’SYSTEM-kba-office’ configuration

Exporting configuration to /root/SYSTEM-kba-office.tar

tar: Removing leading ’/’ from member names

KAT@central-utm> quit

After applying the export function, the configuration file named

SYSTEM-kba-office.tar should be exported to the home directory of the user

who launched the command.

• Transporting the generated file to the administrator manipulating the

Kernun Branch Access.

In case the administrator who generated the configuration file does not have physical

access to Kernun Branch Access, the file must be transported to the administrator

manipulating the device itself. It might, for example, be sent by an e-mail.

2. Preparing and inserting the configuration USB flash drive into Kernun Branch Access

Once the configuration file is exported and delivered to the administrator having physical

access to Kernun Branch Access, the following steps should be taken:

• Copy the configuration file (e.g. SYSTEM-kba-office.tar) to the root directory of

an arbitrary USB flash drive

• Insert the USB flash drive into one of USB ports of Kernun Branch Access (5)

After inserting, the device will beep once shortly and then wait 30 seconds for confirming

the application by pressing the button (2). If the timeout runs out, the device will beep

nine times shortly and no configuration will be applied. In such case, the USB flash

drive must be reinserted and confirmed.

• Confirm the configuration by pressing the button (2) with a paperclip or a similar tool

If the button is pressed, the device beeps three times shortly and automatically starts

the configuration process. If the process succeeds, the device beeps once longly, other-

wise it beeps three times longly.

• After successful configuration, the network connection with central Kernun UTM should

be established and Kernun Branch Access can be further configured remotely using the

process described in the following section.

230

5.25. KERNUN BRANCH ACCESS

Note

The way of configuration using a USB flash drive is primarily intended for setting the very

first configuration, when Kernun Branch Access has no network connection with the central

Kernun UTM available. However, it may be reused arbitrarily when needed in the future.

Remote Configuration

If the initial configuration using a USB flash drive has already been successfully applied, Ker-

nun Branch Access can be further configured remotely. The desired configuration can be prepared

as a standalone system on the central Kernun UTM with apply-host configuration directive

applied. Instructions for proper setting and applying the apply-host directive can be found at

Section 5.24.

5.25.4 Diagnostics and Troubleshooting

Kernun Branch Access is intended to operate without a monitor or any kind of a administrator’s

console. Therefore, it has only limited possibilities to indicate its current state or communicate

with users and administrators. Three build-in LEDs serve for basic diagnostics of the key functions

of Kernun Branch Access. In this section the meaning and the purpose of each LED will be

described. It will also be explained how the Remote Help Service can be started and what its

purpose is. Finally, steps to be taken in order to reset the device back into the default factory

settings will be described.

Status LEDs

Kernun Branch Access is equipped with three LEDs, which are intended to indicate the status of

some key functions of the device. The meaning of each LED is as follows:

• The left LED (1a)

Indicates whether Kernun Branch Access is powered on. If so, the diode should light con-

tinuously without interruptions.

• The middle LED (1b)

Indicates a status of all configured KBA components after a boot of the system. After the

system boots, the diode starts to blink, which indicates that the KBA components are being

verified. If all the components are successfully started, Kernun Branch Access beeps once

long and the diode starts to light continuously. If not, Kernun Branch Access beeps three

times long and the diode turns off.

• The right LED (1c)

Serves for indicating a status of the Remote Help Service. When the service is started by

pressing a Remote Help Service button (see Section 5.25.4), the diode will blink quickly

until the service is ready (the process should not last longer then 60 seconds). If the service

was started successfully, the diode should begin to light continuously, if not, it turns off.

231

CHAPTER 5. ADVANCED FEATURES

Similarly, when the service shuts down, the diode begins to blink until the process is finished

and then it turns off.

Remote Help Service Button

The Remote Help Service is a service allowing the technicians of the manufacturer of Kernun UTM

temporary access to Kernun Branch Access in order to diagnose and maintain it remotely. The

service can be both started and stopped by pressing the button located on the front side of the

device. The entire starting procedure consists of the following steps:

• Press the button (2) with a paperclip or a similar tool for 5 seconds.

• The right LED (1c) starts to blink.

• When the right LED begins to light continuously, the Remote Help Service was started

successfully. The diode will light all the time the service will be active.

5.26 IPv6

Kernun UTM supports IPv6 since version 3.5. An example of an IPv6-enabled configuration can be

found in the sample configuration file /usr/local/kernun/conf/samples/cml/ipv6.cml.

It is a dual-stack configuration with IPv4 and IPv6 enabled both in the internal and the external

network. Clients from the internal network can access HTTP and SSH servers in the external

network. For a transparent (HTTP or SSH) proxy, the target server IP address is taken from the

destination address of the client’s connection. Hence the same IP version is used by the client and

the server. In the case of the non-transparent HTTP proxy, the target server name is passed by

the client to the proxy in the request URI. The proxy resolves the name and establishes connection

to the server. Hence an IPv4 client can access an IPv6 server and vice versa.

Figure 5.110: IPv6 interfaces

The configuration of network interfaces is depicted in Figure 5.110. There are three interfaces:

LOOPBACK is the standard system loopback interface; INT and EXT are the internal and the

external Ethernet interfaces, respectively. IPv6 support in Kernun UTM is enabled if at least

232

5.26. IPV6

one IPv6 address is assigned to any network interface in the configuration

24

. IPv6 addresses are

defined by the ipv6 item. It is also possible to specify IPv6 aliases by the alias section. By

default, Kernun UTM operates as an IPv6 router, but it does not send router advertisements.

Router advertisements can be turned on and their parameters can be set for an interface in the

ipv6-rtadv section.

Figure 5.111: IPv6 networking parameters

Some global IPv6-related networking parameters are depicted in Figure 5.111. The resolver

section defines the name server address

25

. A single domain name can be resolved to an IPv4 or

an IPv6 address. The preference item selects, which resolved addresses will be used. There

are four possibilities: use IPv4 and ignore IPv6, use IPv6 and ignore IPv4, use both and prefer

IPv4, or use both and prefer IPv6. The last choice is used in the sample configuration. The

default is to prefer IPv4. The routes section defines the default IPv4 and IPv6 routes. It is also

possible to add static routes to IPv4 and IPv6 networks by the static item. The ipv6-router

item enables or disables forwarding of IPv6 packets. IPv6 forwarding is enabled by default,

so this item can be omitted. The ipv6-rtadv section defines default values for IPv6 router

advertisements. These defaults can be overriden by an interface.ipv6-rtadv section. In

the example configuration, router advertisements are configured so that they provide address and

default route autoconfiguration and DHCPv6 is not used.

The sample IPv6 configuration contains HTTP and TCP proxies, depicted in Figure 5.112.

Their configurations are similar to IPv4-only proxies. The only differences are IPv6 addresses in

the listen-on items and in acl INTOK.

IPv6 addresses can be used in place of IPv4 addresses in many other places in the Kernun UTM

configuration. It is possible to use other proxies for IPv6 communication, as well as define IPv6

packet filter rules and IPv6 IPsec VPN connections. We do not show configurations of these

components here, because they are essentially the same as the respective IPv4-only configurations.

DHCPv6 server is configured in the dhcp6-server section, in a way similar to DHCPv4 server

in the dhcp-server section. Fixed IPv6 addresses and AAAA DNS records can be defined by

entries in the hosts-table section.

There are also some important differences and limitations of IPv6. Destination IPv6 address

24

Note that in addition to explicitly assigned addresses, each interface has a link-local IPv6 address assigned

automatically by the operating system.

25

In this sample configuration, a local caching nameserver chained to the DNS proxy is used.

233

CHAPTER 5. ADVANCED FEATURES

Figure 5.112: Proxies with IPv6 support

must not be set for a point-to-point network interface (TUN, GIF, GRE). The GRE network

interface type does not support IPv6 tunnel addresses. OpenVPN cannot use IPv6 transport. The

mac value of an IPv6 entry of the hosts-table is interpreted as the host’s DUID.

5.27 Honeypot

The idea behind honeypot is to provide a resource valuable to attacker and by monitoring

attackers behaviour counteract his attempts to unauthorized use of information systems.

In an example scenario, we dedicate one public IP adress as "honeypot" address. This IP

address should not be referred in any DNS record and must not by referred in any web site or

elsewhere, so that we can assume only attackers automatically scanning all IPs attempts to

connect to this honeypot address. Automatic scans function generally in two modes.

Some scanners send TCP SYN packets to a range of IP addresses, immediately forget-

ing about it a detecting open ports by simply monitoring incomming TCP SYN+ACK packets (see

http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Connection_establishment

for explanation of TCP connection establishment). Other scanners attempts to complete TCP

handshake and eventually continue the scan on application level. Kernun UTM logs all attempts

to connect to honeypot and blacklists all IP addresses that completed TCP handshake. Once on

blacklist, any traffic (any protocol) on any network interface (not just honeypot address) from

that IP address is blocked.

Figure 5.113: Honeypot

The section honeypot is part of the packet-filter. The item non-transparent defines

234

5.27. HONEYPOT

on which address and ports should we listen for attacker’s connections. In this example it’s all

available ports. In whitelist we defined IP address of our monitoring server which should not

be placed on blacklist even if it connects to honeypot address. Finally timeout defines time

period (in seconds) for which IP address should remain in blacklist, after it became silent, i.e.

after there is no new connection from that IP address on any of our network interfaces.

235

CHAPTER 5. ADVANCED FEATURES

236

Appendix A

K e r n u n U T M R e f e r e n c e (1)

237

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

HtmlMatchPasswd.pm — encapsulates the databases of the HTML form value control

tool html-match-db(1) for storing two couples of credentials (internal username and password and

external username and password). It also keeps the logs of the actions over the particular accounts.

SYNOPSIS

HtmlMatchPasswd.pm -f root_dir [-bpSv] [-u iu] [-d log_level] { -a|

-C| -l| -L| -r| -R| -s| -n }

DESCRIPTION

Utility HtmlMatchPasswd.pm is used to manage password files (pairs of internal/external

usernames/passwords database) used by the data matching and processing module, see also

html-match-db(1), data-matching(7). It provides functions for adding, deleting, listing users,

setting the password, etc. It provides a perl package interface for accessing the database by other

programs (i.e., www user interface for changing the password by the users). While the command-

line interface is intended to be used by the administrator, the perl package interface also provides

functionality intended for the end users (check the old password before it can be changed, etc).

Two password files are kept: var/passwd.db and var/passwd. The first one (passwd.db)

keeps the database in the form it is used by the http-proxy (see data-matching(7)). The other file

(passwd) keeps more information (in particular, it stores the unencrypted local usernames), so

it is possible to change credentials, remove the user without knowledge of the internal password,

etc.

The activity of users is logged. Each user’s activity is logged in file

log/internal_username. You can view the log using -L.

Options

-a Add an user. Internal username, internal password, external username and external password

are asked to be entered.

-C Check the consistency of the two databases (see above). Use -R to repair inconsistency.

-l Print the list of internal usernames.

-L Show the user log. Use -u to limit the log to a single user. Without -u, the log of all users is

printed.

-r Remove a user. Only internal username is asked.

-R Checks the consistency of the two databases (see above). If an inconsistency is found, it is

repaired (HASH found only in passwd.db is removed from it, HASH found only in passwd

is added into passwd.db).

238

-s Set the credentials for an existing user. Internal username, new internal password, new external

username and new external password are asked.

-n Print the license limitations: used, free and total.

-f Specify the root of the HtmlMatchPasswd.pm file infrastructure.

Directories root_dir/var, root_dir/var/log, and files files

root_dir/var/lock, root_dir/var/passwd, root_dir/var/passwd.db,

root_dir/var/log/internal_username are eventually used. The var directory is

assumed to exist; the remaining ones are created if they do not exist. All of them must be

writable for any user that manipulates the databases.

-b Batch mode. Does not display prompts when asking questions, etc.

-d Set the log level explicitly. Otherwise, environmental variable LOG_LEVEL is used. Accept-

able values: 0–9.

-p When asking for password, the terminal ECHO is normally switched off so it is read silently,

without being displayed. This can be overriden by specifying -b.

-S When asking for the new internal password, its strength is not checked (and even a weak

password is accepted).

-u iu When displaying the user log (see option -L), limit it to the particular user.

-v More verbose mode.

Exit Code

The program returns exit code 0 if the command is successfully performed, and a nonzero if an

error occurs.

SEE ALSO

html-match-db(1), data-matching(7), http-proxy(8)

239

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

clear-web-db-update.sh — tool for updating the Clear Web DataBase

SYNOPSIS

clear-web-db-update.sh [-w] [-x]

DESCRIPTION

Utility clear-web-db-update.sh updates the Clear Web operational database, which is used by

the http-proxy(8) to categorize web pages. It relies on the clear-web-db(1) utility to manipulate

the database. It is executed periodically by cron(8) when automatic updates are configured.

Options

-w Waits random number of seconds (0..RANDOM_WAIT_MAX) before downloading the

database.

-x Skips downloading the database, only updates the appropriate files in proxy chroot directories.

Exit Status

The program returns the exit status 0 on success and nonzero after any error.

FILES

/data/var/clear-web-db/clear-web.db The standard location of the Clear Web

DataBase.

SEE ALSO

clear-web-db(1), http-proxy(8)

240

NAME

clear-web-db — tool for managing the Clear Web DataBase

SYNOPSIS

clear-web-db { -d| -n| -m }

clear-web-db { -o| -u| -s| -S } [db]

clear-web-db -l [-f] [db]

clear-web-db -c [locale]

clear-web-db -a [db] incr

clear-web-db -i [db] db2 incr

DESCRIPTION

Utility clear-web-db can be used to create, modify, and view the Clear Web operational database,

which is used by http-proxy(8) to categorize Web pages. It is usually called by program clear-

web-db-update.sh (1), which handles automatic periodic updates of the database.

URLs used by program clear-web-db consist of a server domain name followed by an optional

path, including neither the method, nor the port number. Example: www.tns.cz/index.html

is used instead of http://www.tns.cz:80/index.html.

Options

-o Reads the input textual data from the standard input and writes the operational database

into file db.

-u Reads the input textual data from the standard input and updates the operational database

in file db.

-i Creates the incremental update data between the operational databases stored in files db and

db2 and writes the result into file incr.

-a Applies the incremental updates from incr to database db.

-s Reads URLs, one per line, from the standard input, searches for them in database db, and

writes corresponding categories to the standard output. Each output line contains the nu-

meric bitmap of categories followed by a space-delimited list of category names.

-S Reads URLs, one per line, from the standard input, searches for them in database db, and

writes corresponding categories to the standard output along with the part of the URL that

was used to determine the categories. Each output line contains the numeric bitmap of

categories followed by the matching URL substring.

241

APPENDIX A. KERNUN UTM REFERENCE (1)

-l Lists the contents of database db. Each line of output contains a hash value, a bitmap of

categories, and a list of category names. When listing an incremental update data, records

to be deleted are listed as a hash value followed by the character “-”. If option -f is specified,

flags are displayed between the hash value and the bitmap of categories. A flags value is

an OR-combination of constants: 0x1 = there may be a record with a longer domain name

suffix, 0x2 = there may be a record with a longer path prefix, 0x4 = the record contains

categories (without it, the record is used only to continue with a longer domain or path

according to 0x1 or 0x2), 0x8 = denotes a record to be deleted (in an incremental update

only).

-d Reads URLs, one per line, from the standard input, and writes digests (hash values) to the

standard output.

-c Writes all known categories (numbers and names) to the standard output. If the locale argu-

ment is specified, the category name is localized into given locale.

-n Reads category bitmaps, one per line, from the standard input and writes the corresponding

lists of category names to the standard output.

-m Reads lists of category names from the standard input and writes the corresponding category

bitmaps to the standard output.

Exit Status

The program returns exit code 0 if the command is successfully performed, and a nonzero if an

error occurs.

FILES

/data/var/clear-web-db/clear-web.db The default database file used if argument db is

not specified on the command line.

SEE ALSO

clear-web-db-update.sh(1), http-proxy(8)

242

NAME

cluster-sync — tool for synchronizing files between cluster members

SYNOPSIS

cluster-sync [-n] [-d debug_level] -c cfg

DESCRIPTION

This script performs file synchronization between exactly two (cluster) members.

This script is expected to be executed regularly (i.e. from crontab). It connects to the remote

host, looks for changes made on the watched files and transfers the changes from one host to the

other. If the file is changed on both hosts, it is considered as the conflict. It is specified in the

configuration, which side is prefered in conflicts (CONFLICT_WINNER) below.

The hosts are expected to be interconnected by icamd/icasd daemons. See REMOTE_HOST

below.

Options

The values given on the command line have precedence over values given in the configuraiton file.

-c The configuration file to be used.

-d The debug level. Default is 6 (LOG_INFO). Increase it for more verbose logging. The script

logs to stdout and to /var/log/kernun-debug.

-n Perform a ’dry run’. No sync actions are performed, just log what would be done.

Configuration file

At least REMOTE_HOST and INCLUDE must be given. If the option can be specified both in

configuration file and on command line, the command line value takes precedence.

REMOTE_HOST=TARGET The ssh target to be used when invoking commands on the other

host.

Be sure to use the name defined in /etc/sshd/ssh_config.

There are many commands executed on the REMOTE host, so it is necessary for them to be

executed quickly. Daemons icamd/icasd provide fast connections since it takes advantage

of the ssh ControlPath feature.

INCLUDE="PATH1"[, "PATH2", ...] The list of the included files, directories or patterns.

The absolute path is given, and it must be preceeded by symbol ’.’.

Example:

243

APPENDIX A. KERNUN UTM REFERENCE (1)

INCLUDE="./var/log/kernun-stats.*.bz2", "./data/fake-cert/fake_ca/C*.*"

The values must be written in a comma separated list on a single row.

PRECMD="command" The command is executed to determine whether perform the synchro-

nization or not. Use PRECMD to prevent synchronization when it is not desired. For example

when the cluster is degraded.

The command can either be a script name or a simple shell script. It is passed to the perl

’system’ call.

No PRECMD is performed by default.

MINIMAL_AGE=seconds Only files that are older that MINIMAL_AGE are taken in account.

This should prevent repetitious copying of the files that are being written for longer period

(for examples the zipped logs).

Defaults to 0 (the files are synchronized regardless of their age).

LOCK=filename The lock file to be locked in order to start the synchronisation. If the lock cannot

be (exclusively) locked, the scripts exits immediately.

By default, the lock prevents the script to run more than once in parallel. It can also be

used by other programs not to run simultaneously.

CONFLICT_WINNER={LOCAL|REMOTE} Should the conflict appear, this option specifies whos

change wins. Defaults to LOCAL.

RM_STALED={0|1} Whether the staled temporary file should be automatically removed. De-

faults to 1.

DRY_RUN={0,1} Perform a ’dry run’. No sync actions are performed, just log what would be

done.

DEBUG_LEVEL=num The debug level. Default is 6 (LOG_INFO). Increase it for more verbose

logging. The script logs to stdout and to /var/log/kernun-debug.

SEE ALSO

icamd(8), icasd(8),

244

NAME

diskdb — tool for creating and querying file system content database

SYNOPSIS

diskdb cmd [-1CcDFMqrStvx] -d db [-d db] [-I filename ...] [-i

pattern ...] [-E filename ...] [-e pattern ...] [-L filename ...]

[-P filename ...] [-R dir] [path ...]

DESCRIPTION

Program diskdb manages a database of information about the contents of a file system. The

database contains a list of files and directories in the file system. For each file (or directory), the

remembered attributes are its name, metadata, size, and optionally checksum (only for regular

files, using cryptographic hash SHA256). The metadata include the file type, permissions, owner,

group, times (access, modify, change, create), file flags, and ACLs. For symbolic links, the link

target is also recorded. The database is in a textual format.

It is possible to select a subset of the whole file system directory in several ways:

• One or more paths can be specified on the command line or read from a file when creating

a database. The operation of the program is then limited to subtrees of the file system

hierarchy rooted at these paths. If a path is a directory, its whole subtree is processed by

default. If the path arguments are omitted, an empty database is created. If at least one

path argument or path file is specified for commands other than create, the operation of the

program is limited to these paths (either from arguments or from the file), without recursion

for paths denoting directories.

• Option -1 stops at a file system boundary, that is, mount points are not crossed when

creating a database.

• A list of inclusion and exclusion patterns can be defined. Each path encountered when

traversing a file system subtree is compared to the list. The first matching pattern controls

whether the path will be processed, or ignored. If no pattern matches, the path is processed,

unless -x is used. The pattern can contain shell pattern matching characters, but they

behave more like -path of find(1), that is, slash and dot characters (at a file name beginning)

do not have to be matched explicitly.

The list of patterns is composed of patterns defined by options -i and -e and patterns read

from files selected by options -I and -E. The ordering of options defines the ordering of

patterns in the list.

Inclusion and exclusion patterns work recursively, that is, including/excluding a directory

includes/excludes also its contents.

When a database content is displayed in textual form (by commands list, diff, and all

other database comparison commands), the output is sorted by paths component-wise. As this is

245

APPENDIX A. KERNUN UTM REFERENCE (1)

not the same as the lexicographic order, two such outputs cannot compared by command comm(1)

without being sorted by sort(1) first.

Commands

create Creates a new database by examining the current contents of the file system. This

command requires one -d option.

diff Compares a database with the current contents of the file system or two databases, and

writes the differences to the standard output. Each line of the output contains a single

character followed by a space and the file path. The first character is ’+’ for added files

(those existing only in the current file system or in the second database), ’-’ for deleted

files (those existing only in the (first) database), ’!’ for modified files (different in the first

database and the file system or the second database), ’d’ for files changed from non-directory

to directory (directory in the second database and some other file type in the first database),

’f’ for files changed from directory to non-directory (directory in the first database and some

other file type in the second database). This command requires two -d options.

diffequal Like diff, but reports (with prefix ’=’) also files that are equal in both databases.

added Like diff, but reports only added files, one path per line.

deleted Like diff, but reports only deleted files, one path per line.

changed Like diff, but reports only modified files, one path per line.

equal Like diff, but reports only equal files, one path per line.

dir Like diff, but reports only files changed from non-directory to directory, one path per line.

nondir Like diff, but reports only files changed from directory to non-directory, one path per

line.

setmeta Creates directories that are in the database, but do not exist in the filesystem. Directo-

ries are created as empty. Sets file and directory metadata according to the database. This

command requires one -d option.

show Outputs all information for selected files from the database in a textual format. This

command requires one -d option.

list Outputs paths (and no other information) for selected files from the database in a textual

format. This command requires one -d option.

Options

-1 When recursively descending a directory tree, it does not go into directories mounted from

different devices. It means that file system boundaries at mount points are not crossed.

246

-C When comparing two databases, it checks only file contents: size, checksum (modification

time is used instead of the checksum if -c is set), or target file (for symbolic links). File

system objects that are not regular objects or symbolic links are always treated as having

equal contents. By default, both contents and metadata are compared. File types are always

compared and files of different types are treated as different. This option is allowed only for

commands that compare two databases.

-c File checksums are not computed when used together with the create command and are not

checked when used with the diff or changed command. If a database does not contain

checksums, an attempt to use it for comparison without -M or -c set leads to an error.

-D Operate only on directories. This option cannot be used for command create and is mutually

exclusive with option -F.

-d db The name of the created or processed database file. This option is required once or twice,

depending on the command.

-E filename Adds patterns from file filename (or the standard input if filename is ’-’) to the

pattern list as exclusion patterns. The file contains one pattern per line. Blank lines and

leading/trailing whitespace are ignored. Lines whose first non-space character is a pound-

sign (#) are comments, and are ignored.

-e pattern Adds pattern to the pattern list as an exclusion pattern.

-F Operate only on file types other than directories. This option cannot be used for command

create and is mutually exclusive with option -D.

-I filename Adds patterns from file filename (or the standard input if filename is ’-’) to the

pattern list as inclusion patterns. The file contains one pattern per line.

-i pattern Adds pattern to the pattern list as an inclusion pattern.

-L filename Adds patterns from file filename (or the standard input if filename is ’-’) to the

pattern list. The file contains one pattern per line. Inclusion patterns are preceded by

characters "+ " (plus sign and space). Exclusion patterns are preceded by "- " (minus

sign and space). Blank lines and leading/trailing whitespace are ignored. Lines whose first

non-space character is a pound-sign (#) are comments, and are ignored.

-M When comparing files, it checks only metadata. By default, both file contents and metadata

are checked. Files types are always compared and files of different types are treated as

different. This option is allowed only for commands that compare two databases.

-P filename Adds paths from file filename (or the standard input if filename is ’-’) to the path

list. There is one path per line.

-q File names containing newlines are silently ignored when creating a database. If this option

not set and there are some file names that contain the newline character, a warning message

is reported at the end, and the program finishes with an error status.

Files that do not exist are silently ignored by command setmeta. If this option is not set,

missing files are reported. Missing directories are always created, regardless of -q.

247

APPENDIX A. KERNUN UTM REFERENCE (1)

-R dir Relative paths are relative to directory dir instead of the current directory. Used by

commands create and setmeta.

-r Turns off recursive descent into directories when creating a database. Only files specified

explicitly in the path list are processed.

-S Include sockets in the created database or output. Sockets are skipped by default, because

programs such as tar(1) cannot process them.

-T Check no file times. Normally, modification times (or all times with -c) are compared when

comparing file metadata. This option skips the time test, and only the remaining metadata

types are tested.

-t Check all file times. If not set, only the modification time is checked when comparing databases.

-v Verbose operation, prints each processed path to stderr.

-x Paths that do not match any include and exclude pattern will be ignored. Without -x, they

would be processed.

EXIT STATUS

The diskdb program terminates with 0 status if successul, and with a nonzero if an error occurs.

If the requested information cannot be obtained for a file when creating the database, an error

message containing the failed path is written to stderr, the file is ignored, and the processing

continues with the next file. The final exit status will be nonzero.

ENVIRONMENT VARIABLES

TMPDIR The directory used to store temporary databases; if it is not set, /tmp is used.

SEE ALSO

find(1)

BUGS

Files with names containing the newline character are skipped.

248

NAME

fwpasswd — create and update password authentication files

SYNOPSIS

fwpasswd passwd_file user_name

DESCRIPTION

Program fwpasswd is used to create and update files, in which usernames and passwords for

password authentication in Kernun firewall are stored. The program has two parameters: the

password file name and the user name. The user’s password is read from the standard input. If

the password file does not exist, it is created. Otherwise, the file is updated. If the user name is

already contained in the file, a new password is set. Otherwise, the user is added with an empty

list of groups.

The return value of fwpasswd is 0 if the password file is successfully created or updated. If

an error occurs, the password file remains unchanged and fwpasswd returns nonzero.

Each line of the password file contains colon-separated information about one user: user name,

password (encrypted by crypt(3) function), and optionally a list of (comma-separated) groups

the user belongs to. Program fwpasswd uses a temporary file named as the password file with

additional suffix .tmp.

For existing users, fwpasswd modifies only the password. Any text editor can be used to

rename or delete a user or to change the list of groups for a user.

RESTRICTIONS

• Usernames may not include the character ’:’.

• The length of a password file line (username, encrypted password, and list of groups) is

limited to 200 characters.

• Passwords may not include the character ’@’. (This is because of ftp-proxy, in which both

proxy password and server password can be given at once, delimited with the character ’@’.)

SEE ALSO

auth(7)

249

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

grep-debug — tool for selecting messages from Kernun logs

DESCRIPTION

See grep-debug help for usage information.

SEE ALSO

grep-stats(1), grep-debug(1), sum-stats(1), switchlog(1), logging(7)

250

NAME

grep-stats — tool for selecting messages from Kernun logs

DESCRIPTION

See grep-stats help for usage information.

SEE ALSO

grep-stats(1), grep-debug(1), sum-stats(1), switchlog(1), logging(7)

251

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

html-match-db— controls databases of HTML form values used by the generic data matching

module

SYNOPSIS

html-match-db -h { -a| -d| -s| -l } db_file

html-match-db -r { -a| -A| -d| -D| -s| -l| -n } db_file

html-match-db -r { -k| -e }

DESCRIPTION

Utility html-match-db is used to manage database files used by the generic data matching and

processing module, see also data-matching(7). It provides functions for adding, deleting, searching,

and listing records in a database file. All accesses to a database are properly locked, therefore

html-match-db can be executed while the database file is used by a proxy.

Options

-h The provided database file is expected to be a database used by the html-hash and

html-alert tests of the data matching module.

-r The provided database file is expected to be a database used by the html-replace test.

-a Adds a new record to the database. If used together with -h, a single line from the input is

read, its hash computed and stored in the database. If used with -r, the input contains

lines corresponding to the values expected in an HTML form (the original values), followed

by the same number of lines with the replacement values.

-A Adds a new record to the HTML form replacement database. It expects two lines of input with

the database key and encrypted value in the hexadecimal format as displayed by options -k

and -e, respectively.

-d Deletes a record from the database. If used with -h, the value to be deleted is expected on a

single input line. If used with -r, a sequence of input lines contains the original form values.

The corresponding encrypted replacement values are deleted from the database.

-D Deletes a record from the HTML form replacement database. It expects a single input line

with the database key in the format as displayed by option -k.

-s Searches the database for a record. Together with option -h, it reads a single input line

containing the value to be searched for and terminates with zero exit code if the corresponding

hash is found in the database, or returns a nonzero exit code otherwise. Together with -r,

it reads a sequence of input lines containing the original form values and displays the same

number of lines with the replacement values.

252

-l Lists all records from the database, either individual lines containing stored hashes of values

for option -h, or pairs of lines containing keys and corresponding encrypted values in format

as displayed by options -k and -e.

-n Reports the number of records in the database.

-k Reads a sequence of input lines containing the original form values and displays the corre-

sponding database key obtained by hashing the input values.

-e Reads a sequence of input lines corresponding to the original values, followed by the same

number of lines with the replacement values. It then displays the encrypted database value,

i.e., the replacement values encrypted by a key constructed from the original values.

db_file Name of the database file.

Exit Code

The program returns exit code 0 if a record has been successfully added, deleted, or found, or if

options -k or -e have been specified. Exit code 1 is returned if a record cannot be added because

the maximum number of records permitted by the product license has been reached, or if a record

cannot be found in search and delete operations. Exit code 2 is returned if the program fails, for

example, if it cannot access the specified database file.

SEE ALSO

data-matching(7), http-proxy(8)

253

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

kernun-audit — checks for bugs and new versions of the Kernun software

SYNOPSIS

kernun-audit [-butgGhsx] [-p product] [-v version] [-a arch] [-d

database]

DESCRIPTION

Program kernun-audit reports bugs and availability of new versions of the Kernun software. It

obtains information from an audit database either stored locally, or downloaded from network.

This program should be run regularly in order to get timely warnings about newly discovered

software bugs and announcements of available software updates. The preferred way is to execute

it from cron(8) via periodic(8). The program uses information about the currently installed Kernun

product and its version and selects only bugs and updates related to this version.

Options

If neither of the options -b, -u, -t, -g, and -G is specified, -bu is assumed.

-b Report bugs.

-u Report available software updates.

-U Report build numbers of available software updates, one per line. Produces empty output if

there is no update.

-t Test database validity. Checking of database validity is done also with -b and -u.

-g Get full content of the audit database and display it on the standard output.

-G Display normalized content of the audit database on the standard output.

-h Display short help and exit.

-s Do not check the GPG digital signature of the audit database.

-x Display bugs and available updates in XML.

-p product Create report for the specified Kernun product. If not set, the product name is

obtained from the currently running system.

-v version Create report for the specified Kernun version (given either as the full build number,

or just the version number in the format used in the build number). If not set, the product

name is obtained from the currently running system.

-a arch Create report for the specified architecture. This option must not be used if -v is set

to a build number (which contains also the architecture).

254

-d database Local file name or URL of the audit database. The file name of the database

digital signature is database.asc.

EXIT STATUS

The exit status is zero if the database has been successfully downloaded, has correct contents, no

bug has been detected (if bug checking was selected by command line options), and no software

updates are available (if update checking was selected). Otherwise, the exit status is nonzero. If

XML output is selected by option -x or if a build number list is selected by option -U, the exit

status is zero even if some bugs are detected or some software updates are available.

FILES

/kernun-product The Kernun product identifier.

/kernun-version The build number of the currently installed version.

SEE ALSO

cron(8), periodic(8)

255

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

license — tool for checking Kernun license file

SYNOPSIS

license [-d| -c| -p| -x]

DESCRIPTION

Command license checks the validity of a Kernun license file. If the file is valid, i.e., it has

the right format and contains a valid digital signature, the command outputs the list of licensed

components and parameters.

The license file in standard location (/usr/local/kernun/license.dat) is

processed. An alternative license file can be selected by setting the environment variables

KERNUN_LICENSE_FILE or KERNUN_DIR.

Options

-d Prints debugging messages, mainly concerning errors found in the license file.

-c Prints only the names of licensed components, one per line.

-p Prints only the names of licensed parameters, one per line.

-x Prints license content and validity in XML.

Exit Status

The command exit status is zero if the license file is valid, and nonzero if the license file cannot

be read, has incorrect format or its digital signature is not valid.

FILES

/usr/local/kernun/license.dat The standard location of the Kernun license file

256

NAME

log-ts — tool for selecting messages from Kernun logs

DESCRIPTION

See log-ts help for usage information.

SEE ALSO

grep-stats(1), grep-debug(1), sum-stats(1), switchlog(1), logging(7)

257

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

mkblacklist — tool for converting http-proxy blacklists into DB format

SYNOPSIS

mkblacklist db_file

DESCRIPTION

The http-proxy can limit access to some servers according to a blacklist. The blacklist can exist

in textual or DB formats. The proxy uses only the DB format, which provides much faster search

for entries. Utility mkblacklist reads the blacklist in text format from the standard input and

writes entries into a DB file given as an argument.

If the DB database file already exists, its content is preserved and new entries are added to

it. If an entry with a key already existing in the database is to be added, a warning message is

written to the standard error and the original entry is left in the DB file.

Blacklist textual format

Each line defines a single blacklist entry consisting of a server address (hostname or IP address)

with an optional path and a list of categories. Individual categories are separated among them-

selves and from the address by whitespace. For example:

warez.xyz.com warez hacking

10.0.0.1/multimedia audio video

define two entries of a blacklist. The first one assigns categories warez and hacking to all

content on server warez.xyz.com. The second line assigns categories audio and video to

pages in subtree specified by path /multimedia on the server with the IP address 10.0.0.1.

Notes

• There are no port numbers in the blacklist, because matching is always done regardless of

the port the server is running on.

• Empty and comment lines (those with ’#’ as the first non-whitespace character) in the

blacklist are ignored.

• Matching of server addresses is performed as text, i.e., hostname matches only with hostname

and IP address with IP address. Utility resolveblacklist(1) can be used to automatically add

all IP addresses for each host in the blacklist.

SEE ALSO

printblacklist(1), resolveblacklist(1), http-proxy(8)

258

NAME

monitor — report current status of Kernun proxies

SYNOPSIS

monitor [-g [-f]] [-d dir] [-o file] [-w sec] [-r sec] [-c cols] [-t n

[-T col]] [-s col] [-R type] [application ...]

DESCRIPTION

Utility monitor provides a user interface to the Kernun application runtime monitoring facility.

It reads the monitoring communication files created by running applications, processes the data,

and generates reports. A report can be generated once or periodically, see option -r. The format

of the report is either plain text or an HTML document. The report can be sorted by various

criteria and contains information about all active proxy sessions or other entities, or only about

a subset of them. It is possible to select applications by name (argument proxy) or location of

communication files (-d). Another alternative is to show only top values, for example, only the

10 sessions with the largest amount of data downloaded from a server.

HTML output is intended for remote access to data monitoring. Remote access requires an

HTTP server (secure and properly configured) on the firewall. If the server does not support

CGI scripts or the security policy forbids them, monitor may be started as a daemon with -h,

-r and other arguments that choose a fixed format of displayed information. The monitor then

periodically generates a report as a static HTML page. If the monitor is used as a CGI script, it

is possible to augment the report (-f) with a form that allows setting some report parameters.

Option -r in both versions of HTML output instructs the user’s browser to periodically refresh

the page.

Arguments

-c cols Selects the displayed colums, cols is a comma-separated list of column types (see below).

-d dir Specifies a directory containing monitoring communication files. If not set, the current

working directory is used by default.

-f Adds a form for selecting some parameters to HTML output, processes input from the form.

Textual output is generated if neither -g nor -f is used.

-g Generates HTML output.

-o file Stores the output to a file instead of sending it to the standard output.

-r sec Refreshes the report with given period (in seconds). HTML output will contain a Refresh

header in order to automatically reload the page in a browser. If started as a CGI script,

monitor always exits after the first report is generated, regardless of -r.

259

APPENDIX A. KERNUN UTM REFERENCE (1)

-R type Print data from records of given type (see below).

-s col The column type used for sorting the output. If not set, sin is used.

-t n Shows only top n entries with the highest values (or the oldest time).

-T col The column type used for -t. If not set, sin is used. Only times, byte counts, and

speeds may be used here.

-w sec Sets timeout (in seconds) for waiting for monitor-dump. When reading a communication

file, monitor-dump must sometimes wait until the proxy finishes modification of the file. This

options prevents indefinitely long waiting in the case of a synchronization error.

application... Reports active data of these applications only. If no application is specified,

all applications are reported.

Record Types and Column Names

The column set depends on particular record type.

SESSION record type This type is a default type and is used by proxies and the atrmon ap-

plication.

name Proxy name, the name of section *-proxy in the configuration

prog Proxy type, the name of the proxy executable

pid PID of the process handling the session

start Session start time (hour:min:sec), prefixed with date if not today

time Current session duration time (hour:min:sec)

cip Client numeric IP address and port

cname Client name and port; IP to name resolution is done by proxy

sip Server numeric IP address and port

sname Server name and port; IP to name resolution is done by proxy

cout Bytes received from the client

sout Bytes sent to the server

sin Bytes received from the server

cin Bytes sent to the client

int Measurement interval (in seconds) for communication speed evaluation

cos Current speed of data receiving from the client (bytes per second)

sos Current speed of data sending to the server (bytes per second)

sis Current speed of data receiving from the server (bytes per second)

cis Current speed of data sending to the client (bytes per second)

trunc Flags indicating truncation of additional variable-length data (user, auser and

file)

260

user User name as authenticated by the proxy (not the user on the final server)

auser AProxy user name authenticated by http-proxy(8)

file Name of the file that is being currently downloaded/uploaded by ftp-proxy(8) or the

current request URI in http-proxy(8)

all All columns

def A default set of columns: name,time,cname,sname,sout,sin,sos,sis

HOSTMON record type This type is used by host monitoring applications like atrmon and pike-

mon.

name Application name

entity Entity for which the monitoring is relevant, i.e. a VIRTUAL-CLUSTER name for

pikemon and a REQUEST-ACL.ADDRESS for atrmon

group The name of a group with ping target hosts

target_ip Particular target host to ping

err_tot Total number of unsuccessful ping attempts

sent_tot Total number of ping sent

rtt_tot An average RTT of total responses received

age1 Age of the last ping response

rtt1 Round trip time of the last ping

period Length of the last monitored period

errp Number of unsuccessful ping attempts during the last period

sentp Number of ping sent during the last period

rttp An average RTT of responses received during the last period

PIKEMON record type This type is used by cluster monitoring application pikemon.

name Application name

vcname The VIRTUAL-CLUSTER name

host_prio This host priority (Primary vs. Secondary)

host_state This host state (Master vs. Backup)

host_ready This host health status (Up vs. Down)

sensors Number of live sensors (ping groups and/or watched interfaces) and number of

all sensors

peer_prio Peer host priority (Primary vs. Secondary)

peer_state Peer host state (Master vs. Backup)

peer_ready Peer host health status (Up vs. Down)

last_hello An age of the last HELO packet received from the peer

261

APPENDIX A. KERNUN UTM REFERENCE (1)

CONFIGURATION

It is possible to configure colors used by the monitor in HTML output and the description of the

abbreviated column names. See instructions at the beginning of the monitor script.

SEE ALSO

monitoring(7), ftp-proxy(8), http-proxy(8)

262

NAME

ooba-acs — uses Cisco ACS log to update out of band authentication user list

SYNOPSIS

ooba-acs [-v] [-p pidfile] [-s] [-a ca] [-c cert] [-k key] host:port

DESCRIPTION

Script ooba-acs provides communication between Cisco ACS log and a http-proxy(8) acting as

an out of band (OOB) authentication server. The script reads and parses the log of Cisco ACS

(expected in STDIN) and passes the information about the logged users the http-proxy. This

way, users declared to be authenticated in the Cisco ASA log are seen as authenticated by proxies

that use OOB authentication.

For each Accounting log message, the appropriate update request is sent to the http-proxy.

At most one user can be bounded to certain IP address at a time. The newer record remains.

The following accounting messages are recoginezed:

Acct-Status-Type=Start

Acct-Status-Type=Interim-Update The user is bounded to the IP address.

Acct-Status-Type=Stop The user is unbounded from the IP address.

IP address is taken from field Framed-IP-Address.

The user name is taken from field User-Name. The following special forms of file name are

expected:

ANY\\USERNAME

ANY\USERNAME

ANY/USERNAME The USERNAME is used as User Name. The ANY part is ignored.

USERNAME@DOMAIN The USERNAME is used as User Name. The DOMAIN part is

ignored.

UNRESPONSIVE The special User Name, that is completely ignored. No update is sent to

the http-proxy in this case.

USERNAME If not any of the preceeding options, the username is used as is.

Options

-v Increases the verbosity level. Logs a message about every event sent to the http-proxy.

-p pidfile Writes process id into pidfile.

-s Use a secure connection (SSL/TLS) for communication with the OOB authentication server.

263

APPENDIX A. KERNUN UTM REFERENCE (1)

-a ca A file containing a certificate of a trusted certification authority for verification of OOB

authentication server certificate

-c cert A file containing a certificate used for communication with the OOB authentication

server

-k key A file containing a private key for the certificate cert

host Address of the OOB authentication server

port Port of the OOB authentication server

Configuration of http-proxy

The http-proxy must be configured as an OOB authentication server using ext-mod method of

authentication:

• A section aproxy must exist, contain item oob-auth, and be referenced by a

session-acl.

• The section http-proxy must contain item oob-auth-srv that references a section

oob-auth with method ext-mod.

• If oob-auth.method.ldap is set, http-proxy looks for group membership information

in an LDAP database.

• If oob-auth.method.even-no-group is set, the user is treated as being authenticated,

even though ldap check for the user failed.

• It is recommended to use SSL/TLS for communication between ooba-samba and the OOB

authentication server.

SEE ALSO

http-proxy(8), http-proxy(5), http-proxy.cfg(5), auth(7)

Samba documentation at http://www.samba.org

264

NAME

ooba-samba — uses a Samba server to update the out of band authentication user list

SYNOPSIS

ooba-samba [-d] [-p pidfile] [-t sec] [-s] [-a ca] [-c cert] [-k key]

host port

DESCRIPTION

Script ooba-samba provides communication between a Samba server and a http-proxy(8) acting

as an out of band (OOB) authentication server. The script reads the list of users currently logged

on the Samba server and passes them to the http-proxy. This way, users authenticated on the

Samba server are seen as authenticated by proxies that use OOB authentication.

For each user logged on the Samba server, ooba-samba sends to the http-proxy the user

name, the IP address of the user’s machine, and the group the user belongs to. An updated list of

users is sent to the http-proxy each time a user logs in or out of the Samba server. Additionally,

updates are sent periodically (every 5 minutes by default) in order to synchronize the list in case

of a failed login/logout update.

Options

-d Prints some debugging information.

-p pidfile Writes process id into pidfile.

-t sec Sets the period (in seconds, the default is 5 minutes) of sending the user list to the OOB

authentication server in addition to updates triggered by Samba preexec/postexec.

-s Use a secure connection (SSL/TLS) for communication with the OOB authentication server.

-a ca A file containing a certificate of a trusted certification authority for verification of OOB

authentication server certificate

-c cert A file containing a certificate used for communication with the OOB authentication

server

-k key A file containing a private key for the certificate cert

host Address of the OOB authentication server

port Port of the OOB authentication server

265

APPENDIX A. KERNUN UTM REFERENCE (1)

Configuration of http-proxy

The http-proxy must be configured as an OOB authentication server using external method of

authentication:

• A section aproxy must exist, contain item oob-auth, and be referenced by a

session-acl.

• The section http-proxy must contain item oob-auth-srv that references a section

oob-auth with method external.

• Information about user membership in groups is also passed to http-proxy by ooba-samba.

Alternatively, if oob-auth.method.ldap is set, http-proxy looks for group membership

information in an LDAP database.

• It is recommended to use SSL/TLS for communication between ooba-samba and the OOB

authentication server.

Configuration of Samba Server

• Script ooba-samba must be installed on the machine running the Samba server.

• The script must be configured to run all the time Samba is running. The best method is to

start it from a /etc/rc.d or /usr/local/etc/rc.d script.

• The script must be configured to send the user list to the host and port where the http-

proxy acting as an OOB authentication server listens.

• The following lines must be added to smb4.conf to a section defining a share, to which all

users connect:

root preexec=kill -USR1 ‘cat pidfile‘

root postexec=kill -USR1 ‘cat pidfile‘

where pidfile is a file that contains ooba-samba process id, as set by option -p of

ooba-samba.

SEE ALSO

http-proxy(8), http-proxy(5), http-proxy.cfg(5), auth(7)

Samba documentation at http://www.samba.org

266

NAME

oobctl — tool for creating and querying file oob database

SYNOPSIS

oobctl [-rv] [-d delim] [-g gdelim] { -t table-fn| -f

http-proxy-cfg-fn }

DESCRIPTION

Program oobctl can be used for creating, viewing and changing the OOB table.

The OOB file name is specified either by option -t (the file name of the OOB file) or by option

-f (the OOB file name is taken from the http-proxy configuraiton file).

If the file does not exist yet, it can be created (option -r).

The program is interactive, the following commands can be used:

? [username | IP] prints the current contents of the OOB table (with particular filter)

0 clears the OOB table

+ IP user group1 group2 ... Adds/replaces a record to/in the OOB table

- { username | IP } removes the (newest) record from the OOB table

EOF the program exits

Options

-f http-proxy-fn The low level configuration file for http-proxy. The file name of the OOB table

is taken from the configuration, or the default value is used.

-t table-fn The file name of the OOB table to be used

-d delim The field delimiter for the output

-g gdelim The delimitter for groups

-v print verbose information about the internals of the table to stdout

-r Recreate the table if necessary. The table is created if it does not exist. The table is recreated

if the parameters from the configuration do not match the parametrs of the existing table

(the following parameters are checked: max-users, max-groups and max-sessions).

It is only safe to create the table when using the configuration file as the file name (option

-f).

SEE ALSO

auth(7) http-proxy(8) http-proxy(5)

267

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

printblacklist — tool for converting http-proxy blacklists into textual format

SYNOPSIS

printblacklist db_file

DESCRIPTION

The http-proxy(8) can limit access to some servers according to a blacklist. The blacklist can exist

in textual or DB formats. The proxy uses only the DB format, which provides much faster search

for entries. Utility printblacklist converts the content of a DB file given as an argument into

text format, which is written to the standard output. Then it can be edited in any text editor

and converted back to DB format by mkblacklist(1).

SEE ALSO

mkblacklist(1), resolveblacklist(1), http-proxy(8)

268

NAME

quarc.sh — mail quarantine control tool

SYNOPSIS

quarc.sh command [options] [tag]

DESCRIPTION

Utility quarc.sh provides a user interface to the Kernun smtp-proxy(8) quarantine management

operations.

Commands

list Display short info about each selected e-mail in quarantine.

• The first line of each e-mail’s block contains: MSGID, the e-mail’s size, date and time

of receipt and the sender.

• The second line contains the number of recipients and the first recipient.

• The third line contains reason-tags describing the reasons why the e-mail has been

put into the quarantine. These tags have form of couple type:reason, e.g.

ACL3M:virus-xy means that the e-mail was sent to the quarantine by the mail-acl

named virus-xy.

• The fourth line contains the e-mail’s Subject (if any).

info Display full info about each selected e-mail in quarantine.

In fact, this info is the full content of the e-mail’s quarantine control file. The lines that

begin with letter ’C’ contain verbatim command lines used by the client. The lines that

begin with letter ’I’ contain internal info; the next keyword at the line specifies the type of

information:

RCVD Receipt date and time.

PRXY Proxy name.

QTAG Reason tag (see above).

ACL1 SESSION-ACL decision criteria and result.

HELO HELO/EHLO command argument and RFC check flags.

MAIL MAIL FROM command argument and RFC check flags, mail size and domain (7bit

vs. 8bit).

HDRS Mail headers info, currently only Subject header (if present).

NODE MIME node info (number, type, size, viruses).

VIRN Virus name found in current MIME node.

269

APPENDIX A. KERNUN UTM REFERENCE (1)

ACL2 DELIVERY-ACL decision criteria and result: original recipient address and RFC

check flags, new recipient address (copy-to or deliver-to), ACL name.

ACL3 MAIL-ACL name and set of DOC-ACL names.

RESP Final recipient result (response returned by proxy to RCPT command or response

received by proxy from the forwarder).

send Send selected e-mails from quarantine to the smtp-proxy proxy given by the -p option.

In this case, the proxy must be specified as a string (not regexp) and the -q option must

not be used.

If the proxy does not listen on "quarantine" port (see proxy-level quarantine directive in

smtp-proxy(5) manual page), the operation fails. If the proxy listens on the proper port,

e-mails from quarantine can be distinguished using the from-quarantine item in level 3

ACLs.

The tag argument can specify the content of the e-mail’s header line

X-Kernun-Quarantine-Tag that is added to the beginning of the e-mail. The value of

this tag can be matched against the value of the from-quarantine item in level 3 ACLs.

remove Remove selected e-mails from quarantine.

Options

-q dir Define quarantine directory.

If used, the -p option can be omitted and the tool will operate on all e-mails regardless the

proxy name. In this mode, the send operation is not allowed.

If not used, the -p option must define the proxy name (not regexp).

-p proxy Restrict operation only to e-mails with proxy name matching the proxy regexp pat-

tern, or name (if the -q option is not used).

-i msgid Restrict operation only to e-mails with MSGID matching the msgid regexp pattern.

-d +days Restrict operation only to e-mails received earlier than days ago.

-d -days Restrict operation only to e-mails received later than days ago.

-R recipient Restrict operation only to e-mails with at least one recipient matching the

recipient regexp pattern.

-s +bytes Restrict operation only to e-mails with size (in bytes) greater than or equal to the

bytes value.

-s -bytes Restrict operation only to e-mails with size (in bytes) less than or equal to the bytes

value.

-S sender Restrict operation only to e-mails with sender matching the sender regexp pattern.

-t tag Restrict operation only to e-mails with reason-tag matching the tag regexp pattern.

-v Generate more verbose output.

270

SEE ALSO

Kernun: mod-mail-doc(5), smtp-proxy(5), smtp-proxy(8),

271

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

resolveblacklist — tool for resolving hostnames in http-proxy blacklists

SYNOPSIS

resolveblacklist

DESCRIPTION

The http-proxy(8) can limit access to some servers according to a blacklist. The matching of server

addresses is performed as text, i.e., a hostname in a request URI matches only with a hostname in

the blacklist and an IP address matches only with an IP address. Utility resolveblacklist reads

a blacklist from the standard input and writes each entry back to the output. If the server in an

entry is specified by its hostname, it is resolved and entries corresponding to all IP addresses of

the server are written to the output blacklist, following the original entry containing hostname.

Utility resolveblacklist works with blacklists in textual format. The http-proxy(8) reads

blacklists in DB database format. The mkblacklist(1) and printblacklist(1) utilities perform con-

versions between textual and DB formats of blacklists.

SEE ALSO

mkblacklist(1), printblacklist(1), http-proxy(8)

272

NAME

rrd — system parameter watching

SYNOPSIS

rrd [-v] { time| class| list| values| create| update| monitor| proxy|

lsgraph }

rrd [-v] graph class.instance.graph.time ...

DESCRIPTION

Utility rrd provides a command line interface to the online system parameter watching facilities of

the Kernun Firewall. The history of values of various parameters is stored in a RRD (Round-Robin

Database) and can be displayed in the form of graphs on demand.

Program rrd categorizes available parameters into named classes (for example, netif for

network interface parameters, proxy for proxies, or sys for system). Each class can have several

instances (individual network interfaces for class netif, proxies for class proxy, or single instance

named by hostname for class sys. In order to be able to watch proxy parameters, monitoring

must be enabled for the proxy, see monitoring(7).

For each instance, one or more parameters can be watched and stored in an RRD file. Graphical

presentation of data can be generated in various time scales, for example, last day or month.

Options

-v Verbose output for debugging and help

time Lists identifiers of available time scales of graphs. The identifiers are usable in graph

command. If called with -v, a short description of each time scale is displayed.

class Lists all classes of parameters that can be watched. The identifiers are usable in graph

command. If called with -v, a short description of each parameter is displayed.

list Lists all existing instances of all parameter classes. Each line is prefixed by two characters,

which are either ’-’, ’A’ (the instance is active, that is, currently existing in the system), or

’D (there is a RRD file for the instance). RRD files for inactive instances are not removed

automatically, which makes it possible to display graphs for removed proxies or network

interfaces.

values Displays the current values of all watched parameters.

create Creates RRD files for all active instances.

update Obtains the current values of all watched parameters and stores them in the RRD. This

should be called periodically, for example, once a minute by cron.

273

APPENDIX A. KERNUN UTM REFERENCE (1)

monitor Updates the RRD continuously. Periodically calls update, waits for some time (1

minute by default) and updates again.

proxy Deletes monitoring files of terminated proxies and stores data from them in

/data/rrd/proxy.sum. This should be called periodically to delete obsolete monitoring

files if periodic update is not performed and monitoring is switched on in at least one

proxy.

lsgraph Lists available graph types. If called with -v, a short description of each graph is

displayed.

graph Generates graphs. Each argument following graph defines one graph to generate by

specifying data class, instance, graph type, and graph time scale (delimited by periods).

FILES

/data/rrd Directory used to store RRD database files and generated graphs

. The current directory is used if /data/rrd does not exist.

/data/rrd/*.rrd A RRD database file for a single instance

/data/rrd/*.png A graph generated from RRD data

/data/rrd/proxy.sum Values of parameters taken from monitoring files of terminated proxies

BUGS

RRD database files are not portable between architectures. If you migrate a Kernun system

from i386 to amd64 or vice versa, you cannot copy your RRD files. If you do, they will not be

updated and graphs will not be generated from them. It is possible to move a RRD file from one

architecture to another in a portable XML format. Export the binary data to XML by command

rrdtool dump on the original architecture, then import XML data into the binary format by

command rrdtool restore on the target architecture.

SEE ALSO

monitoring(7)

274

NAME

sum-stats — generates proxy usage statistics from Kernun logs

SYNOPSIS

sum-stats [-p period] [-t type] [-n name] [-l field=limit ...]

[-filter field=filter ...] [-spam-threshold value] [-shift

time_offset] [-start time_spec ...] [-finish time_spec] [-entitle

label] [-info list] [-db] -o outfile

DESCRIPTION

The sum-stats script reads a Kernun log from the standard input and generates proxy usage

statistics. The exact contents of the output depend on the proxy type. However, the generated

output always retains the following structure:

• Summary: totals + Kernun Clear Web database hit-rate (for http-proxy and

icap-server)

• Histograms: per-hour, per-day, per-weekday (depends on period)

• Hitparades: per-client, per-server, ... (depends on type)

Options

-p period Sets the period (daily, weekly, monthly). Log items outside the date interval

based on this period are filtered out.

Use -shift for specifing which period to be generated. The current period

(day/week/month) is generated by default. For example, use -p weekly -shift -1w

for generating the statistics for the last week.

-t type Sets the type of the proxy. If not set, the default value is proxy (does not assume any

particular proxy type). A list of recognized proxy types can be found below.

-n name Sets the name of the proxy (altname) to be included in the statistics (other proxies are

filtered out). If not set, all proxies are included.

-l field=limit Sets the limit for the given field (top N clients, servers, ...). If not set, the

field is excluded from the statistics.

The special value 0 means not to limit this field at all, All the values are included in the

statistics, regardless of their total count. Note that using field limit 0 can result in a VERY

BIG statistics that can lead to problems when viewing them.

A list of available fields can be found below.

275

APPENDIX A. KERNUN UTM REFERENCE (1)

-filter field=limit Sets the filter for the given field (clients, servers, ...). If set, only the

log records that match the filter are taken into account. If set, the statistics for the field

that is being filtered are supressed, since it would be degenerate.

-spam-threshold value Sets the spam-threshold ; mails with spam score above this level are

considered SPAM. If not set, the default value is 5000.

-shift time_offset Behaves as if the processing day was executed

earlier/later, given by time_offset. The form of the time_offset is

[<SIGN>]<COUNT>[<UNIT>][_<ROUND>]

• SIGN : ’-’ for shift to the history, + for shift to the future. Defaults to ’+’

• COUNT : the number of days/weeks/months. Can be 0 for no shift, which can be useful

in conjunction with ROUND.

• UNIT : ’h’ for hours, ’d’ for days, ’w’ for weeks, ’m’ for months.

If ommited, UNIT default depends on the period selected by -period: ’m’ for monthly

period, ’w’ for weekly period and ’d’ for daily period. If no period is selected, ’d’ is

used as the default value for UNIT.

• ROUND : if given, the result is rounded up or down within the given unit. Use ’up’ for

round up, ’down’ for round down.

For example, -shift -2w_up shifts two weeks back, to the Sunday 23:59:59. The option

can be given more than once in which case the time in sequence shifted more times.

See also environmental variable TIME Setting the environmental variable TIME has the

similar effect as using -shift. The time is given as the system time when the script

is executed by default. This can be overriden by the TIME environmental variable. The

resulting value is then used as the base for the -shift options.

-start time_spec, -finish time_spec Explicitly sets the time interval to be used. The

timespec is one of the following:

• iso timestamp: one of YYYY-MM-DDTHH:MM:SS, YYYY-MM-DDTHH:MM,

YYYY-MM-DDTHH, YYYY-MM-DD

• unix timestamp: the number of seconds since 1970

• time_offset : time is given as an offset to the current time (possibly affected by option

shift

Options -start and -finish are mutually exclusive with option period, which sets the

interval implicitly.

-info list Instead of creating the statistics, reports some information, given as a comma

separated list of desired info:

• fields: print the fields valid for the particular type

• types: print the available types

276

• results: print the available results

• interval: print the time interval that would be used

• log_files: list the filenames that likely contain the desired time interval without the

eventual compression suffix.

• log_files: list the filenames that likely contain the desired time interval.

• log_files_ts: print the shell script that cats the files that likely contain the desired

time interval.

• period_inst_name: period instance name. Prints the suggested name of the periodic

statistics, if generated with the current arguments. Based on the beginning of the in-

terval, it is used ’YYYYMM’ for monthly, ’YYYYWW’ for weekly and ’YYYYMMDD’

for daily statistics.

• oldest_log: print the timestamp of the oldest line in the available logs.

-db If present, the newly created statistics is also indexed in the statistics index database.

-o outfile The output will be saved to outfile.html, accompanied by its data file outfile.json.

Proxy Types

proxy Fields: client, user, server

http-proxy, icap-server Fields: client, user, group, server, category

smtp-proxy Fields: client, server, sender, recipient, mime

dns-proxy Fields: client, server, qname, qtype

sip-proxy Fields: caller, receiver

ENVIRONMENT VARIABLES

TIME The timestamp used to calculate the interval of dates to be included in the statistics (affected

by the period, shift). If not set, the current time is used.

NOTES

Computing per-client, per-server, ... statistics (hitparades) can consume a large amount of mem-

ory. Memory usage can only be reduced by turning off individual fields (skip -l field, or set -l

field=0). Mere setting the number of top values reported does not reduce memory consumption.

SEE ALSO

log-ts(1), switchlog(1), logging(7)

277

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

switchlog — distribute messages from Kernun log according to message id and proxy name

SYNOPSIS

switchlog [{-v|-V} [lines]] cfgfile [logfile]

DESCRIPTION

Program switchlog reads a log file in the Kernun log format from the standard input or from a

file specified by the logfile parameter. Individual messages are then written to different output

files or sent to other programs through pipes, according to the configuration file cfgfile.

Options

{-v|-V} [lines] When reading log, report how many lines have been processed (-v prints a

sequence of messages, -V rewrites the same message using backspace characters). Parameter

lines is the number of lines, after which a message will be generated (if not present, print

a message after each 10000 lines).

cfgfile Name of the configuration file.

logfile Log file to be processed. If not present, the standard input is read.

Syntax of Configuration File

Empty lines and lines beginning with ’#’ are ignored.

out out_id [!]>file Messages written to output id out_id will be appended to file. If

the “!>” form is used, the output will be flushed after each line.

out out_id [!]|program [args...] Messages written to output id out_id will be pro-

cessed by program. The program will be run only once and messages will be passed to its

standard input via a pipe. If the “!|” form is used, the output will be flushed after each line.

log_id altname out_id Messages with matching log id and proxy name will be sent to out-

put id out_id. Value of log_id can be either log id (e.g., TCPP-202), or the word

unknown (matching messages with unknown — not present in switchlog’s hash table — log

id), or default. Value of name is either a proxy name, or ’*’ meaning “any”.

Matching

The log id and altname are extracted from each message read from the input file. The log id is

then used for lookup in a hash table compiled into switchlog. If the id is found in the table, the

configuration lines with corresponding log_id are searched for matching proxy name (which can

also be ’*’, meaning “any”). If the id is not found, lines beginning with unknown are searched for

278

altname. If no log id, proxy name pair has been found so far, lines beginning with default are

searched for proxy name. Finally, if a matching configuration line is found, the message is sent to

the output id specified in that line. Otherwise, the message is ignored.

NOTES

Processing logs by scripts, such as sum-stats(1) is a time-consuming task. Moreover, if statistics

of several proxies are to be computed, summarization scripts would read the same log file again

and again. Program switchlog can reduce the log processing time by quickly selecting only

the messages relevant for further processing. Also, the log file is read only once even if further

processing is performed by several scripts.

SEE ALSO

log-ts(1), sum-stats(1), logging(7)

279

APPENDIX A. KERNUN UTM REFERENCE (1)

NAME

triplicator — SMTP Grey-listing Triplet Database Manipulator

SYNOPSIS

triplicator [-hv] [-d debuglev] -f cfgfile -c command

DESCRIPTION

Utility triplicator provides a user interface to Kernun’s smtp-proxy(8) grey-listing triplet

database management operations.

The main task of this tool is to clean the database. For this purpose, it is recommended to

include the following call of triplicator in a cron plan:

system FIREWALL {

crontab {

...

plan "0 * * * * kernun path/triplicator -f smtp-cfg -c clean"

}

}

where smtp-cfg is the configuration file name of smtp-proxy that uses the grey-listing method

and path is the path to the Kernun binaries directory (usually /usr/local/kernun/bin).

Grey-listing method

Grey-listing (http://projects.puremagic.com/greylisting) is a spam blocking method

based on the fact that most spam sources do not behave in the same way as "normal" mail systems

and do not repeat delivery attempt in the case of temporary rejection. Thus, smtp-proxy

with grey-listing configured temporarily rejects every new e-mail it has never seen, keeps this

information and, under certain conditions, allows reception of this mail in the future. More

precisely speaking: the proxy looks at three pieces of information (called triplet) for any particular

mail delivery attempt:

• The IP address of the host attempting the delivery

• The envelope sender address

• The envelope recipient address

Each triplet can be in one of the following states:

blocked If we have never seen this triplet before, then refuse this delivery and any others that

may come within a certain period of time with a temporary failure.

280

released If the triplet has passed the initial blocking period, we expect repeated delivery within a

certain period of time. Any e-mail with the identical triplet coming within this time period

will change the triplet’s state to granted. If no such delivery occurs, the triplet is forgotten.

granted If a triplet has been successfully acknowledged, any mail with the identical triplet will

be delivered without delay for a certain period of time. Every new delivery attempt for the

triplet will restart this time period. If the time period passes without any delivery attempt,

the triplet is forgotten.

Proper functionality of the method can be set up using three basic parameters that control the

above-mentioned time periods:

block-time The initial delay of a previously unseen triplet.

Default: 1 Hour

For this period of time, a new triplet is in state blocked.

retry-time The lifetime of triplets that have not yet allowed an e-mail to pass and wait for

confirmation by another delivery attempt.

Default: 4 Hours

The total time the client has to retry the delivery attempt. If this period of time elapses

and no mail with the particular triplet has come, the triplet is forgotten. Notice that this

time includes also the initial block-time amount of time. Thus, in fact, the length of the

time period, during which a triplet is in state released, is retry-time - block-time.

guard-time The lifetime of auto-whitelisted triplets that allow mail to pass.

Default: 36 Days

For this time (after any successful delivery), the triplet is guarded and mails with particular

triplet are granted to pass.

All the above parameters are part of the grey-listing section of the smtp-proxy section.

The proxy saves the information about triplet states in a local database in a file (its name must

be set in smtp-proxy.grey-listing). For every triplet, it holds the state and the time of its

expiration. Using the triplicator tool, you can manage this database - clean it (i.e. remove

forgotten triplets), display and change triplet data.

Commands

stat Display the number of triplets in the database per states.

list Display all triplets in the database, each with its state and the time of the expiration of the

state.

Example:

<10.1.1.1, , root@tns.cz> 1=ts_blocked, 2000/02/04 01:00:00, 10800

281

APPENDIX A. KERNUN UTM REFERENCE (1)

clean Remove all expired triplets.

add Add/change triplet data.

Command synopsis: add state date time <sender> <recipient>

state Triplet state, possible values: ’b+next ’, ’r’ and ’g’.

The next parameter for the “blocked” state defines the time period (in seconds), for

which the triplet will stay in the “released” state after reaching the deadline of the

“blocked” state. In fact, it is the difference between retry-time and block-time.

date Expiration date, format: year/month/day

time Expiration time, format: hh:mm:ss

Example:

add b+3600 2000/2/4 01:00:00 10.1.1.1 <> <root@tns.cz>

purge Rebuild the database file (implemented as backup + restore).

backup Dump non-expired triplets.

Command synopsis: backup [filename]

filename Output file name (stdout if omitted).

restore Rebuild database from a backup file.

Command synopsis: restore [filename]

filename Input file name (stdin if omitted).

Program options

-h Display usage information and exit.

-v Print version information and exit.

-d dbglev Set debugging level.

-f cfgfile Read configuration from cfgfile.

-c command Command to execute.

SEE ALSO

Kernun: smtp-proxy(5), smtp-proxy(8),

282

Appendix B

K e r n u n U T M R e f e r e n c e (5)

283

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

acl — format of acl component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the acl component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in acl configuration directives:

direction (see common(5))

obligation (see common(5))

range-op (see common(5))

week-day (see time(5))

month (see time(5))

auth-method (see auth(5))

virus-status (see antivirus(5))

source-address-mode (see source-address(5))

transparency (name-usage obligatory)

Transparency mode.

non-transparent

transparent

user-auth-spec (name-usage obligatory)

Firewall user authentication mode.

none

No user authentication is presented or required.

name

Authorized users can be specified in the configuration.

284

doctype-ident-method (name-usage obligatory)

Methods for document type recognition.

content-type

MIME type defined in Content-Type header is used.

extension

Type is derived from URI/filename suffix.

magic

Type is recognized according to real content.

header-op (name-usage obligatory)

Header modification operation

delete

Header(s) will be removed.

add

New header will be added. If header is not repeatable, old occurence will be removed.

replace

Header(s) will be removed and new one will be added.

ITEMS AND SECTIONS

Configuration of acl library component consists of following prototypes:

* user ... ;

plug-to ... ;

hand-off ... ;

* doctype-ident-order ... ;

* acl name { ... }

* acl-1 name { ... }

* acl-2 name { ... }

* acl-3 name { ... }

Description:

user none;

user [name] [name [group group]];

User and group specification.

<branching element> (type: user-auth-spec, optional, default:

name)

name (type: str-set, optional, default: *)

user name (authenticated on firewall)

285

APPENDIX B. KERNUN UTM REFERENCE (5)

group group (type: str-set, optional, default: *)

list of groups, if present, both NAME and GROUP must match

plug-to addr ;

Final destination server.

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

hand-off addr ;

Next-hop proxy.

addr (type: sock)

doctype-ident-order [for for] order ;

Order of document type recognition methods.

This item defines order in which different methods of document type recognition methods

are used. Item can be defined at several places - globally for the proxy and in some ACLs.

The most specific occurence is used, if no specification is found, just CONTENT-TYPE

method is used.

for for (type: direction-set, optional, default: *)

Document transfer direction set.

This element defines directions for which the order is specified by this item.

For some proxies, both directions can be used while for others either direction is not

applicable; consult proxy man page.

order (type: doctype-ident-method-list)

Methods are used in given order unless type is recognized.

For some proxies, some methods are not applicable, consult proxy man page.

Constraints:

Only 3 methods can be specified.

acl name {

* from ... ;

* to ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* parent-acl ... ;

286

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

}

Access Control List.

General form of specification of firewall services limitation. In each proxy configurations, this

general model is adapted and renamed, even more than once - if it needs different approach

for different phases of its work. For this purpose, more precized prototypes ACL-1 and

ACL-2 are derived from this general prototype.

In general, ACL consists of several categories of limitations (or entry conditions) controling

which connections or operations will be handled according to particular ACL. Then, ACL

defines wheter connections or operations being handled by this ACL will be accepted or

denied by the proxy (items ACCEPT and DENY). Finally, ACL defines details of protocol

behavior.

This prototype defines basic entry conditions applicable to most of proxies. Each proxy can

exclude some features from this general concept and add several proxy specific limitations -

see proxy configuration man page to check these changes.

General entry conditions:

• FROM (connection/request source IP address/name)

• TO (connection/request destination IP address/name)

• SERVER (logical target server’s IP address/name)

• USER (proxy-authenticated user name)

• TIME or TIME-PERIOD-SET (actual time)

• PARENT-ACL (name of acl used in previous phase)

Each category can be used more than once in one ACL; then they are checked in disjunction

(OR). If omitted, category is not checked in particular ACL.

Different categories are checked in conjunction (AND).

Constraints:

Exactly one of DENY and ACCEPT must be specified.

TIME and TIME-PERIOD-SET are mutually exclusive.

Items & subsections:

from addr ;

Entry condition - client (source) address.

addr (type: host-set)

Set of client IP addresses or hostnames.

287

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Regexps are not allowed in host set.

to mode destinations [port port];

Entry condition - physical destination address.

This item is used to match the TCP connection or UDP request destination address.

In the transparent case, this is actual server targeted by the client, while otherwise this

is an address and port at the firewall where particular proxy is bound.

mode (type: transparency)

Select mode allowed for connections/requests.

destinations (type: host-set)

Set of destination adresses/names.

In transparent case, destination is equal to target server. In non-transparent case,

destination is equal to proxy address/port.

port port (type: port-set, optional, default: *)

Set of destination service names/port numbers.

Constraints:

Regexps are not allowed in host set.

server [addr [port port]];

Entry condition - logical target server.

This item is used to match the logical target of service requested by the client. In the

transparent case, it should be equal to the physical destination server. However, in

many proxies the server address or name is known to the proxy only when it recognizes

an initial protocol command sequence.

addr (type: host-set, optional, default: *)

Set of logical target IP addresses or hostnames.

port port (type: port-set, optional, default: *)

Set of logical target service names/port numbers.

user none;

user [name] [name [group group]];

Entry condition - proxy-user name.

<branching element> (type: user-auth-spec, optional, default:

name)

name (type: str-set, optional, default: *)

user name (authenticated on firewall)

group group (type: str-set, optional, default: *)

list of groups, if present, both NAME and GROUP must match

time [day day] [month month] [wday [hhmm]];

Entry condition - date/time.

day day (type: uint8-set, optional, default: *)

day of month (1 - 31)

288

month month (type: month-set, optional, default: *)

month (Jan - Dec or 1 - 12)

wday (type: week-day-set, optional, default: *)

week-day (Sun - Sat or 0 - 6)

hhmm (type: time-set, optional, default: *)

time (in form hhmm)

time-period-set {

exclude ... ;

* time-spec name { ... }

}

Entry condition - date/time.

The time-period-set section is derived from time-period-set sec-

tion prototype. For detail description of it, see time(5).

parent-acl name;

Entry condition - parent ACL name.

This item is used only for proxies with multi-phase ACL, name of this item is changed

to real name of previous phase ACL. See proxy man page for details.

name (type: str-set)

(name of ACL used in the previous phase)

deny;

This item is obligatory if particular ACL is to deny connections or operations satisfying

entry conditions. Specific proxy ACLs derived from this prototype add some details of

denial procedure depending on protocol.

accept;

This item is obligatory if particular ACL is to accept connections or operations satisfying

entry conditions. Specific proxy ACLs derived from this prototype add some details of

futher behavior depending on protocol.

doctype-ident-order [for for] order ;

Order of document type recognition methods.

This item defines order in which different methods of document type recognition meth-

ods are used. Item can be defined at several places - globally for the proxy and in

some ACLs. The most specific occurence is used, if no specification is found, just

CONTENT-TYPE method is used.

for for (type: direction-set, optional, default: *)

Document transfer direction set.

This element defines directions for which the order is specified by this item.

For some proxies, both directions can be used while for others either direction is

not applicable; consult proxy man page.

order (type: doctype-ident-method-list)

Methods are used in given order unless type is recognized.

For some proxies, some methods are not applicable, consult proxy man page.

289

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Only 3 methods can be specified.

rule rule;

The identifier of the high-level rule which is implemented by this acl.

rule (type: str)

The rule identifier

[End of section acl description.]

acl-1 name {

* from ... ;

* to ... ;

* user ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

auth ... ;

idle-timeout ... ;

idle-timeout-peer ... ;

source-address ... ;

plug-to ... ;

}

Access Control List, Phase 1.

This prototype is derived from the general ACL by excluding some attributes not used in

initial phase of proxy operation. Besides, several general phase 1 features are added:

• AUTH (authentication mode used)

• IDLE-TIMEOUT (forcing of session idle-timeout)

• SOURCE-ADDRESS (forcing of source address towards server)

• PLUG-TO (forcing of destination server)

The acl-1 section is derived from acl section prototype. For detail

description of it, see above.

290

Changes to the acl-1 section:

Item server is not valid.

Item parent-acl is not valid.

DENY and AUTH are mutually exclusive.

DENY and IDLE-TIMEOUT are mutually exclusive.

DENY and SOURCE-ADDRESS are mutually exclusive.

DENY and PLUG-TO are mutually exclusive.

Added items & subsections:

auth none;

auth passwd file;

auth radius client ;

auth ldap ldap;

auth ext file;

auth oob oob [mode [loose]];

Authentication method and attributes specification.

For more details, see auth(7).

<branching element> (type: auth-method)

file (type: str)

Password/utility file name.

client (type: name of radius-client, see radius(5))

RADIUS client configuration name.

ldap (type: name of ldap-client-auth, see ldap(5))

LDAP client configuration parameters.

oob (type: name of oob-auth, see auth(5))

OOB authentication parameters.

mode (type: obligation, optional, default: required)

loose (type: key, optional)

idle-timeout [seconds];

Session inactivity timeout.

If no data is transmitted for this session in the period of idle-timeout seconds, the

connection is closed.

If omitted, value of proxy.idle-timeout is used.

seconds (type: uint31, optional, default: 0)

Timeout for datagrams in any direction (any packet resets the timer), zero means

unlimited.

idle-timeout-peer [client [server]];

Peer inactivity timeout.

If no data is transmitted by peer in the period of idle-timeout seconds, the connection

is closed.

If omitted, the inactivity is controlled by the idle-timeout item.

291

APPENDIX B. KERNUN UTM REFERENCE (5)

client (type: uint31, optional, default: 0)

Timeout for datagrams from client to server (in seconds, zero means unlimited).

server (type: uint31, optional, default: 0)

Timeout for datagrams from server to client (in seconds, zero means unlimited).

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;

Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of them

is applicable:

- The CLIENT keyword means the original client IP address is used. This mode will

be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used for

a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By default,

the main address of the bridge is used, however, any preferred alias address can be

listed in the cluster list.- The PHYSICAL option means that the address of the physical

interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

plug-to addr ;

Final destination server.

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

[End of section acl-1 description.]

292

acl-2 name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* parent-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

}

Access Control List, Phase 2.

This prototype is derived from the general ACL by excluding some attributes not used for

proxy command control.

The acl-2 section is derived from acl section prototype. For detail

description of it, see above.

Changes to the acl-2 section:

Item to is not valid.

acl-3 name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* parent-acl ... ;

deny ... ;

accept ... ;

rule ... ;

direction ... ;

* size ... ;

* content-type ... ;

* mime-type ... ;

virus-status ... ;

* modify-header ... ;

293

APPENDIX B. KERNUN UTM REFERENCE (5)

force-doctype-ident ... ;

replace ... ;

html-filter ... ;

}

Access Control List, Phase 3.

This prototype is derived from the general ACL by excluding some attributes not used in

document-processing phase of proxy operation. Besides, several general phase 3 features are

added:

• DIRECTION (entry condition - document transfer direction)

• SIZE (entry condition - document size)

• MIME-TYPE (entry condition - document type)

• VIRUS-STATUS (entry condition - antivirus check result)

• REPLACE (accepting action - replacing document by file)

• HTML-FILTER (accepting action - filtering document)

The acl-3 section is derived from acl section prototype. For detail

description of it, see above.

Changes to the acl-3 section:

Item to is not valid.

Item doctype-ident-order is not valid.

Filtration items (REPLACE, HTML-FILTER, FORCE-DOCTYPE-IDENT) are not

allowed if DENY is on.

Items HTML-FILTER/FORCE-DOCTYPE-IDENT and REPLACE are mutually ex-

clusive.

Added items & subsections:

direction [dir];

Entry condition - document transfer direction.

dir (type: direction-set, optional, default: *)

size unknown;

size lt limit ;

size le limit ;

size eq limit ;

size ne limit ;

size gt limit ;

size ge limit ;

size in lower upper ;

294

size ni lower upper ;

Entry condition - document size.

<branching element> (type: range-op)

limit (type: uint64)

Tested value limitation.

lower (type: uint64)

Tested value lower bound.

upper (type: uint64)

Tested value upper bound.

Constraints:

Value UNKNOWN is not allowed.

content-type type;

Entry condition - original Content-Type.

type (type: str-set)

Set of type/subtype string definition.

If a regexp is part of the set, then this regexp is checked to match with type/subtype

specification. Beware of escaping the slash, if present (write /...\/.../).

If a string is part of the set, then it must contain at most one slash. If the slash is

not present, string is compared with document type only (not the subtype). If the

slash is present, then pattern is checked to match with type/subtype specification.

mime-type type;

Entry condition - recognized MIME type.

type (type: str-set)

Set of type/subtype string definition.

If a regexp is part of the set, then this regexp is checked to match with type/subtype

specification. Beware of escaping the slash, if present (write /...\/.../).

If a string is part of the set, then it must contain at most one slash. If the slash is

not present, string is compared with document type only (not the subtype). If the

slash is present, then pattern is checked to match with type/subtype specification.

virus-status [status];

Entry condition - virus detection status.

status (type: virus-status-set, optional, default: *)

modify-header delete names;

modify-header add name text ;

modify-header replace name text ;

Document headers modified.

<branching element> (type: header-op)

Action to be done with header(s).

295

APPENDIX B. KERNUN UTM REFERENCE (5)

names (type: str-set)

Names of headers to be deleted.

name (type: str)

Name of header(s) to be modified or added.

text (type: str)

New header text.

Constraints:

Header modification text must comply with RFC.

force-doctype-ident [apply];

Change Content-Type header to recognized one.

This item forces change of original Content-Type header in the document to the new

one recognized by means of the DOCTYPE-IDENTIFICATION tool.

apply (type: str-set, optional, default: *)

Set of original Content-Type values that will be changed by this item. Values NOT

MATCHING tis set will be preserved.

replace filename [mime-type];

Document is removed and replaced by new text.

filename (type: name of shared-file, see common(5))

Replacement file.

mime-type (type: str, optional, default: "text/plain")

Document Content-Type.

Constraints:

MIME type of replacement must comply with RFC.

html-filter htmlf ;

Document is filtered.

htmlf (type: name of html-filter, see mod-html-filter(5))

[End of section acl-3 description.]

SEE ALSO

configuration(7), antivirus(5), auth(5), common(5), ldap(5), mod-html-filter(5), radius(5),

source-address(5), time(5), access-control(7), auth(7), host-matching(7), time-matching(7)

296

NAME

adaptive-firewall — format of adaptive-firewall component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the adaptive-firewall component con-

figuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in adaptive-firewall configuration directives:

yes-no (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

report-mode (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

task-frequency (see common(5))

listen-on-sock (see listen-on(5))

ids-agent-log-level (name-usage obligatory)

IDS log level

none

No messages are logged

emergency

Only emergency messages are logged

alert

Alert messages and above are logged

critical

Critical messages and above are logged

297

APPENDIX B. KERNUN UTM REFERENCE (5)

error

Error messages and above are logged

warning

Warning messages and above are logged

notice

Notice messages and above are logged

info

Informational messages and above are logged

perf

Performance messages and above are logged

config

Configuration messages and above are logged

debug

All possible messages are logged

ids-agent-detection-direction (name-usage obligatory)

Which address to detect as suspicious

src

Report source address

dst

Report destination address

both

Report both source and destination addresses

ids-agent-protocol (name-usage obligatory)

IDS protocols to inspect

any

Scan any protocol

tcp

Scan TCP protocol

udp

Scan UDP protocol

dcerpc

Scan DCERPC protocol

dhcp

Scan DHCP protocol

dns

Scan DNS protocol

298

ftp

Scan FTP protocol

http

Scan HTTP protocol

icmp

Scan ICMP protocol

ikev2

Scan IKEV2 protocol

imap

Scan IMAP protocol

krb5

Scan KRB5 protocol

msn

Scan MSN protocol

nfs

Scan NFS protocol

ntp

Scan NTP protocol

smtp

Scan SMTP protocol

ssh

Scan SSH protocol

tls

Scan TLS protocol

ids-agent-rule-action (name-usage obligatory)

IPS rule action

alert

Generate an alert but do not block the traffic.

The alerts are sent to Kernun base station for further analysis.

pass

Ignore the packet

block

Generate an alert and block the traffic.

IPS mode needs to be enabled by specifying section ADAPTIVE-FIREWALL.IPS, oth-

erwise this action behaves like ALERT.

Note that it may take up to a minute for the traffic to be blocked.

299

APPENDIX B. KERNUN UTM REFERENCE (5)

ids-agent-threshold-type (name-usage obligatory)

IDS rules threshold type

threshold

Sets a minimum threshold for a rule before it generates an alert.

A threshold setting of COUNT means on the COUNT-th time the rule matches an alert

is generated.

limit

If set to limit COUNT, it alerts at most COUNT times.

both

Applies both thresholding and limiting.

ids-agent-threshold-track-by (name-usage obligatory)

IDS rules threshold track by

src

Track the policy rule by source.

dst

Track the policy rule by destination.

ids-agent-rate-filter-track-by (name-usage obligatory)

IDS rules filter track by

src

Track the policy rule by source.

The tracking is done per IP-address.

dst

Track the policy rule by destination.

The tracking is done per IP-address.

rule

Track the policy rule globally for the rule.

both

Track the policy rule by a pair of source and destination.

The tracking is done per IP-address. Packets going to opposite directions between same

addresses tracked as the same pair.

ids-agent-suppress-direction (name-usage obligatory)

IDS rules suppress direction

src

Suppress the IDS rule for given source addresses.

300

dst

Suppress the IDS rule for given destination addresses.

any

Suppress the IDS rule for given addresses (source or destination).

policy-level (name-usage obligatory)

Adaptive Database Record Levels

medium

high

highest

ITEMS AND SECTIONS

Configuration of adaptive-firewall library component consists of following prototypes:

* ids-watchdog name { ... }

ids-agent-from-to ... ;

* ids-agent-rule-def name { ... }

* ids-agent-base-rule-policy name { ... }

* ids-agent-base-rate-filter name { ... }

* ids-agent-base-threshold name { ... }

* ids-agent-base-suppress name { ... }

ids-agent-base-change-rule ... ;

ids-agent { ... }

adaptive-firewall { ... }

Description:

ids-watchdog name {

id ... ;

file ... ;

* pattern ... ;

* threshold ... ;

record-lifetime ... ;

blocking ... ;

max-entries ... ;

}

A detector that monitors files for patterns.

It watches lines being added to given file and searches for given patterns.

301

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Watchdog identification must be specified.

At least one pattern must be specified.

Items & subsections:

id key ;

Watchdog Identification.

key (type: str)

Source ID.

file path;

Path to the file being monitored.

path (type: str)

pattern pat ;

Pattern being searched for.

pat (type: regexp)

Searched pattern.

IP adress position should be marked by parenthesis.

threshold count sec;

Thresholds for watchdog failures.

If given number of attempts is found within given time period in the file, the client IP

address is reported by the watchdog.

count (type: uint8)

sec (type: uint32)

Constraints:

Maximum COUNT value is 10..

record-lifetime [sec];

Address record lifetime.

Addresses not seen within this period are removed from the IDS database.

sec (type: uint32, optional, default: 86400)

blocking [mode];

Address blocking configuration.

mode (type: yes-no, optional, default: yes)

max-entries [size];

Maximum number of IPS table entries held in PF.

size (type: uint32, optional, default: 200000)

Maximum table size.

[End of section ids-watchdog description.]

302

ids-agent-from-to [hosts [ports]];

hosts (type: host-set, optional, default: *)

Set of hosts to apply the rule to

ports (type: port-set, optional, default: *)

Set of ports to apply the rule to

ids-agent-rule-def name {

action ... ;

protocol ... ;

src ... ;

dst ... ;

options ... ;

}

IDS rule to be added

Constraints:

ACTION must be specified.

OPTIONS must be specified.

Items & subsections:

action action;

Rule action.

action (type: ids-agent-rule-action)

protocol [proto];

Protocol to be scanned. Defaults to any protocol if omited.

The available protocols depend on the agent configuration. The protocols that are listed

here are available in the default agent configuration.

proto (type: ids-agent-protocol, optional, default: any)

src [hosts [ports]];

Source addresses and ports. Defaults to any address and any port if omitted.

hosts (type: host-set, optional, default: *)

Set of hosts to apply the rule to

ports (type: port-set, optional, default: *)

Set of ports to apply the rule to

dst [hosts [ports]];

Destination addresses and ports. Defaults to any address and any port if omitted.

hosts (type: host-set, optional, default: *)

Set of hosts to apply the rule to

303

APPENDIX B. KERNUN UTM REFERENCE (5)

ports (type: port-set, optional, default: *)

Set of ports to apply the rule to

options options;

Rule definition.

See suricata documentation for the options syntax.

For example: "msg:\"Testing rule\"; flow:to_server,established; content:\"TEST\";

sid:1999999; classtype:unknown;"

Note that SID numbers have to be unique, range between 1500000 and 1999999 can be

used for custom rules.

options (type: str)

[End of section ids-agent-rule-def description.]

ids-agent-base-rule-policy name {

* sid ... ;

}

IDS rule policy base.

Items & subsections:

sid sid ;

Signature identifier

sid (type: uint64)

[End of section ids-agent-base-rule-policy description.]

ids-agent-base-rate-filter name {

* sid ... ;

track-by ... ;

count ... ;

seconds ... ;

new-action ... ;

timeout ... ;

}

IDS rule rate filter base.

The ids-agent-base-rate-filter section is derived from

ids-agent-base-rule-policy section prototype. For detail

description of it, see above.

Changes to the ids-agent-base-rate-filter section:

Item TRACK-BY required.

Item COUNT required.

304

Item SECONDS required.

Item NEW-ACTION required.

Item TIMEOUT required.

Added items & subsections:

track-by src;

track-by dst;

track-by rule;

track-by both;

How to track the exception.

<branching element> (type: ids-agent-rate-filter-track-by)

count count ;

Number of rule hits before this exception is activated.

count (type: uint64)

seconds seconds;

Time period within which the COUNT needs to be reached to activate this exception.

seconds (type: uint64)

new-action action;

The rule action is changed to this action when this exception matches.

action (type: ids-agent-rule-action)

timeout timeout ;

Time in seconds during which this exception remains active

timeout (type: uint64)

[End of section ids-agent-base-rate-filter description.]

ids-agent-base-threshold name {

* sid ... ;

type ... ;

track-by ... ;

count ... ;

seconds ... ;

}

Threshold base.

The ids-agent-base-threshold section is derived from

ids-agent-base-rule-policy section prototype. For detail

description of it, see above.

305

APPENDIX B. KERNUN UTM REFERENCE (5)

Changes to the ids-agent-base-threshold section:

Item TYPE required.

Item TRACK-BY required.

Item COUNT required.

Item SECONDS required.

Added items & subsections:

type threshold;

type limit;

type both;

Threshold type.

<branching element> (type: ids-agent-threshold-type)

track-by src;

track-by dst;

How to track the threshold.

<branching element> (type: ids-agent-threshold-track-by)

count count ;

The COUNT as described by TYPE.

count (type: uint64)

seconds seconds;

Time period within which the COUNT needs to be reached to activate this threshold.

seconds (type: uint64)

[End of section ids-agent-base-threshold description.]

ids-agent-base-suppress name {

* sid ... ;

direction ... ;

address ... ;

}

Exception base.

The ids-agent-base-suppress section is derived from

ids-agent-base-rule-policy section prototype. For detail

description of it, see above.

Added items & subsections:

direction src;

direction dst;

direction [any];

Direction of the suppression.

306

<branching element> (type: ids-agent-suppress-direction, op-

tional, default: any)

address [address];

The addresses and ports to base the suppression on.

address (type: host-set, optional, default: *)

Set of hosts to apply the rule to

[End of section ids-agent-base-suppress description.]

ids-agent-base-change-rule sid ;

Change rule base.

sid (type: uint64-list)

Constraints:

SID list must not be empty.

ids-agent {

phase ... ;

* tag ... ;

* iface ... ;

record-lifetime ... ;

max-entries ... ;

rules { ... }

blocking { ... }

engine { ... }

rotate-log ... ;

}

An IDS application for advanced inspection of network traffic.

It uses complex rules downloaded from a central server to monitor traffic on given interfaces.

Constraints:

At least one IFACE has to be specified.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 50)

Phase number; the lower one, the earlier start.

307

APPENDIX B. KERNUN UTM REFERENCE (5)

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

iface name;

Network interfaces watched by the IDS agent.

Warning!:

For all interfaces IDS-AGENT listens on, it is necessary to disable various hardware

offloadings by adding flags -rxcsum -tso -toe -lro to ifconfig.

Otherwise, IDS-AGENT will set these flags when starting and unset them when stop-

ping which will cause the interface to be restarted.

This is done automatically for all hardware interfaces and for interfaces of types vlan,

vmx and lagg.

It is therefore recommended to perform a reboot after adding, changing or removing

item IDS-AGENT.IFACE, especially if you have a cluster.

name (type: name of interface, see interface(5))

record-lifetime [sec];

Address record lifetime.

Hosts not seen within this period are removed from the DB.

sec (type: uint32, optional, default: 86400)

max-entries [size];

Maximum number of IPS table entries held in PF.

size (type: uint32, optional, default: 200000)

Maximum table size.

rules {

* add-rule name { ... }

* include-rules ... ;

* modify-rules ... ;

enable-rules ... ;

disable-rules ... ;

change-rules-to-block ... ;

* rule-rate-filter name { ... }

308

* global-rate-filter name { ... }

* rule-threshold name { ... }

* global-threshold name { ... }

* rule-suppress name { ... }

* global-suppress name { ... }

}

IDS rules configuration and modification.

Items & subsections:

add-rule name {

action ... ;

protocol ... ;

src ... ;

dst ... ;

options ... ;

}

Custom IDS rule

The add-rule section is derived from ids-agent-rule-def section

prototype. For detail description of it, see above.

include-rules file;

Include raw-defined rules from a file.

file (type: name of shared-file, see common(5))

File to include raw-defined rules from

modify-rules sid replace-regex replace-with;

Modify IDS rules.

sid (type: uint64-list)

replace-regex (type: regexp)

replace-with (type: str)

Constraints:

SID list must not be empty.

enable-rules sid ;

Enable IDS rules

sid (type: uint64-list)

Constraints:

SID list must not be empty.

disable-rules sid ;

Disable IDS rules.

A disabled rule is not passed to the agent.

sid (type: uint64-list)

Constraints:

SID list must not be empty.

309

APPENDIX B. KERNUN UTM REFERENCE (5)

change-rules-to-block sid ;

Change the action of IDS rules to block

sid (type: uint64-list)

Constraints:

SID list must not be empty.

rule-rate-filter name {

* sid ... ;

track-by ... ;

count ... ;

seconds ... ;

new-action ... ;

timeout ... ;

}

Conditionally change the action of selected IDS rules

The rule-rate-filter section is derived from

ids-agent-base-rate-filter section prototype. For detail

description of it, see above.

Changes to the rule-rate-filter section:

At least one SID must be entered.

global-rate-filter name {

track-by ... ;

count ... ;

seconds ... ;

new-action ... ;

timeout ... ;

}

Conditionally change the action of all IDS rules

The global-rate-filter section is derived from

ids-agent-base-rate-filter section prototype. For detail

description of it, see above.

Changes to the global-rate-filter section:

Item sid is not valid.

rule-threshold name {

* sid ... ;

type ... ;

track-by ... ;

count ... ;

seconds ... ;

}

Conditionally limit the selected IDS rules

The rule-threshold section is derived from

ids-agent-base-threshold section prototype. For detail de-

scription of it, see above.

310

Changes to the rule-threshold section:

At least one SID must be entered.

global-threshold name {

type ... ;

track-by ... ;

count ... ;

seconds ... ;

}

Conditionally limit all IDS rules

The global-threshold section is derived from

ids-agent-base-threshold section prototype. For detail de-

scription of it, see above.

Changes to the global-threshold section:

Item sid is not valid.

rule-suppress name {

* sid ... ;

direction ... ;

address ... ;

}

Conditionally suppress selected IDS rules.

A suppressed rule acts the same as a rule with action "pass", which means:

- it doesn’t generate an alert,

- it prevents other rules from matching on that packet.

The rule-suppress section is derived from

ids-agent-base-suppress section prototype. For detail de-

scription of it, see above.

Changes to the rule-suppress section:

At least one SID must be entered.

Item ADDRESS requires item DIRECTION to be specified..

Item DIRECTION requires atleast one item ADDRESS to be specified..

global-suppress name {

direction ... ;

address ... ;

}

Conditionally suppress all IDS rules.

A suppressed rule acts the same as a rule with action "pass", which means:

- it does not generate an alert,

- it prevents other rules from matching on that packet.

The global-suppress section is derived from

ids-agent-base-suppress section prototype. For detail de-

scription of it, see above.

Changes to the global-suppress section:

Item sid is not valid.

At least one address must be specified..

311

APPENDIX B. KERNUN UTM REFERENCE (5)

[End of section ids-agent.rules description.]

blocking {

direction ... ;

alerts ... ;

log ... ;

block ... ;

}

IDS agent blocking configuration.

IDS agent has two levels of detecting suspicious traffic:

- alerts, which are only mildly suspicious and thus are only logged, and

- blocks, which are severe alerts that are also reported to the IPS module for blocking

Items & subsections:

direction src;

direction dst;

direction [both];

Which addresses to block when IPS mode is enabled.

<branching element> (type: ids-agent-detection-direction,

optional, default: both)

alerts [val];

Whether to consider rules with action ALERT to have action BLOCK.

val (type: yes-no, optional, default: no)

log [val];

Whether to log IDS blocks to /var/log/kernun-ids-agent

val (type: yes-no, optional, default: yes)

block [val];

Whether to actually block the addresses or just log what would be blocked.

This item makes difference only when IPS is configured. It can be used to disable

the blocking mechanism of IDS-AGENT without having to disable the entire IPS.

val (type: yes-no, optional, default: yes)

[End of section ids-agent.blocking description.]

engine {

flags ... ;

cfg-file ... ;

log-level ... ;

}

IDS agent engine configuration

Items & subsections:

flags flags;

Flags to be passed to the engine upon start.

312

flags (type: str)

cfg-file file;

The configuration file for the agent.

Default value is "samples/shared/ids-agent.yaml" from distribution. CML modifies

this file according to its purpose, i.e:

- CML overwrites variable definitions according to ADDRESS-GROUPS and

PORT-GROUPS

- CML overwrites the path and generates the content of threshold file if atleast one

item GLOBAL-RATE-FILTER, RULE-RATE-FILTER, GLOBAL-THRESHOLD,

RULE-THRESHOLD, GLOBAL-SUPPRESS or RULE-SUPPRESS is specified

- CML overwrites the pcap section according to IFACE item

- CML appends the path to the downloaded rules to the rule-files list when item

RULES-DOWNLOAD is specified

file (type: name of shared-file, see common(5))

log-level none;

log-level emergency;

log-level alert;

log-level critical;

log-level error;

log-level warning;

log-level [notice];

log-level info;

log-level perf;

log-level config;

log-level debug;

Engine log level

<branching element> (type: ids-agent-log-level, optional, de-

fault: notice)

[End of section ids-agent.engine description.]

rotate-log [user user] [group group] [mode mode] [count count]

[size size] [when [zip]];

Log file rotation description.

Use the SIZE elem if log file size criterion required. Use the WHEN elem if periodical

rotation required. If used both SIZE and WHEN elems, the log file is rotated at a

proper time only if size limit is reached.

user user (type: str, optional, default: <NULL>)

Log file owner - user.

group group (type: str, optional, default: "wheel")

Log file owner - group.

mode mode (type: uint16, optional, default: 640)

Log file permissions.

313

APPENDIX B. KERNUN UTM REFERENCE (5)

count count (type: uint16, optional, default: 31)

Number of days being archived.

size size (type: uint16, optional, default: 0)

Size limit for rotation in KB (ignore log file size if omitted).

when (type: time-cond, optional, default: anytime)

Rotation periodicity (use SIZE condition if omitted).

zip (type: zip-mode, optional, default: bzip2)

Zipping mode.

Constraints:

Use either size criterion or defined periodicity.

[End of section ids-agent description.]

adaptive-firewall {

ids-agent { ... }

* watchdog name { ... }

honeypot { ... }

auto-blocking { ... }

adaptive-database { ... }

address-groups { ... }

port-groups { ... }

whitelist ... ;

blacklist ... ;

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

}

Configuration of adaptive IDS/IPS system.

Constraints:

IDS-AGENT requires non-empty ADDRESS-GROUPS.HOME-NET.

Items & subsections:

ids-agent {

phase ... ;

* tag ... ;

* iface ... ;

record-lifetime ... ;

max-entries ... ;

rules { ... }

314

blocking { ... }

engine { ... }

rotate-log ... ;

}

The ids-agent section is derived from ids-agent section prototype.

For detail description of it, see above.

watchdog name {

id ... ;

file ... ;

* pattern ... ;

* threshold ... ;

record-lifetime ... ;

blocking ... ;

max-entries ... ;

}

The watchdog section is derived from ids-watchdog section proto-

type. For detail description of it, see above.

honeypot {

* non-transparent ... ;

record-lifetime ... ;

blocking ... ;

max-entries ... ;

}

A detector that provides a dummy TCP server which listens on an address

that is not assigned to a real host.

A client attempting to connect to this server is assumed to be a port scanner.

The honeypot section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the honeypot section:

Item transparent is not valid.

Added items & subsections:

record-lifetime [sec];

Address record lifetime.

Addresses not seen within this period are removed from the IDS database.

sec (type: uint32, optional, default: 86400)

blocking [mode];

Address blocking configuration.

mode (type: yes-no, optional, default: yes)

315

APPENDIX B. KERNUN UTM REFERENCE (5)

max-entries [size];

Maximum number of IPS table entries held in PF.

size (type: uint32, optional, default: 200000)

Maximum table size.

[End of section adaptive-firewall.honeypot description.]

auto-blocking {

record-lifetime ... ;

save-delay ... ;

refresh ... ;

cleanup-time ... ;

}

Autonomous blocking guard parameters.

It blocks addresses added to the blacklist by internal detectors (honeypot, watchdog

etc.).

Items & subsections:

record-lifetime [sec];

Blacklist record lifetime.

Addresses not seen within this period are removed from the database.

sec (type: uint32, optional, default: 86400)

save-delay [sec];

SQL transaction maximum duration.

sec (type: uint32, optional, default: 1)

refresh daily [time time] [report report];

refresh hourly [minute minute] [report report];

refresh [every] [period period] [at at] [report report];

refresh raw raw raw [report report];

refresh manually;

Schedule refresh of internal blocking rules.

<branching element> (type: task-frequency, optional, default:

every)

raw raw (type: str)

Raw line to be placed into crontab. First 5 columns (the time specification)

must be specified.

minute minute (type: time, optional, default: 0)

Starting time of task (mm, hour ignored).

time time (type: time, optional, default: 415)

Starting time of task (hhmm).

period period (type: uint8, optional, default: 1)

Run the task every PERIOD minutes (mm, hours ignored).

316

at at (type: uint8, optional, default: 0)

Starting time of task (mm, hours ignored)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

cleanup-time [hhmm];

Time of day when the database cleanup is done.

At time given in this item, records for address not seen within particular RECORD-

LIFETIME period are removed.

hhmm (type: time, optional, default: 303)

[End of section adaptive-firewall.auto-blocking description.]

adaptive-database {

policy ... ;

max-entries ... ;

}

Kernun Adaptive Database application.

Items & subsections:

policy [from from];

Address blocking policy.

The higher the policy is, the more IP addresses are blocked.

from from (type: policy-level, optional, default: high)

max-entries [size];

Maximum number of Adaptive Database table entries held in PF.

size (type: uint32, optional, default: 100000)

Maximum table size.

[End of section adaptive-firewall.adaptive-database description.]

address-groups {

home-net ... ;

external-net ... ;

http-servers ... ;

sql-servers ... ;

smtp-servers ... ;

dns-servers ... ;

}

Address variables.

Defining these variables according to your network will increase the accuracy of the

Adaptive Firewall.

Items & subsections:

317

APPENDIX B. KERNUN UTM REFERENCE (5)

home-net [home-net];

Set of addresses in your network that are to be protected by the Adaptive Firewall.

These addresses are by default added to the whitelist and thus cannot end up on

the blacklist.

Note that when running IDS agent on external interface (or any interface with

NAT), it is necessary to include the external address in this set because otherwise

the traffic will not get matched by most rules.

About 75 % of IDS rules use this variable.

home-net (type: net-list, optional, default: {})

external-net external-net ;

Set of addresses that are not in your network.

Defaults to negation of HOME-NET when unspecified.

About 85 % of IDS rules use this variable.

external-net (type: net-list)

http-servers http-servers;

Set of DNS servers used in your network.

Defaults to HOME-NET when unspecified.

About 25 % of IDS rules use this variable.

http-servers (type: net-list)

sql-servers sql-servers;

Set of SQL servers used in your network.

Defaults to HOME-NET when unspecified.

About 2 % of IDS rules use this variable.

sql-servers (type: net-list)

smtp-servers smtp-servers;

Set of SMTP servers used in your network.

Defaults to HOME-NET when unspecified.

About 1 % of IDS rules use this variable.

smtp-servers (type: net-list)

dns-servers dns-servers;

Set of DNS servers used in your network.

Defaults to HOME-NET when unspecified.

Less than 1 % of IDS rules use this variable.

dns-servers (type: net-list)

[End of section adaptive-firewall.address-groups description.]

port-groups {

http-ports ... ;

oracle-ports ... ;

shellcode-ports ... ;

ssh-ports ... ;

318

}

Port variables.

Defining these variables according to your network will increase the accuracy of the

Adaptive Firewall.

Items & subsections:

http-ports http-ports;

Set of HTTP ports used in your network.

Defaults to { 80, 8080 } when unspecified.

About 25 % of IDS rules use this variable.

http-ports (type: port-set)

oracle-ports oracle-ports;

Set of SSH ports used in your network.

Defaults to { 1521 } when unspecified.

About 1 % of IDS rules use this variable.

oracle-ports (type: port-set)

shellcode-ports shellcode-ports;

Set of SSH ports used in your network.

Defaults to ! { 80 } when unspecified.

Less than 1 % of IDS rules use this variable.

shellcode-ports (type: port-set)

ssh-ports ssh-ports;

Set of SSH ports used in your network.

Defaults to { 22 } when unspecified.

Less than 1 % of IDS rules use this variable.

ssh-ports (type: port-set)

[End of section adaptive-firewall.port-groups description.]

whitelist [no-home-net] [no-servers] [list];

Whitelisted addresses.

These addresses are never blocked by IPS but their traffic can still be blocked due to

the other side of communication getting blocked by IPS.

The addresses can get detected by some IDS detectors but most will not even report

them.

no-home-net (type: key, optional)

Whether to put addresses from ADDRESS-GROUPS.HOME-NET on the whitelist.

It can be useful to disable this if you want to allow IPS to potentially block some

addresses in your network.

no-servers (type: key, optional)

Whether to put addresses from the following items on the whitelist:

- ADDRESS-GROUPS.DNS-SERVERS

- ADDRESS-GROUPS.HTTP-SERVERS

319

APPENDIX B. KERNUN UTM REFERENCE (5)

- ADDRESS-GROUPS.SMTP-SERVERS

- ADDRESS-GROUPS.SQL-SERVERS

It can be useful to disable this if you want these addresses to be temporarily

blockable when someone is spoofing them.

list (type: host-set, optional, default: {})

blacklist [list];

Blacklisted addresses.

These addresses are always blocked by IPS.

list (type: net-list, optional, default: {})

stats-daily {

top-clients ... ;

top-servers ... ;

top-src-ips ... ;

top-dst-ips ... ;

top-rules ... ;

}

The stats-daily section is derived from summary section prototype.

For detail description of it, see application(5).

Changes to the stats-daily section:

Item top-users is not valid.

Item top-groups is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

stats-weekly {

top-clients ... ;

top-servers ... ;

top-src-ips ... ;

top-dst-ips ... ;

top-rules ... ;

320

}

The stats-weekly section is derived from summary section proto-

type. For detail description of it, see application(5).

Changes to the stats-weekly section:

Item top-users is not valid.

Item top-groups is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

stats-monthly {

top-clients ... ;

top-servers ... ;

top-src-ips ... ;

top-dst-ips ... ;

top-rules ... ;

}

The stats-monthly section is derived from summary section proto-

type. For detail description of it, see application(5).

Changes to the stats-monthly section:

Item top-users is not valid.

Item top-groups is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

321

APPENDIX B. KERNUN UTM REFERENCE (5)

Section activity-report is not valid.

[End of section adaptive-firewall description.]

SEE ALSO

configuration(7), application(5), common(5), interface(5), listen-on(5)

322

NAME

alertd — format of alertd component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the alertd component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in alertd configuration directives:

yes-no (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

ITEMS AND SECTIONS

Configuration of alertd library component consists of following prototypes:

alertd { ... }

Description:

alertd {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

323

APPENDIX B. KERNUN UTM REFERENCE (5)

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

* snmp-manager name { ... }

}

SNMP Alert Daemon configuration.

The alertd section is derived from alone-application section pro-

totype. For detail description of it, see application(5).

Added items & subsections:

snmp-manager name {

host ... ;

port ... ;

community ... ;

}

SNMP Manager Definition.

Items & subsections:

host host ;

SNMP Manager Host.

host (type: host)

port [port];

SNMP Manager Port.

port (type: port, optional, default: 162)

community [community];

SNMP Community.

community (type: str, optional, default: "public")

[End of section alertd.snmp-manager description.]

[End of section alertd description.]

SEE ALSO

configuration(7), application(5), common(5), log(5)

324

NAME

alertd.cfg — format of alertd program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the alertd.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in alertd.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

ip-version (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ITEMS AND SECTIONS

Program alertd recognizes following items and sections:

* resolver name { ... }

sysctl { ... }

use-resolver ... ;

alertd { ... }

ipv6-mode ... ;

Description:

325

APPENDIX B. KERNUN UTM REFERENCE (5)

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

326

alertd {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

* snmp-manager name { ... }

}

The alertd section is derived from alertd section prototype. For

detail description of it, see alertd(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), alertd(8), alertd(5), common(5), log(5), resolver(5), sysctl(5)

327

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

altq — format of altq component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the altq component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Configuration of altq library component consists of following prototypes:

altq ... ;

altq2 ... ;

Description:

altq altq ;

ALTQ queue selection for traffic shaping (UDP).

altq (type: name of pf-queue, see pf-queue(5))

queue name

altq2 altq [paltq paltq];

ALTQ queue selection for traffic shaping (TCP).

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

SEE ALSO

configuration(7), pf-queue(5)

328

NAME

antivirus — format of antivirus component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the antivirus component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in antivirus configuration directives:

enabling (see common(5))

antivirus-protocol (name-usage obligatory)

Which antivirus software is used (selects communication protocol).

clamav-file

Clam AntiVirus communicating via file

icap

generic antivirus communicating via ICAP

kav-debug-level (name-usage optional)

Debug level of the Kaspersky antivirus

L0 (0)

Logging off.

L1 (1)

Scanning status only, no tracing data is output.

L2 (2)

Error messages and critical faults.

L3 (3)

Warning messages.

L4 (4)

Informational messages.

329

APPENDIX B. KERNUN UTM REFERENCE (5)

L5 (5)

Detailed informational messages.

L6 (6)

Informational messages with extra details.

L7 (7)

Application traces.

L8 (8)

Enhanced tracing.

L9 (9)

Debug output. This is a recommended level for bug reports.

L10 (10)

Full tracing detail. This is a maximum supported level of logging detail.

virus-status (name-usage obligatory)

Antivirus detection status. This enumeration is used when checking results of an antivirus

run.

found

Mail or document scanned, at least one virus found.

free

Mail or document scanned, no virus was found.

skipped

Mail or document not scanned or antivirus disabled.

unknown

Antivirus returned an unknown response.

error

Antivirus failed.

database-source (name-usage obligatory)

Antivirus database source.

none

No database is used.

file

Path to a file in the filesystem.

ITEMS AND SECTIONS

Configuration of antivirus library component consists of following prototypes:

* antivirus name { ... }

330

antivirus-keepalive ... ;

use-antivirus ... ;

antivirus-mode ... ;

accept-antivirus-status ... ;

Description:

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

persistent-stream ... ;

clamav-agent { ... }

}

Settings of antivirus checking.

Constraints:

ICAP Antivirus engine is not available as agent.

CLAMAV-AGENT are allowed only for CLAMAV-* antiviruses.

Items & subsections:

connection clamav-file inet-socket ;

connection icap inet-socket [uri];

Connection to antivirus (socket and protocol).

<branching element> (type: antivirus-protocol)

inet-socket (type: sock)

Server IP address/hostname

uri (type: str, optional, default: "/av")

URI for ICAP GET request. The scheme, host and port may be omitted so the

URI can be written as an absolute path.

sock-opt {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

331

APPENDIX B. KERNUN UTM REFERENCE (5)

log-limit ... ;

}

Connection to antivirus options.

The sock-opt section is derived from sock-opt section prototype.

For detail description of it, see netio(5).

Changes to the sock-opt section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

timeout [sec];

Total timeout for checking of one document.

sec (type: uint16, optional, default: 300)

comm-dir [path];

Directory used for communication with antivirus.

path (type: str, optional, default: "/data/tmp/antivirus")

altq altq [paltq paltq];

ALTQ queues for data sent to antivirus.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

max-checked-size bytes [skip];

Maximum size of document sent to antivirus engine.

If the document is larger, only the first part of given size is checked. If a virus is found,

the appropriate status is returned. If the document is clean, the rest of document is

forwarded without checking.

An alternative behavior can be configured when oversized documents are not checked

and status SKIPPED is returned.

bytes (type: uint64)

Size limit in bytes.

skip (type: key, optional)

This flag causes skipping check for oversized documents.

icap-pass-200-with-pure-body [status];

ICAP server option - handle 200 OK response with pure document body (without

HTTP error response header) as virus-free response. Without this option, all 200 OK

responses are considered to be virus-found ones.

status (type: enabling, optional, default: enable)

persistent-stream;

Keeping the antivirus connection alive between several attempts of checking the same

file.

332

clamav-agent {

phase ... ;

* tag ... ;

exclude-pua ... ;

* clamd-raw ... ;

custom-db-source ... ;

* custom-db-url ... ;

* freshclam-raw ... ;

}

ClamAV antivirus engine component.

If used, this section defines parameters of a local agent listening on antivirus connection

addresses and executing antivirus scanning.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications

of particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some

commands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

exclude-pua [list];

ExcludePUA configuration option values.

list (type: str, optional, default:

"Packed,PUA.Win.Packer,EncryptedDoc")

clamd-raw line;

Raw lines of clamd.cfg file.

line (type: str)

custom-db-source none;

custom-db-source [file] [file];

Source of virus database URL set.

<branching element> (type: database-source, optional, default:

file)

file (type: str, optional, default:

"/usr/local/kernun/license.clamav.dat")

333

APPENDIX B. KERNUN UTM REFERENCE (5)

custom-db-url url ;

Additional custom URL of virus database.

url (type: str)

freshclam-raw line;

Raw lines of freshclam.cfg file.

line (type: str)

[End of section antivirus.clamav-agent description.]

[End of section antivirus description.]

antivirus-keepalive channel [interval interval] [chunk chunk]

[limit limit];

Antivirus usage mode.

Check document by antivirus, with settings for passing initial part of unchecked data through

the antivirus module during antivirus checking.

channel (type: name-list of antivirus, see above)

Name of ANTIVIRUS global section used.

interval interval (type: uint16, optional, default: 0)

Seconds between passing blocks of unchecked data (0 = do not send unchecked data).

chunk chunk (type: uint32, optional, default: 0)

Size of each block of unchecked data.

limit limit (type: uint32, optional, default: 0)

Maximum size of unchecked data passed before antivirus check is completed. Remaining

data will be passed only after successful checking.

use-antivirus disable;

use-antivirus enable channel ;

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any ANTIVIRUS global

section can be present nor any MAIL-ACL and DOC-ACL can have VIRUS item specified.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see above)

antivirus-mode disable [interval interval] [chunk chunk] [limit

limit];

antivirus-mode enable channel [interval interval] [chunk chunk]

[limit limit];

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any ANTIVIRUS global

section can be present nor any ACL can have VIRUS item specified.

334

If enabled, it can be configured for passing initial part of unchecked data to the client before

the antivirus check is completed. In this case, if a virus is found later, the connection to the

client is broken.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see above)

interval interval (type: uint16, optional, default: 0)

Seconds between passing blocks of unchecked data (0 = do not send unchecked data).

chunk chunk (type: uint32, optional, default: 0)

Size of each block of unchecked data.

limit limit (type: uint32, optional, default: 0)

Maximum size of unchecked data passed before antivirus check is completed. Remaining

data will be passed only after successful checking.

accept-antivirus-status status;

Defines set of antivirus status codes (in addition to FREE) that allow further passing of

data. Other status codes cause termination of data transfer. If not set, data are passed only

if the antivirus returns status FREE.

status (type: virus-status-set)

SEE ALSO

configuration(7), common(5), netio(5), pf-queue(5)

335

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

application — format of application component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the application component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in application configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

lock-type (see ipc(5))

source-address-mode (see source-address(5))

doctype-ident-method (see acl(5))

listen-on-sock (see listen-on(5))

proc-priority (name-usage obligatory)

Process priority type.

normal

realtime

336

ITEMS AND SECTIONS

Configuration of application library component consists of following prototypes:

priority ... ;

doctype-identification { ... }

graph ... ;

summary { ... }

alone-application { ... }

* clone-application name { ... }

* proxy name { ... }

Description:

priority [normal];

priority realtime realtime;

Process priority setting.

<branching element> (type: proc-priority, optional, default:

normal)

realtime (type: uint8)

Realtime priority (parameter of rtprio() call).

Accepted values between 0 and 31; 0 is the highest priority.

Constraints:

Priority value must be between 0 and 31.

doctype-identification {

* order ... ;

mime-types ... ;

magic ... ;

}

Document type recognition attributes.

This section defines attributes and order of different methods of document type recognition

methods.

Items & subsections:

order [for for] order ;

Default order of methods usage.

If omitted, only Content-Type defines document type.

337

APPENDIX B. KERNUN UTM REFERENCE (5)

for for (type: direction-set, optional, default: *)

Document transfer direction set.

This element defines directions for which the order is specified by this item.

For some proxies, both directions can be used while for others either direction is

not applicable; consult proxy man page.

order (type: doctype-ident-method-list)

Methods are used in given order unless type is recognized.

For some proxies, some methods are not applicable, consult proxy man page.

Constraints:

Only 3 methods can be specified.

mime-types filename;

EXTENSION method attributes.

filename (type: name of shared-file, see common(5))

Extensions to MIME types mapping file.

magic [filename [scan-size]];

MAGIC method attributes.

filename (type: name of shared-file, see common(5), optional,

default: NULL)

Magic numbers to MIME types mapping file.

If omitted, system default file is used.

scan-size (type: uint32, optional, default: 4096)

Size of initial part of data used for type recognition.

[End of section doctype-identification description.]

graph top;

top (type: uint16)

summary {

top-clients ... ;

top-users ... ;

top-groups ... ;

top-servers ... ;

top-categories ... ;

top-senders ... ;

top-recipients ... ;

top-mime-types ... ;

top-qnames ... ;

top-qtypes ... ;

top-callers ... ;

338

top-receivers ... ;

top-sids ... ;

top-server-ports ... ;

spam-threshold ... ;

activity-report { ... }

top-src-ips ... ;

top-dst-ips ... ;

top-rules ... ;

}

General definition of graph parameters for periodic summary lists.

Items & subsections:

top-clients [top];

Top clients in statistics.

top (type: uint16, optional, default: 20)

top-users [top];

Top users in statistics.

top (type: uint16, optional, default: 20)

top-groups [top];

Top groups in statistics.

top (type: uint16, optional, default: 10)

top-servers [top];

Top servers in statistics.

top (type: uint16, optional, default: 20)

top-categories [top];

Top Clear Web categories in statistics.

top (type: uint16, optional, default: 10)

top-senders [top];

Top mail senders in statistics.

top (type: uint16, optional, default: 20)

top-recipients [top];

Top mail recipients in statistics.

top (type: uint16, optional, default: 20)

top-mime-types [top];

Top attachment MIME types in statistics.

339

APPENDIX B. KERNUN UTM REFERENCE (5)

top (type: uint16, optional, default: 10)

top-qnames [top];

Top query names in statistics.

top (type: uint16, optional, default: 20)

top-qtypes [top];

Top query types in statistics.

top (type: uint16, optional, default: 10)

top-callers [top];

Top call initiators in statistics.

top (type: uint16, optional, default: 20)

top-receivers [top];

Top call receivers in statistics.

top (type: uint16, optional, default: 20)

top-sids [top];

Top SIDs (ids-agent rule identifiers) in statistics.

top (type: uint16, optional, default: 20)

top-server-ports [top];

Top server ports in statistics.

top (type: uint16, optional, default: 20)

spam-threshold [value];

Spam score threshold for a mail to be considered SPAM.

value (type: uint16, optional, default: 5000)

activity-report {

server-max ... ;

}

Generate a detailed report of client/user activity.

Items & subsections:

server-max [val];

The number of characters displayed from the end of a long server name in a

client/user activity report. If the item has value 0, the whole server name will

be displayed.

val (type: uint16, optional, default: 40)

[End of section summary.activity-report description.]

top-src-ips [top];

Top source IP addresses.

top (type: uint16, optional, default: 20)

340

top-dst-ips [top];

Top destination IP addresses.

top (type: uint16, optional, default: 20)

top-rules [top];

Top Snort rules.

top (type: uint16, optional, default: 20)

[End of section summary description.]

alone-application {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

}

This section defines general TNS-wide nonrepeatable application attributes.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 50)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

341

APPENDIX B. KERNUN UTM REFERENCE (5)

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

log-debug {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

dump-hold-time ... ;

}

The log-debug section is derived from log section prototype. For

detail description of it, see log(5).

log-stats {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

dump-hold-time ... ;

}

The log-stats section is derived from log section prototype. For

detail description of it, see log(5).

use-resolver name;

Resolver Specification.

This item defines resolver configuration used for this proxy.

name (type: name of resolver, see resolver(5))

cfg-resolution [max-addrs [min-ttl [def-ttl [max-ttl [hosts-ttl

[pool-dir]]]]]];

Attributes for resolution of domain names in configuration.

342

max-addrs (type: uint8, optional, default: 10)

Maximum of addresses per a single domain name.

min-ttl (type: uint32, optional, default: 10)

Minimum TTL accepted, used instead of too small TTL values (e.g. 0).

def-ttl (type: uint32, optional, default: 1m)

Default TTL used in case of unsuccessful DNS resolution.

max-ttl (type: uint32, optional, default: 1d)

Maximum TTL accepted, used instead of large TTL values.

hosts-ttl (type: uint32, optional, default: 1d)

TTL used for names in /etc/hosts.

pool-dir (type: str, optional, default: "/tmp")

Directory for temporary files used to share results.

monitoring {

disabled ... ;

comm-dir ... ;

interval ... ;

user ... ;

aproxy-user ... ;

data ... ;

}

The monitoring section is derived from monitoring section proto-

type. For detail description of it, see monitoring(5).

stats-daily {

}

The stats-daily section is derived from summary section prototype.

For detail description of it, see above.

Changes to the stats-daily section:

Item top-clients is not valid.

Item top-users is not valid.

Item top-groups is not valid.

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

343

APPENDIX B. KERNUN UTM REFERENCE (5)

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

stats-weekly {

}

The stats-weekly section is derived from summary section proto-

type. For detail description of it, see above.

Changes to the stats-weekly section:

Item top-clients is not valid.

Item top-users is not valid.

Item top-groups is not valid.

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

stats-monthly {

}

The stats-monthly section is derived from summary section proto-

type. For detail description of it, see above.

Changes to the stats-monthly section:

Item top-clients is not valid.

Item top-users is not valid.

Item top-groups is not valid.

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

344

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

nodaemon;

Do not daemonize itself.

singleproc;

Do not fork any child processes.

app-user [name];

User to run the program as.

If the program is started by root, it changes its identity. Otherwise, the program must

be started by named user.

name (type: str, optional, default: "kernun")

idle-timeout [seconds];

If no data is transmitted for a session within the period of specified amount of seconds,

connection (TCP case) or logical connection (UDP case) is closed.

Value of 0 (zero) means ’no limitation’.

seconds (type: uint32, optional, default: 3600)

run-block-sigalrm [val];

Block SIGALRM while a module runs.

val (type: yes-no, optional, default: yes)

[End of section alone-application description.]

clone-application name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

345

APPENDIX B. KERNUN UTM REFERENCE (5)

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

}

This section defines general TNS-wide repeatable application attributes.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 50)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

log-debug {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

346

dump-hold-time ... ;

}

The log-debug section is derived from log section prototype. For

detail description of it, see log(5).

log-stats {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

dump-hold-time ... ;

}

The log-stats section is derived from log section prototype. For

detail description of it, see log(5).

use-resolver name;

Resolver Specification.

This item defines resolver configuration used for this proxy.

name (type: name of resolver, see resolver(5))

cfg-resolution [max-addrs [min-ttl [def-ttl [max-ttl [hosts-ttl

[pool-dir]]]]]];

Attributes for resolution of domain names in configuration.

max-addrs (type: uint8, optional, default: 10)

Maximum of addresses per a single domain name.

min-ttl (type: uint32, optional, default: 10)

Minimum TTL accepted, used instead of too small TTL values (e.g. 0).

def-ttl (type: uint32, optional, default: 1m)

Default TTL used in case of unsuccessful DNS resolution.

max-ttl (type: uint32, optional, default: 1d)

Maximum TTL accepted, used instead of large TTL values.

hosts-ttl (type: uint32, optional, default: 1d)

TTL used for names in /etc/hosts.

pool-dir (type: str, optional, default: "/tmp")

Directory for temporary files used to share results.

monitoring {

disabled ... ;

347

APPENDIX B. KERNUN UTM REFERENCE (5)

comm-dir ... ;

interval ... ;

user ... ;

aproxy-user ... ;

data ... ;

}

The monitoring section is derived from monitoring section proto-

type. For detail description of it, see monitoring(5).

stats-daily {

}

The stats-daily section is derived from summary section prototype.

For detail description of it, see above.

Changes to the stats-daily section:

Item top-clients is not valid.

Item top-users is not valid.

Item top-groups is not valid.

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

stats-weekly {

}

The stats-weekly section is derived from summary section proto-

type. For detail description of it, see above.

Changes to the stats-weekly section:

Item top-clients is not valid.

Item top-users is not valid.

Item top-groups is not valid.

348

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

stats-monthly {

}

The stats-monthly section is derived from summary section proto-

type. For detail description of it, see above.

Changes to the stats-monthly section:

Item top-clients is not valid.

Item top-users is not valid.

Item top-groups is not valid.

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

nodaemon;

Do not daemonize itself.

349

APPENDIX B. KERNUN UTM REFERENCE (5)

singleproc;

Do not fork any child processes.

app-user [name];

User to run the program as.

If the program is started by root, it changes its identity. Otherwise, the program must

be started by named user.

name (type: str, optional, default: "kernun")

idle-timeout [seconds];

If no data is transmitted for a session within the period of specified amount of seconds,

connection (TCP case) or logical connection (UDP case) is closed.

Value of 0 (zero) means ’no limitation’.

seconds (type: uint32, optional, default: 3600)

run-block-sigalrm [val];

Block SIGALRM while a module runs.

val (type: yes-no, optional, default: yes)

[End of section clone-application description.]

proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

udpserver { ... }

350

source-address ... ;

doctype-identification { ... }

}

This section defines general TNS-wide proxy attributes.

The proxy section is derived from clone-application section pro-

totype. For detail description of it, see above.

Changes to the proxy section:

Addresses to listen on must be specified.

Added items & subsections:

listen-on {

* non-transparent ... ;

* transparent ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

At least one address to listen on must be specified.

tcpserver {

queue-size ... ;

init-children ... ;

max-children ... ;

max-children-per-ip ... ;

min-idle ... ;

max-idle ... ;

parent-cycle ... ;

info-cycle ... ;

min-start-rate ... ;

max-start-rate ... ;

kill-rate ... ;

fork-wait ... ;

fork-retries ... ;

lock ... ;

alt-lock ... ;

listener ... ;

conn-rate ... ;

conn-rate-per-ip ... ;

conn-rate-table ... ;

terminate-wait ... ;

351

APPENDIX B. KERNUN UTM REFERENCE (5)

}

The tcpserver section is derived from tcpserver section prototype.

For detail description of it, see tcpserver(5).

udpserver {

max-sessions ... ;

}

The udpserver section is derived from udpserver section prototype.

For detail description of it, see udpserver(5).

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;

Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of them

is applicable:

- The CLIENT keyword means the original client IP address is used. This mode will

be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used for

a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By default,

the main address of the bridge is used, however, any preferred alias address can be

listed in the cluster list.- The PHYSICAL option means that the address of the physical

interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

352

doctype-identification {

* order ... ;

mime-types ... ;

magic ... ;

}

The doctype-identification section is derived from

doctype-identification section prototype. For detail description

of it, see above.

[End of section proxy description.]

SEE ALSO

configuration(7), acl(5), common(5), ipc(5), listen-on(5), log(5), monitoring(5), netio(5),

resolver(5), source-address(5), tcpserver(5), udpserver(5)

353

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

atr — format of atr component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the atr component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in atr configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

354

listen-on-sock (see listen-on(5))

atr-strategy (name-usage obligatory)

Strategy for address selection.

all

All available addresses added to response.

first

First available address sent in response.

highest

Available address with highest ratio is sent in response.

cyclic

Available addresses are alternated in a circle.

random

Available addresses are alternated randomly by ratio.

atr-fallback (name-usage obligatory)

Fallback mode for no available address.

no-data

Response with NoError code and no ANSWER is returned.

first

Choose first address of requested type despite state.

ITEMS AND SECTIONS

Configuration of atr library component consists of following prototypes:

* atrmon name { ... }

Description:

atrmon name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

nodaemon ... ;

355

APPENDIX B. KERNUN UTM REFERENCE (5)

singleproc ... ;

app-user ... ;

run-block-sigalrm ... ;

listen-on { ... }

client-conn { ... }

* session-acl name { ... }

* request-acl name { ... }

}

Adaptive Transport Routing Monitor configuration.

The atrmon section is derived from proxy section prototype. For

detail description of it, see application(5).

Changes to the atrmon section:

Section stats-daily is not valid.

Section stats-weekly is not valid.

Section stats-monthly is not valid.

Item idle-timeout is not valid.

Section tcpserver is not valid.

Section udpserver is not valid.

Item source-address is not valid.

Section doctype-identification is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one REQUEST-ACL must be specified.

Section monitoring (see monitoring(5))

Item user is not valid.

Item aproxy-user is not valid.

Item data used as query.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 53.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 53.

Added items & subsections:

client-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

356

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client connection options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Item recv-bufsize (see netio(5))

Element bytes is optional, default: 512.

Input buffer size must be at least 512B.

Item send-timeout (see netio(5))

Element seconds is optional, default: 60.

Item send-bufsize (see netio(5))

Output buffer size must be at least 512B.

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout-peer ... ;

source-address ... ;

neg-resp-ttl ... ;

}

The first level ACL decides only between acceptation and denial of the

incoming datagram/connection.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item auth is not valid.

Item idle-timeout is not valid.

Item plug-to is not valid.

Added items & subsections:

neg-resp-ttl [seconds];

TTL for negative responses.

If ATR monitor sends NXDomain response code for name from known domain, it

can send a SOA record in AUTHORITY section. This record causes caching of

357

APPENDIX B. KERNUN UTM REFERENCE (5)

this negative answer in clients (nameservers) for the time used as the TTL of the

SOA RR. This value can be defined by this item.

Setting the TTL to zero means switching this feature off. Use this with care because

it can cause ineffectivity of DNS service.

seconds (type: uint32, optional, default: 60)

[End of section atrmon.session-acl description.]

request-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

client-altq ... ;

name ... ;

* nameserver ... ;

* address name { ... }

strategy ... ;

fallback ... ;

neg-resp-ttl ... ;

}

The second level ACL decides how to handle particular DNS query/notify

request.

The request-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the request-acl section:

Item server is not valid.

Item user is not valid.

Item parent-acl used as session-acl.

NAME must be specified.

At least one ADDRESS or NAMESERVER must be specified.

ADDRESS and NAMESERVER are mutually exclusive.

Added items & subsections:

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

358

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

name name;

Entry condition - Query domain name.

name (type: str)

nameserver ttl host ;

NS RR data.

ttl (type: uint32)

Time-to-live value of DNS RR.

host (type: str)

address name {

data ... ;

ratio ... ;

* ping-group name { ... }

down-timeout ... ;

up-timeout ... ;

}

Single address for resolution and availability check.

Constraints:

Host DATA must be specified.

Items & subsections:

data ttl addr ;

Data for particular answer.

ttl (type: uint32)

Time-to-live value of DNS RR.

addr (type: host)

IPv4/6 address of A/AAAA DNS RR.

ratio [prty];

Priority (relative frequency) of this address in responses.

prty (type: uint8, optional, default: 100)

ping-group name {

timeout ... ;

* host ... ;

}

Group of hosts being pinged.

Every defined group within an ADDRESS section must be alive to add this

address to DNS responses.

359

APPENDIX B. KERNUN UTM REFERENCE (5)

The ping-group section is derived from ping-group section proto-

type. For detail description of it, see ping(5).

down-timeout [sec];

Cluster down timeout.

At least one tested IP group must be inaccessible for this time in order to switch

the cluster interfaces "down".

sec (type: uint32, optional, default: 0)

Timeout in seconds, zero means immediate action.

up-timeout [sec];

Cluster up timeout.

All tested IP groups must be accessible for this time in order to switch the

cluster interfaces "up".

sec (type: uint32, optional, default: 0)

Timeout in seconds, zero means immediate action.

[End of section atrmon.request-acl.address description.]

strategy [mode];

Address selection strategy.

mode (type: atr-strategy, optional, default: all)

fallback [mode];

Response policy when no address alive.

mode (type: atr-fallback, optional, default: no-data)

neg-resp-ttl [seconds];

TTL for negative responses.

If ATR monitor sends negative QUERY responses (NoError response code with

no answer records or NXDomain response code), it can send a SOA record in

AUTHORITY section. This record causes caching of this negative answer in clients

(nameservers) for the time used as the TTL of the SOA RR. This value can be

defined by this item.

Setting the TTL to zero means switching this feature off. Use this with care because

it can cause ineffectivity of DNS service.

seconds (type: uint32, optional, default: 60)

[End of section atrmon.request-acl description.]

[End of section atrmon description.]

SEE ALSO

configuration(7), acl(5), application(5), auth(5), common(5), listen-on(5), log(5), monitoring(5),

netio(5), pf-queue(5), ping(5), source-address(5), time(5)

360

NAME

atrmon.cfg — format of atrmon program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the atrmon.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in atrmon.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

361

APPENDIX B. KERNUN UTM REFERENCE (5)

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

atr-strategy (see atr(5))

atr-fallback (see atr(5))

ITEMS AND SECTIONS

Program atrmon recognizes following items and sections:

admin ... ;

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* atrmon name { ... }

ipv6-mode ... ;

Description:

362

admin system [contact];

Firewall administrator and contact e-mail addresses.

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration. If

not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

363

APPENDIX B. KERNUN UTM REFERENCE (5)

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

364

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

365

APPENDIX B. KERNUN UTM REFERENCE (5)

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

atrmon name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

run-block-sigalrm ... ;

listen-on { ... }

client-conn { ... }

* session-acl name { ... }

* request-acl name { ... }

}

The atrmon section is derived from atrmon section prototype. For

detail description of it, see atr(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

366

SEE ALSO

configuration(7), atrmon(8), acl(5), atr(5), auth(5), common(5), interface(5), ipc(5), ldap(5),

listen-on(5), log(5), pf-queue(5), radius(5), resolver(5), source-address(5), sysctl(5), time(5)

367

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

auth — format of auth component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the auth component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in auth configuration directives:

obligation (see common(5))

lock-type (see ipc(5))

auth-method (name-usage obligatory)

Authentication Method.

This type is used to specify authentication method used by proxy.

none

Free access, no authentication needed.

passwd

Access controlled by password file.

radius

Access controlled by radius client/server.

ldap

Access controlled by ldap client/server.

ext

Access controlled by external utility.

oob

Access controlled by out-of band authentication.

oob-authentication-method (name-usage obligatory)

Out-of-band authentication method.

368

html-form

A user fills in an authentication form in a web browser.

external

A list of authenticated users is provided by an external source, e.g., a Samba server.

ext-mod

Modifications of the list of authenticated users is controlled by an external source.

user-match-mode (name-usage obligatory)

ACL matching modes of authenticated usernames.

short

Only username w/o domainname/realm is being matched in ACLs.

long

Full username with domainname/realm is being matched in ACLs.

ITEMS AND SECTIONS

Configuration of auth library component consists of following prototypes:

* oob-auth name { ... }

auth ... ;

user-match ... ;

Description:

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

Parameters of OOB authentication.

Items & subsections:

method [html-form];

method external [ldap [even-no-group]];

method ext-mod [ldap [even-no-group]];

OOB authentication method

369

APPENDIX B. KERNUN UTM REFERENCE (5)

<branching element> (type: oob-authentication-method, op-

tional, default: html-form)

ldap (type: name of ldap-client-auth, see ldap(5), optional, de-

fault: NULL)

Ask an LDAP server for a list of groups each user belongs to.

even-no-group (type: key, optional)

Add the users even if the ldap search fails for the user.

max-sessions [val];

Maximum number of simultaneously active OOB authentication sessions.

val (type: uint16, optional, default: 1500)

Constraints:

MAX-SESSIONS must be nonzero.

max-user [val];

Maximum length of a user name

val (type: uint16, optional, default: 48)

Constraints:

MAX-USER must be nonzero.

max-groups [val];

Maximum space used by a list of groups for a single user. Each group name of length

L takes L+1 characters from this space.

val (type: uint16, optional, default: 2048)

Constraints:

MAX-GROUPS must be nonzero.

truncate-groups;

If used, a too long list of groups is truncated. If unused, the user cannot authenticate

if its list of groups does not fit to space allocated according to MAX-GROUPS.

file [path];

OOB session table file.

path (type: str, optional, default: "/tmp/oob-auth")

lock none;

lock semaphore;

lock lock2 [path];

lock [multilock2] [path];

An alternative implemetation of locks.

<branching element> (type: lock-type, optional, default: multi-

lock2)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

370

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

[End of section oob-auth description.]

auth none;

auth passwd file;

auth radius client ;

auth ldap ldap;

auth ext file;

auth oob oob [mode [loose]];

Authentication method and attributes specification.

For more details, see auth(7).

<branching element> (type: auth-method)

file (type: str)

Password/utility file name.

client (type: name of radius-client, see radius(5))

RADIUS client configuration name.

ldap (type: name of ldap-client-auth, see ldap(5))

LDAP client configuration parameters.

oob (type: name of oob-auth, see above)

OOB authentication parameters.

mode (type: obligation, optional, default: required)

loose (type: key, optional)

user-match [mode];

ACL matching mode of authenticated usernames.

mode (type: user-match-mode, optional, default: short)

SEE ALSO

configuration(7), common(5), ipc(5), ldap(5), radius(5), auth(7)

371

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

clear-web-db — format of clear-web-db component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the clear-web-db component configu-

ration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in clear-web-db configuration directives:

lock-type (see ipc(5))

clear-web-db-category (name-usage obligatory)

Categories of web servers recognized by the Clear Web DataBase.

advertisement

alcohol-tobacco

arts

cars-vehicles

banking

brokers

building-home

business

chats-blogs-forums

communications

crime

education

entertainment

environment

erotic-adult-nudity

372

extreme-hate-violence

fashion-beauty

food-restaurants

foundations-charity-social-services

gambling

games

government

hacking-phishing-fraud

health-medicine

hobbies

humour-cool

it-hardware-software

it-services-internet

illegal-drugs

instant-messaging

insurance

job-career

kids-toys-family

military-guns

mobile-phones-operators

music-radio-cinema-tv

news-magazines

peer-to-peer

personal-dating-lifestyle

politics-law

pornography

portals-search-engines

proxies

real-estate

regional

religious-spirituality

sale-auctions

sects

sex-education

shopping

373

APPENDIX B. KERNUN UTM REFERENCE (5)

social-networks

sports

streaming-broadcasting

swimwear-intimate

translation-services

travelling-vacation

uploading-downloading

warez-piracy

web-based-mail

web-hosting

money-financial

internal-servers

unknown

clear-web-db-match-mode (name-usage obligatory)

How to match Clear Web DataBase categories.

any

At least one category of the request URI matches the condition.

all

All categories in the condition are matched by categories of the request URI.

subset

All categories of the request URI match the condition.

exact

Categories of the request URI are exactly those in the condition.

ITEMS AND SECTIONS

Configuration of clear-web-db library component consists of following prototypes:

clear-web-db { ... }

cwcatd-wakeup ... ;

cwcatd-retry ... ;

clear-web-db-bypass { ... }

* clear-web-db-match ... ;

Description:

374

clear-web-db {

internal-servers ... ;

db ... ;

lock ... ;

local-db { ... }

}

Global settings for web filtration based on URL. Enables periodic updates of the

database.

Items & subsections:

internal-servers [private-ip] server ;

List of servers, that are categorized as INTERNAL-SERVERS, in addition to RFC 1918

IP addresses. Domain names will be resolved to IP addresses and compared to the real

IP address of the server. Regexp will be compared to the target hostname (without

resolving). See more information in host-matching(7).

private-ip (type: key, optional)

Categorize private IP addresses from RFC 1918 (10.0.0.0/8, 172.16.0.0/12,

192.168.0.0/16) as internal servers.

server (type: host-set)

Categorize matching servers as internal. See host-matching(7).

db [dir];

Local directory used to store Clear Web DataBase data.

dir (type: str, optional, default: "/data/var/clear-web-db")

lock none;

lock semaphore;

lock lock2 [path];

lock [multilock2] [path];

An alternative implemetation of locks.

<branching element> (type: lock-type, optional, default: multi-

lock2)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

local-db {

file ... ;

timeout-search ... ;

375

APPENDIX B. KERNUN UTM REFERENCE (5)

timeout-enqueue ... ;

timeout-cwcatd ... ;

}

Locally created Clear Web database. It contains categories for automatically

categorized URLs. If this section is missing in the configuration, a proxy will not use

the local database.

Items & subsections:

file [path];

Name of the database file

path (type: str, optional, default: "/data/var/clear-web-

local/clear-web-local.sqlite")

timeout-search [sec];

Timeout for searching the database. A proxy will wait up to this number of seconds

when searching for categories of an URL and another process keeps the database

locked.

sec (type: fract, optional, default: 0.100)

timeout-enqueue [sec];

Timeout for inserting an URL to be categorized into the categorizer queue. A

proxy will wait up to this number of seconds when inserting an URL and another

process keeps the database locked.

sec (type: fract, optional, default: 0.100)

timeout-cwcatd [sec];

The cwcatd daemon will wait up to this number of seconds before aborting the

current operation when another process keeps the database locked.

sec (type: fract, optional, default: 5)

[End of section clear-web-db.local-db description.]

[End of section clear-web-db description.]

cwcatd-wakeup [sec];

Period (in seconds) of waking up of the categorization daemon and checking the queue of

categorization requests. In addition, the daemon is awaken by a signal immediately after a

new request is enqueued.

sec (type: uint16, optional, default: 60)

cwcatd-retry [sec];

Time (in seconds) after which a failed automatic categorization will be retried.

sec (type: uint32, optional, default: 3600)

clear-web-db-bypass {

status ... ;

376

cookie ... ;

activation ... ;

duration ... ;

}

Enable the bypass functionality (time-limited access to a page blocked by the Clear

Web DataBase).

Items & subsections:

status [code];

Status code returned when the bypass is inactive. Default is 403 Forbidden.

code (type: uint16, optional, default: 403)

cookie [name];

Use cookies for bypass management. Default is to used a table of client IP addresses

with enabled bypass.

name (type: str, optional, default: "Kernun-ClearWebDB-

Bypass")

bypass cookie name

activation [sec];

Maximum time for clicking on bypass activation link after the bypass activation page is

shown. If the user clicks the link later, the proxy will return the activation page again.

sec (type: uint8, optional, default: 30)

duration [sec];

Duration of allowed access.

sec (type: uint16, optional, default: 60)

[End of section clear-web-db-bypass description.]

clear-web-db-match [any] categories-set ;

clear-web-db-match all categories-list ;

clear-web-db-match subset categories-set ;

clear-web-db-match exact categories-list ;

Clear Web Matching Control.

This item is used as an ACL entry condition for a URL based on Clear Web category

matching.

<branching element> (type: clear-web-db-match-mode, optional,

default: any)

categories-set (type: clear-web-db-category-set)

categories-list (type: clear-web-db-category-list)

377

APPENDIX B. KERNUN UTM REFERENCE (5)

SEE ALSO

configuration(7), ipc(5), host-matching(7)

378

NAME

common — format of common component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the common component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in common configuration directives:

enabling (name-usage obligatory)

General Enabling/Disabling Enumeration.

disable

enable

yes-no (name-usage obligatory)

General Yes/No Enumeration

no

yes

language (name-usage obligatory)

National Language Support - Language Setting.

EN

English

CZ

Czech (UTF-8)

nls (name-usage obligatory)

National Language Support - Language and Charset.

EN

English

379

APPENDIX B. KERNUN UTM REFERENCE (5)

CZ

Czech (default charset)

CZ-ASCII

Czech, without diacritics

CZ-ISO-8859-2

Czech, ISO-Latin-2

CZ-WINDOWS-1250

Czech, Windows-1250

on-off (name-usage optional)

Features switching on/off.

off (0)

on (1)

genesis (name-usage obligatory)

General Genesis (Static/Dynamic) Enumeration.

static

dynamic

permission (name-usage obligatory)

Permission/Denial Methods.

permit

particular option is permitted

deny

particular option is rejected but ignored

abort

particular option is rejected and session is aborted

max-setting (name-usage obligatory)

Ways to Set Maximum.

max

particular limitation will be set, values have maximum

any

particular limitation will be ignored, any value is valid

direction (name-usage obligatory)

General Traffic Direction Enumeration.

download

Transfer from server to client.

380

upload

Transfer from client to server.

name-selection (name-usage obligatory)

Methods to select object.

any

Setting of particular object is not required, anyone is correct.

name

Setting of object by its name in configuration.

destination (name-usage obligatory)

Destination (remote peers or nets).

host

net

default

ip-version (name-usage optional)

IP version.

ipv4 (4)

ipv6 (6)

address-family (name-usage obligatory)

Socket Address Family.

inet

inet6

unix

osi4-proto (name-usage obligatory)

Transport Layer Protocol.

default

tcp

udp

tcp-udp

in-out (name-usage obligatory)

Interface inbound/outbound Direction.

in

out

381

APPENDIX B. KERNUN UTM REFERENCE (5)

both

report-mode (name-usage optional)

Process stdout/stderr control.

nothing (0)

out (1)

err (2)

all (3)

periodicity (name-usage obligatory)

Time period types.

daily

weekly

monthly

time-cond (name-usage obligatory)

Time condition types.

anytime

No condition on time applied

daily

weekly

monthly

zip-mode (name-usage obligatory)

Logfile zipping mode.

plain

gzip

bzip2

obligation (name-usage obligatory)

Modes of special features usage.

This enumeration is used when some feature (like authentication, SSL etc.) can be required

or only allowed by admin’s decision.

required

Feature is mandatory

allowed

Feature is optional

382

range-op (name-usage obligatory)

Range Comparison Operator.

unknown

Tested value is not known.

lt

Tested value is lower than the configuration limit.

le

Tested value is lower than or equal to the configuration limit.

eq

Tested value is equal to the configuration limit.

ne

Tested value is not equal to the configuration limit.

gt

Tested value is greater than the configuration limit.

ge

Tested value is greater than or equal to the configuration limit.

in

Tested value is in between the configuration limits (borders OK).

ni

Tested value is not in between the configuration limits (borders OK).

inline-file-format (name-usage obligatory)

In-line File Formats.

text

Regular text, lines will be trimmed and quoted.

raw

Raw text, lines are only quoted, no comments allowed.

native

Native CML values, lines are used as-is.

ip-addr

IP addresses with or without mask, but without brackets.

regexp

Regular expressions without slashes

yes-no-always (name-usage obligatory)

Yes/No Enumeration with Always option.

Represents a YES-NO value that is tied to a certain condition, usually to a component or

function being configured.

383

APPENDIX B. KERNUN UTM REFERENCE (5)

no

Always NO, even when the condition is true

yes

YES when the condition is true, NO when the condition is false

always

Always YES, even when the condition is false

task-frequency (name-usage obligatory)

Task frequency

daily

Run the task once a day.

hourly

Run the task once an hour.

every

Run the task every PERIOD minutes.

raw

Raw crontab period specification.

manually

No automatically scheduled refresh.

ITEMS AND SECTIONS

Configuration of common library component consists of following prototypes:

admin ... ;

ipv6-mode ... ;

phase ... ;

* cfg-tag ... ;

* range-cond ... ;

* set-var ... ;

* mime-type-check ... ;

* shared-file name { ... }

* shared-dir name { ... }

rotate-file ... ;

cron-schedule ... ;

Description:

admin system [contact];

Firewall administrator and contact e-mail addresses.

384

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration. If

not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 50)

Phase number; the lower one, the earlier start.

cfg-tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies and

servers) according to various aspects (belonging to one customer, applications of particular

network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some commands

(like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

range-cond unknown;

range-cond lt limit ;

range-cond le limit ;

range-cond eq limit ;

range-cond ne limit ;

range-cond gt limit ;

range-cond ge limit ;

385

APPENDIX B. KERNUN UTM REFERENCE (5)

range-cond in lower upper ;

range-cond ni lower upper ;

Range Testing Condition.

<branching element> (type: range-op)

limit (type: uint64)

Tested value limitation.

lower (type: uint64)

Tested value lower bound.

upper (type: uint64)

Tested value upper bound.

set-var name value;

Shell-like variable setting.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars only.

mime-type-check type;

Document MIME Type and Subtype Testing Checking.

type (type: str-set)

Set of type/subtype string definition.

If a regexp is part of the set, then this regexp is checked to match with type/subtype

specification. Beware of escaping the slash, if present (write /...\/.../).

If a string is part of the set, then it must contain at most one slash. If the slash is not

present, string is compared with document type only (not the subtype). If the slash is

present, then pattern is checked to match with type/subtype specification.

shared-file name {

path ... ;

format ... ;

}

Shared file definition.

Constraints:

Pathname must be specified.

386

Items & subsections:

path name;

Path specification.

This path is valid in the environment, where applied:

• within CML it means path on the filesystem where run; if relative, it is related to

the configuration directory

• within firewall configuration files it means path on the firewall (cannot be relative).

Thus, value of this item can differ between source CML file and target CFG files and

CML command /GENERATE copies these files into destination SYSTEM-* tree.

name (type: str)

Path to the file.

format [type];

Inline file format.

If the shared file is used as inline file ("< NAME" in list) this item defines line modifi-

cations.

type (type: inline-file-format, optional, default: text)

[End of section shared-file description.]

shared-dir name {

path ... ;

}

Shared directory definition.

Constraints:

Pathname must be specified.

Items & subsections:

path name;

Path specification.

This path is valid in the environment, where applied:

• within CML it means path on the filesystem where run; if relative, it is related to

the configuration directory

• within firewall configuration files it means path on the firewall (cannot be relative).

Thus, value of this item can differ between source CML file and target CFG files and

CML command /GENERATE copies these directories into destination SYSTEM-* tree.

name (type: str)

Path to the directory.

[End of section shared-dir description.]

387

APPENDIX B. KERNUN UTM REFERENCE (5)

rotate-file [user user] [group group] [mode mode] [count count]

[size size] [when [zip]];

Log file rotation description.

Use the SIZE elem if log file size criterion required. Use the WHEN elem if periodical

rotation required. If used both SIZE and WHEN elems, the log file is rotated at a proper

time only if size limit is reached.

user user (type: str, optional, default: <NULL>)

Log file owner - user.

group group (type: str, optional, default: "wheel")

Log file owner - group.

mode mode (type: uint16, optional, default: 640)

Log file permissions.

count count (type: uint16, optional, default: 31)

Number of days being archived.

size size (type: uint16, optional, default: 0)

Size limit for rotation in KB (ignore log file size if omitted).

when (type: time-cond, optional, default: anytime)

Rotation periodicity (use SIZE condition if omitted).

zip (type: zip-mode, optional, default: bzip2)

Zipping mode.

Constraints:

Use either size criterion or defined periodicity.

cron-schedule daily [time time] [report report];

cron-schedule hourly [minute minute] [report report];

cron-schedule [every] [period period] [at at] [report report];

cron-schedule raw raw raw [report report];

cron-schedule manually;

Parameters for scheduling a cron task.

<branching element> (type: task-frequency, optional, default:

every)

raw raw (type: str)

Raw line to be placed into crontab. First 5 columns (the time specification) must be

specified.

minute minute (type: time, optional, default: 0)

Starting time of task (mm, hour ignored).

388

time time (type: time, optional, default: 415)

Starting time of task (hhmm).

period period (type: uint8, optional, default: 15)

Run the task every PERIOD minutes (mm, hours ignored).

at at (type: uint8, optional, default: 0)

Starting time of task (mm, hours ignored)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

SEE ALSO

configuration(7), logging(7)

389

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

cwcatd.cfg — format of cwcatd program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the cwcatd.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in cwcatd.cfg configuration directives:

lock-type (see ipc(5))

enabling (see common(5))

yes-no (see common(5))

ip-version (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

source-address-mode (see source-address(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ITEMS AND SECTIONS

Program cwcatd recognizes following items and sections:

clear-web-db { ... }

* resolver name { ... }

sysctl { ... }

use-resolver ... ;

390

* cwcatd name { ... }

Description:

clear-web-db {

internal-servers ... ;

db ... ;

lock ... ;

local-db { ... }

}

The clear-web-db section is derived from clear-web-db section

prototype. For detail description of it, see clear-web-db(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

391

APPENDIX B. KERNUN UTM REFERENCE (5)

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

cwcatd name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

wakeup ... ;

retry ... ;

sitemarker ... ;

}

The cwcatd section is derived from cwcatd section prototype. For

detail description of it, see above.

392

SEE ALSO

configuration(7), cwcatd(8), clear-web-db(5), common(5), ipc(5), log(5), resolver(5),

source-address(5), sysctl(5)

393

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

dhcp-server — format of dhcp-server component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the dhcp-server component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Configuration of dhcp-server library component consists of following prototypes:

* dhcp-peer ... ;

* dhcp-domain ... ;

dhcp-server-common { ... }

dhcp-server { ... }

dhcp6-server { ... }

Description:

dhcp-peer host ;

Peer host offered by DHCP to clients.

host (type: host)

dhcp-domain name;

Domain name search (option DOMAIN-NAME/DHCP6.DOMAIN-SEARCH).

name (type: str)

dhcp-server-common {

phase ... ;

* tag ... ;

lease-file ... ;

default-lease-time ... ;

394

max-lease-time ... ;

* domain ... ;

* name-server ... ;

* time-server ... ;

* router ... ;

* raw ... ;

* subnet name { ... }

failover { ... }

}

DHCP server configuration.

Global parameters are defined here, MAC to IP address assignment and special options are

set within HOSTS-TABLE section. There are separate servers for IPv4 (section DHCP-

SERVER) and IPv6 (section DHCP6-SERVER)

For configuration attributes details, see dhcpd.conf(5).

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

lease-file path;

Lease file location.

path (type: str)

default-lease-time seconds;

Default lease time.

seconds (type: uint32)

max-lease-time seconds;

Maximum lease time.

395

APPENDIX B. KERNUN UTM REFERENCE (5)

seconds (type: uint32)

domain name;

Domain name search (option DOMAIN-NAME/DHCP6.DOMAIN-SEARCH).

If omitted the system domain name is used.

name (type: str)

name-server host ;

Nameserver (option DOMAIN-NAME-SERVERS/DHCP6.NAME-SERVERS).

host (type: host)

time-server host ;

Time server (option TIME-SERVERS).

host (type: host)

router host ;

Router (option ROUTERS).

host (type: host)

raw line;

Raw global line.

line (type: str)

subnet name {

address ... ;

* range ... ;

* domain ... ;

* name-server ... ;

* time-server ... ;

* router ... ;

disable-failover ... ;

* raw ... ;

}

Subnet definition.

Constraints:

Address must be specified.

Items & subsections:

address net ;

net (type: net)

range lo hi ;

lo (type: host)

hi (type: host)

396

domain name;

Domain name search (option DOMAIN-NAME/DHCP6.DOMAIN-SEARCH).

If omitted the system domain name is used.

name (type: str)

name-server host ;

Nameserver (option DOMAIN-NAME-SERVERS/DHCP6.NAME-SERVERS).

host (type: host)

time-server host ;

Time server (option TIME-SERVERS).

host (type: host)

router host ;

Router (option ROUTERS).

host (type: host)

disable-failover;

Disable DHCP failover.

raw line;

Raw subnet line.

line (type: str)

[End of section dhcp-server-common.subnet description.]

failover {

primary ... ;

secondary ... ;

max-response-delay ... ;

max-unacked-updates ... ;

mclt ... ;

split ... ;

lbms ... ;

* raw ... ;

}

DHCP failover parameters.

Constraints:

PRIMARY and SECONDARY must be specified.

Items & subsections:

primary addr [port port];

Primary server definition.

addr (type: host)

Listening address of primary server.

port port (type: port, optional, default: 519)

Listening port of secondary server.

397

APPENDIX B. KERNUN UTM REFERENCE (5)

secondary addr [port port];

Secondary server definition.

addr (type: host)

Listening address of secondary server.

port port (type: port, optional, default: 520)

Listening port of secondary server.

max-response-delay [sec];

Peer dead timeout (local parameter).

sec (type: uint16, optional, default: 60)

max-unacked-updates [number];

Unresponded messges limit (remote parameter).

number (type: uint16, optional, default: 10)

mclt [sec];

Maximum client lead time (primary parameter).

sec (type: uint16, optional, default: 3600)

split [ratio];

Load balancing split (primary parameter).

ratio (type: uint16, optional, default: 128)

Constraints:

Maximum value 256 is allowed.

lbms [sec];

Load balance maximum seconds.

sec (type: uint16, optional, default: 3)

raw line;

Raw failover line.

line (type: str)

[End of section dhcp-server-common.failover description.]

[End of section dhcp-server-common description.]

dhcp-server {

phase ... ;

* tag ... ;

lease-file ... ;

default-lease-time ... ;

max-lease-time ... ;

* domain ... ;

* name-server ... ;

* time-server ... ;

398

* router ... ;

* raw ... ;

* subnet name { ... }

failover { ... }

}

The dhcp-server section is derived from dhcp-server-common sec-

tion prototype. For detail description of it, see above.

Item lease-file (see above)

Element path is optional, default: "/data/var/db/dhcpd.leases".

dhcp6-server {

phase ... ;

* tag ... ;

lease-file ... ;

default-lease-time ... ;

max-lease-time ... ;

* domain ... ;

* name-server ... ;

* raw ... ;

* subnet name { ... }

}

The dhcp6-server section is derived from dhcp-server-common sec-

tion prototype. For detail description of it, see above.

Changes to the dhcp6-server section:

Item time-server is not valid.

Item router is not valid.

Section failover is not valid.

Item lease-file (see above)

Element path is optional, default: "/data/var/db/dhcpd6.leases".

Section subnet (see above)

Item time-server is not valid.

Item router is not valid.

Item disable-failover is not valid.

SEE ALSO

configuration(7), dhcpd.conf(5)

399

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

dns-proxy — format of dns-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the dns-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in dns-proxy configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

400

doctype-ident-method (see acl(5))

dns-type (see resolver(5))

dns-opcode (see resolver(5))

dns-response (see resolver(5))

dns-qaction (see resolver(5))

dns-raction (see resolver(5))

dns-fake (see resolver(5))

xfr-mode (see resolver(5))

listen-on-sock (see listen-on(5))

dns-name-type (name-usage obligatory)

forward

reverse

ITEMS AND SECTIONS

Configuration of dns-proxy library component consists of following prototypes:

* dns-proxy name { ... }

Description:

dns-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

401

APPENDIX B. KERNUN UTM REFERENCE (5)

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

doctype-identification { ... }

queue-size ... ;

edns ... ;

dnssec ... ;

cache { ... }

request-timeout ... ;

response-timeout ... ;

query-timeout ... ;

server-dead ... ;

server-retry ... ;

server-proto ... ;

requests-table-size ... ;

sockets-table-size ... ;

internal-request-depth ... ;

adr-reply-limit ... ;

ptr-reply-limit ... ;

client-conn { ... }

server-conn { ... }

* session-acl name { ... }

* request-acl name { ... }

}

This section defines DNS-proxy attributes.

The dns-proxy section is derived from proxy section prototype. For

detail description of it, see application(5).

Changes to the dns-proxy section:

Section tcpserver is not valid.

Section udpserver is not valid.

Item source-address is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one REQUEST-ACL must be specified.

EDNS must be enabled for DNSSEC.

402

Item phase (see common(5))

Element number is optional, default: 20.

Section monitoring (see monitoring(5))

Item user is not valid.

Item aproxy-user is not valid.

Item data used as query.

Item idle-timeout (see application(5))

Element seconds is optional, default: 120.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 53.

DNS proxy cannot bind address [0.0.0.0] : 53.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 53.

Added items & subsections:

queue-size [value];

Queue length for listen(2) syscall.

value (type: uint8, optional, default: 10)

edns [support];

EDNS support.

support (type: enabling, optional, default: enable)

dnssec [support];

DNSSEC support.

support (type: enabling, optional, default: disable)

cache {

cleanup-period ... ;

max-domains ... ;

max-hosts ... ;

}

Internal nameserver cache attributes.

This cache is used by the proxy for internal purposes only.

Items & subsections:

cleanup-period [seconds];

Cache cleanup period.

Cache is periodically cleaned, items not used within last cleanup period are re-

moved.

seconds (type: uint16, optional, default: 900)

403

APPENDIX B. KERNUN UTM REFERENCE (5)

max-domains [items];

Maximum of domains stored in the cache.

If reached, non-periodical cleanup is done.

items (type: uint16, optional, default: 1000)

max-hosts [items];

Maximum of nameservers stored in the cache.

If reached, non-periodical cleanup is done.

items (type: uint16, optional, default: 2000)

[End of section dns-proxy.cache description.]

request-timeout [seconds];

Timeout to close uncompleted requests and reply by ServFail.

seconds (type: uint16, optional, default: 120)

response-timeout tmout ;

Timeout to send responses (after expiring no response is sent).

tmout (type: fract)

query-timeout [seconds];

Initial timeout for querying another server.

seconds (type: uint16, optional, default: 2)

server-dead [seconds];

Timeout to assume server is dead.

seconds (type: uint16, optional, default: 15)

server-retry [seconds];

Timeout to wait before retry dead server.

seconds (type: uint16, optional, default: 15)

server-proto ver ;

Allowed protocol for resolving from the root.

If not used, no restriction is applied.

ver (type: ip-version)

requests-table-size [number];

Number of simultaneous requests.

Requests table contains both client requests (UDP and TCP) and internal requests

(nameserver resolving and CNAME querying).

number (type: uint16, optional, default: 256)

Constraints:

Number of requests must not be zero.

sockets-table-size [number];

Number of simultaneously opened sockets.

Sockets table contains each socket used for solving of any request in parallel.

404

number (type: uint16, optional, default: 0)

Number of sockets, default is REQUESTS-TABLE-SIZE * 2

internal-request-depth [number];

Number of internal requests generated recursively.

number (type: uint16, optional, default: 50)

adr-reply-limit [bytes];

Size limit for A and AAAA RRs in answer.

Older clients’ resolver routines crashes on too long replies. Reasonable value is default

one, use zero to switch test off.

bytes (type: uint16, optional, default: 8192)

ptr-reply-limit [bytes];

Size limit for PTR RRs in answer.

Older clients’ resolver routines crashes on too long replies. Reasonable value is default

one, use zero to switch test off.

bytes (type: uint16, optional, default: 512)

client-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client connection options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Item recv-bufsize (see netio(5))

Element bytes is optional, default: 4100.

Input buffer size must be at least 512B.

Item send-timeout (see netio(5))

Element seconds is optional, default: 60.

Item send-bufsize (see netio(5))

Output buffer size must be at least 512B.

server-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

405

APPENDIX B. KERNUN UTM REFERENCE (5)

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Server connection options.

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Item recv-bufsize (see netio(5))

Input buffer size must be at least 512B.

Item send-timeout (see netio(5))

Element seconds is optional, default: 60.

Item send-bufsize (see netio(5))

Element bytes is optional, default: 4100.

Output buffer size must be at least 512B.

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

source-address ... ;

}

The first level ACL decides only between acceptation and denial of the

incoming datagram/connection.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item auth is not valid.

Item idle-timeout is not valid.

Item idle-timeout-peer is not valid.

Item plug-to is not valid.

request-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

406

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

* query-name ... ;

* request-type ... ;

* query ... ;

notify ... ;

* reply ... ;

* fake ... ;

edns ... ;

ignore-void-rr ... ;

ignore-missing-aa ... ;

ignore-trailer ... ;

rr-limit ... ;

xfr-format ... ;

neg-resp-ttl ... ;

client-altq ... ;

server-altq ... ;

}

The second level ACL decides how to handle particular DNS query/notify

request.

The request-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the request-acl section:

Item server is not valid.

Item user is not valid.

Item parent-acl used as session-acl.

At least one QUERY/NOTIFY must be specified.

DENY and QUERY/NOTIFY are mutually exclusive.

QUERY/NOTIFY and REPLY set must be consistent.

Cannot mix CNAME and other RR types.

Added items & subsections:

query-name [forward] names;

query-name reverse nets;

Entry condition - request domain name.

If no QUERY-NAME item is used, ACL matches for all requests independently of

domain name.

<branching element> (type: dns-name-type, optional, default: for-

ward)

407

APPENDIX B. KERNUN UTM REFERENCE (5)

names (type: str-set)

Set of domain names and/or regexps.

Query name matches the set if

• matches any regexp-member of the set (regexp must respect a dot appended

to every tested name), or

• any name-member of the set is equal to the last part of the query name.

nets (type: net-set)

Set of networks.

Query name matches the set if it is a reverse query (*.in-addr.arpa or ip6.arpa)

and the corresponding host matches the set.

request-type op-types [rr-types];

Entry condition - request type.

If no REQUEST-TYPE item is used, ACL matches for all requests independently

of request type.

op-types (type: dns-opcode-set)

Set of DNS operation types (QUERY and NOTIFY supported).

rr-types (type: dns-type-set, optional, default: *)

Set of RR types requested.

query types abort;

query types deny [error-code];

query types resolve ns-list ;

query types forward ns-list [clear-aa];

query types fake;

Allow/deny particular query types for matching domain names. Each query re-

ceived is checked against QUERY items in order of their occurence in cfg file, and

the first matching one is used. If no one matches, request fails.

types (type: dns-type-set)

Set of query types matching this QUERY section.

<branching element> (type: dns-qaction)

DNS operation requested for matching queries.

ns-list (type: name of ns-list, see resolver(5))

Nameserver address list used resolving or forwarding.

clear-aa (type: key, optional)

Clear AA flag in responses being forwarded.

error-code (type: dns-response, optional, default: Refused=5)

Response code for denied queries.

notify abort;

notify deny [error-code];

notify resolve ns-list ;

notify forward ns-list ;

408

notify fake;

Allow/deny NOTIFY requests for matching domain names. If NOTIFY item is

not used, request fails.

<branching element> (type: dns-qaction)

DNS operation requested by this item.

ns-list (type: name of ns-list, see resolver(5))

Nameserver addresses.

error-code (type: dns-response, optional, default: Refused=5)

Response code used.

Constraints:

NOTIFY requests cannot be handled by RESOLVE or FAKE.

reply types abort;

reply types deny [error-code];

reply types permit;

reply types remove;

Allow/deny particular reply RR types for particular domain names. Each record

received is checked against REPLY items in order of their appearance in cfg file,

and the first matching one is used. If no one matches, query is denied (FormErr).

types (type: dns-type-set)

Set of RR types.

<branching element> (type: dns-raction)

DNS operation requested by this item.

error-code (type: dns-response, optional, default: Refused=5)

Response code used.

fake ttl 0;

fake ttl a addr ;

fake ttl ns name;

fake ttl 3;

fake ttl 4;

fake ttl cname name;

fake ttl 6;

fake ttl 7;

fake ttl 8;

fake ttl 9;

fake ttl 10;

fake ttl 11;

fake ttl ptr name;

fake ttl 13;

fake ttl 14;

fake ttl mx prty name;

409

APPENDIX B. KERNUN UTM REFERENCE (5)

fake ttl 16;

fake ttl 17;

fake ttl 18;

fake ttl 19;

fake ttl 20;

fake ttl 21;

fake ttl 22;

fake ttl 23;

fake ttl 24;

fake ttl 25;

fake ttl 26;

fake ttl 27;

fake ttl aaaa addr ;

Fake particular RRs in answer.

ttl (type: uint32)

Time-to-live value of DNS RR.

<branching element> (type: dns-fake)

prty (type: uint16)

Priority value of MX DNS RR.

name (type: str)

Hostname value of various DNS RRs.

addr (type: host)

IPv4 address of address type DNS RR.

edns [udp-payload udp-payload];

EDNS support parameters.

udp-payload udp-payload (type: uint16, optional, default: 4096)

Maximum UDP payload.

ignore-void-rr [status];

Ignore RRs with name having no relationship to the question.

Without this item, the dns-proxy rejects replies having RRs with name that does

not appear in other RR, e.g. due to incorrect using of CNAMEs. The server is

marked as untrusted.

Some nameservers send more A RRs in the ADDITIONAL section than NS RRs

in the AUTHORITY section. This item can prevent to mark them as unusable.

status (type: enabling, optional, default: enable)

ignore-missing-aa [status];

Ignore missing AUTHORITATIVE flag in the response.

The algorithm used by the proxy is based on a strategy to find recursively a server

for particular domain that admits the fact that it is an authoritative server for

this domain. However, some authoritative servers does not set this flags so this

algorithm fails.

410

This flag allows to ignore missing AA flag (for domains where this behavior is

known) and trust the answer even without the flag.

status (type: enabling, optional, default: enable)

ignore-trailer [status];

Ignore meaningless appendices.

Some servers write errorneous responses containing meaningless byte stream at the

end. Proxy ignores this appendix by default. This item can disable this feature

and errorneous responses will be treated as errors.

status (type: enabling, optional, default: enable)

rr-limit [records];

Maximal allowed number of RRs in response to request.

This limitation is used for DoS prevention, you can set it accordingly to the request

type. For zone transfer, this limitation respects total number of RRs in all separated

DNS messages belonging to the request.

records (type: uint32, optional, default: 1000)

xfr-format [mode];

Zone transfer format.

mode (type: xfr-mode, optional, default: keep)

neg-resp-ttl [seconds];

TTL for negative responses.

If the proxy sends negative QUERY responses (NoError response code with no

answer records or NXDomain response code), e.g. by faking replies, by filtering

out of incoming response records, or by denying of particular query/response, it

can send a SOA record in AUTHORITY section. This record causes caching of

this negative answer in clients (nameservers) for the time used as the TTL of the

SOA RR. This value can be defined by this item.

Setting the TTL to zero means switching this feature off. Use this with care because

it can cause ineffectivity of DNS service.

seconds (type: uint32, optional, default: 3600)

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

411

APPENDIX B. KERNUN UTM REFERENCE (5)

[End of section dns-proxy.request-acl description.]

[End of section dns-proxy description.]

SEE ALSO

configuration(7), listen(2), acl(5), application(5), auth(5), common(5), listen-on(5), log(5),

monitoring(5), netio(5), pf-queue(5), resolver(5), source-address(5), time(5)

412

NAME

dns-proxy.cfg — format of dns-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the dns-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in dns-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

413

APPENDIX B. KERNUN UTM REFERENCE (5)

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

dns-type (see resolver(5))

dns-opcode (see resolver(5))

dns-response (see resolver(5))

dns-qaction (see resolver(5))

dns-raction (see resolver(5))

dns-fake (see resolver(5))

xfr-mode (see resolver(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

dns-name-type (see dns-proxy(5))

ITEMS AND SECTIONS

Program dns-proxy recognizes following items and sections:

admin ... ;

* interface name { ... }

* ldap-client-auth name { ... }

* ns-list name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

414

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* dns-proxy name { ... }

ipv6-mode ... ;

Description:

admin system [contact];

Firewall administrator and contact e-mail addresses.

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration. If

not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

415

APPENDIX B. KERNUN UTM REFERENCE (5)

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

ns-list name {

* server ... ;

}

The ns-list section is derived from ns-list section prototype. For

detail description of it, see resolver(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

416

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

417

APPENDIX B. KERNUN UTM REFERENCE (5)

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

dns-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

418

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

doctype-identification { ... }

queue-size ... ;

edns ... ;

dnssec ... ;

cache { ... }

request-timeout ... ;

response-timeout ... ;

query-timeout ... ;

server-dead ... ;

server-retry ... ;

server-proto ... ;

requests-table-size ... ;

sockets-table-size ... ;

internal-request-depth ... ;

adr-reply-limit ... ;

ptr-reply-limit ... ;

client-conn { ... }

server-conn { ... }

* session-acl name { ... }

* request-acl name { ... }

}

The dns-proxy section is derived from dns-proxy section prototype.

For detail description of it, see dns-proxy(5).

419

APPENDIX B. KERNUN UTM REFERENCE (5)

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), dns-proxy(8), acl(5), auth(5), common(5), dns-proxy(5), interface(5), ipc(5),

ldap(5), listen-on(5), log(5), pf-queue(5), radius(5), resolver(5), source-address(5), sysctl(5),

time(5), host-matching(7)

420

NAME

ftp-proxy — format of ftp-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ftp-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ftp-proxy configuration directives:

yes-no (see common(5))

nls (see common(5))

permission (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

421

APPENDIX B. KERNUN UTM REFERENCE (5)

virus-status (see antivirus(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

listen-on-sock (see listen-on(5))

pass-remove (name-usage obligatory)

Passing/removing features.

remove

pass

data-type (name-usage obligatory)

Data connection method used to server.

auto

No method is preferred by this particular configuration item.

active

Use active method (PORT command).

passive

Use passive method (EPSV or PASV in case of error).

ftp-cmd (name-usage obligatory)

FTP commands

NONE

ABOR

ACCT

ADAT

ALLO

APPE

AUTH

BNB

CCC

CDUP

CLNT

422

CONF

CPSV

CWD

DELE

ENC

EPRT

EPSV

FEAT

HELP

LANG

LIST

LPRT

LPSV

MDTM

MIC

MKD

MLSD

MLST

MODE

MFMT

MFCT

MFF

MAIL

MLFL

MSAM

MSND

MSOM

MRCP

MRSQ

NLST

NOOP

OPEN

OPTS

PASS

PASSERVE

423

APPENDIX B. KERNUN UTM REFERENCE (5)

PASV

PBSZ

PORT

PROT

PWD

QUIT

REIN

REST

RETR

RMD

RNFR

RNTO

SITE

SIZE

SMNT

SSCN

STAT

STOR

STOU

STRU

SYST

TYPE

USER

XCWD

XCUP

XMKD

XPWD

XRMD

UNKNOWN

This "command" setting will be used for all unknown commands.

ITEMS AND SECTIONS

Configuration of ftp-proxy library component consists of following prototypes:

* ftp-proxy name { ... }

424

Description:

ftp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-ctrl { ... }

server-ctrl { ... }

client-data { ... }

server-data { ... }

init-timeout ... ;

init-cmdlimit ... ;

* data-transfer ... ;

retry-data ... ;

* session-acl name { ... }

* command-acl name { ... }

* doc-acl name { ... }

}

This section defines FTP-proxy attributes.

425

APPENDIX B. KERNUN UTM REFERENCE (5)

The ftp-proxy section is derived from proxy section prototype. For

detail description of it, see application(5).

Changes to the ftp-proxy section:

Section udpserver is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one COMMAND-ACL must be specified.

At least one DOC-ACL must be specified.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as file.

Item idle-timeout (see application(5))

Element seconds is optional, default: 900.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 21.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 21.

Element proto is optional, default: tcp.

Item doctype-identification.order (see acl(5))

Only EXTENSION and MAGIC allowed for doctype identification.

Added items & subsections:

client-ctrl {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client control connection options.

The client-ctrl section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-ctrl section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

Item recv-bufsize (see netio(5))

Element bytes is optional, default: 1536.

server-ctrl {

conn-timeout ... ;

426

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Server control connection options.

The server-ctrl section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the server-ctrl section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

Item send-bufsize (see netio(5))

Element bytes is optional, default: 1536.

client-data {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client data connection options.

The client-data section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-data section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

server-data {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Server data connection options.

The server-data section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the server-data section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

init-timeout [seconds];

Initialization timeout.

427

APPENDIX B. KERNUN UTM REFERENCE (5)

seconds (type: uint16, optional, default: 120)

init-cmdlimit [number];

Maximum of initialization commands.

number (type: uint16, optional, default: 10)

data-transfer type [list];

Data transfer method for particular servers.

type (type: data-type)

(AUTO means here that connection method is learned from client)

list (type: host-set, optional, default: *)

retry-data [attempts];

After succesfull write of one block of data, try several attempts to transfer other ones

without checking control connection.

attempts (type: uint8, optional, default: 0)

(0 means don’t try data, always check control connection

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

auth ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

language ... ;

msgs { ... }

hand-off ... ;

data-port ... ;

htftp-mode ... ;

}

The first level ACL decides how to handle incoming connections (namely com-

munication language, authentication procedure, forwarding connection to other server

etc.).

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

428

Changes to the session-acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

Authentication method must be set.

Item doctype-ident-order (see acl(5))

Only EXTENSION and MAGIC allowed for doctype identification.

Item auth (see auth(5))

OOB authentication mode cannot be ALLOWED.

Added items & subsections:

language code;

Language and charset of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

code (type: nls)

msgs {

welcome ... ;

hello-conn ... ;

hello-autr ... ;

hello-aunt ... ;

hello-user ... ;

}

Messages used by FTP-proxy.

Items & subsections:

welcome text ;

Initial message, part one: introducing the host.

text (type: str)

hello-conn text ;

Initial message, part two: remote user and host required.

text (type: str)

hello-autr text ;

Initial message, part two: authentication and remote user required.

text (type: str)

hello-aunt text ;

Initial message, part two: authentication user, remote user and host required.

text (type: str)

hello-user text ;

Initial message, part two: remote user required.

429

APPENDIX B. KERNUN UTM REFERENCE (5)

text (type: str)

[End of section ftp-proxy.session-acl.msgs description.]

hand-off addr cmd [data];

Forwarding next-hop proxy.

addr (type: sock)

Proxy address:port.

cmd (type: str)

Proxy command name (USER or alias of SITE).

data (type: data-type, optional, default: auto)

Data transfer method to proxy.

(AUTO means here that no exclusive data transfer mode is required by next-

hop proxy)

data-port port ;

Port used for active data connections to clients.

If omitted, generic port is used.

port (type: port)

(non-generic port number/service name)

htftp-mode;

Client is served in HTTP<->FTP mode.

[End of section ftp-proxy.session-acl description.]

command-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

enable-port ... ;

* command ... ;

* feature ... ;

control-client-altq ... ;

control-server-altq ... ;

data-client-altq ... ;

data-server-altq ... ;

430

}

The second level ACL decides how to handle particular protocol commands

depending on client parameters, destination server, proxy-user etc.

The command-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the command-acl section:

Item parent-acl used as session-acl.

Command configuration must be set.

Item doctype-ident-order (see acl(5))

Only EXTENSION and MAGIC allowed for doctype identification.

Added items & subsections:

enable-port;

Allow user to specify port.

If omitted, only default port can be used.

command names permit [size size];

command names deny;

command names abort;

Allow/deny particular commands, set size limits.

Each command is checked against COMMAND items in order of their appearance

in cfg file, and the first matching one is used. If no one matches, command is

denied.

names (type: ftp-cmd-set)

(set of commands)

<branching element> (type: permission)

(command permission)

size size (type: uint64, optional, default: 0)

(command size limit, 0 = no limit)

feature names [param param] policy ;

Allow/deny particular features offered by server as a response to the FEAT com-

mand.

Each feature found in the response is checked against FEATURE items in order

of their appearance in cfg file, and the first matching one is used. If the feature

has a parameter then also one is checked against PARAM elem additional to the

particular FEATURE items.

If no FEATURE item matches, a default behavior hardcoded in the proxy is used.

The strategy is strict: pass only features surely supported by the proxy. The

current version of the proxy passes following features: LANG, MDTM, MLST,

REST, SIZE, TVFS, TYPE, UTF8.

names (type: str-set)

(set of features)

param param (type: str-set, optional, default: *)

(feature parameter criterion)

431

APPENDIX B. KERNUN UTM REFERENCE (5)

policy (type: pass-remove)

(feature passing/removal)

control-client-altq altq [paltq paltq];

ALTQ queues for data sent to client on control connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

control-server-altq altq [paltq paltq];

ALTQ queues for data sent to server on control connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

data-client-altq altq [paltq paltq];

ALTQ queues for data sent to data on control connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

data-server-altq altq [paltq paltq];

ALTQ queues for data sent to server on data connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section ftp-proxy.command-acl description.]

doc-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* command-acl ... ;

deny ... ;

accept ... ;

rule ... ;

direction ... ;

432

* mime-type ... ;

force-doctype-ident ... ;

html-filter ... ;

* filename ... ;

antivirus ... ;

accept-antivirus-status ... ;

control-client-altq ... ;

control-server-altq ... ;

data-client-altq ... ;

data-server-altq ... ;

}

The third level ACL decides how to handle particular files transferred via

proxy (denial, antivirus check or filtering) depending on file name, type (guessed from

the file name) and transfer direction.

WARNING! Items FILENAME and MIME-TYPE are two different kinds of items.

According to general Kernun ACL matching rules they are completely independent and

if both present, file must match both conditions to match particular DOC-ACL.

The doc-acl section is derived from acl-3 section prototype. For

detail description of it, see acl(5).

Changes to the doc-acl section:

Item parent-acl used as command-acl.

Item size is not valid.

Item content-type is not valid.

Item virus-status is not valid.

Item modify-header is not valid.

Item replace is not valid.

Item ANTIVIRUS not allowed if DENY is on.

Item ACCEPT-ANTIVIRUS-STATUS not allowed if DENY is on.

Added items & subsections:

filename names;

Entry condition - name of transferred file.

names (type: str-set)

Only last part of file name (without path) is used for matching

antivirus channel [interval interval] [chunk chunk] [limit limit];

Antivirus usage mode.

Check document by antivirus, with settings for passing initial part of unchecked

data through the antivirus module during antivirus checking.

channel (type: name-list of antivirus, see antivirus(5))

Name of ANTIVIRUS global section used.

interval interval (type: uint16, optional, default: 0)

Seconds between passing blocks of unchecked data (0 = do not send unchecked

data).

433

APPENDIX B. KERNUN UTM REFERENCE (5)

chunk chunk (type: uint32, optional, default: 0)

Size of each block of unchecked data.

limit limit (type: uint32, optional, default: 0)

Maximum size of unchecked data passed before antivirus check is completed.

Remaining data will be passed only after successful checking.

accept-antivirus-status status;

Defines set of antivirus status codes (in addition to FREE) that allow further

passing of data. Other status codes cause termination of data transfer. If not set,

data are passed only if the antivirus returns status FREE.

status (type: virus-status-set)

control-client-altq altq [paltq paltq];

ALTQ queues for data sent to client on control connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

control-server-altq altq [paltq paltq];

ALTQ queues for data sent to server on control connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

data-client-altq altq [paltq paltq];

ALTQ queues for data sent to data on control connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

data-server-altq altq [paltq paltq];

ALTQ queues for data sent to server on data connection.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section ftp-proxy.doc-acl description.]

[End of section ftp-proxy description.]

434

SEE ALSO

configuration(7), acl(5), antivirus(5), application(5), auth(5), common(5), ipc(5), listen-on(5),

log(5), monitoring(5), netio(5), pf-queue(5), source-address(5), time(5)

435

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

ftp-proxy.cfg — format of ftp-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ftp-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ftp-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

nls (see common(5))

permission (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

436

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

pass-remove (see ftp-proxy(5))

data-type (see ftp-proxy(5))

ftp-cmd (see ftp-proxy(5))

437

APPENDIX B. KERNUN UTM REFERENCE (5)

ITEMS AND SECTIONS

Program ftp-proxy recognizes following items and sections:

admin ... ;

* antivirus name { ... }

* html-filter name { ... }

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* ftp-proxy name { ... }

ipv6-mode ... ;

Description:

admin system [contact];

Firewall administrator and contact e-mail addresses.

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration. If

not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

438

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

439

APPENDIX B. KERNUN UTM REFERENCE (5)

replace-param ... ;

script-end-hack ... ;

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

440

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

441

APPENDIX B. KERNUN UTM REFERENCE (5)

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

442

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

ftp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-ctrl { ... }

server-ctrl { ... }

client-data { ... }

server-data { ... }

init-timeout ... ;

init-cmdlimit ... ;

443

APPENDIX B. KERNUN UTM REFERENCE (5)

* data-transfer ... ;

retry-data ... ;

* session-acl name { ... }

* command-acl name { ... }

* doc-acl name { ... }

}

The ftp-proxy section is derived from ftp-proxy section prototype.

For detail description of it, see ftp-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), ftp-proxy(8), acl(5), antivirus(5), auth(5), common(5), ftp-proxy(5),

interface(5), ipc(5), ldap(5), listen-on(5), log(5), mod-html-filter(5), pf-queue(5), radius(5),

resolver(5), source-address(5), sysctl(5), time(5), host-matching(7)

444

NAME

gk-proxy — format of gk-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the gk-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in gk-proxy configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

week-day (see time(5))

month (see time(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

source-port-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

dbglev (see log(5))

logfail-mode (see log(5))

listen-on-sock (see listen-on(5))

445

APPENDIX B. KERNUN UTM REFERENCE (5)

ITEMS AND SECTIONS

Configuration of gk-proxy library component consists of following prototypes:

* gk-proxy name { ... }

Description:

gk-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

source-address ... ;

doctype-identification { ... }

map-file ... ;

* session-acl name { ... }

}

H.323 GateKeeper Proxy configuration.

The gk-proxy section is derived from proxy section prototype. For

detail description of it, see application(5).

Changes to the gk-proxy section:

Section tcpserver is not valid.

Section UDPSERVER required.

RAS Yellow Pages File name must be specified.

446

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

Section monitoring (see monitoring(5))

Monitoring is not functional in H.323 proxies in this version.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 1719.

Element proto is optional, default: udp.

GK proxy cannot bind address [0.0.0.0].

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 1719.

Element proto is optional, default: udp.

Added items & subsections:

map-file name;

RAS Yellow Pages File.

This file name must be identical with one defined in H.323 Proxy.

name (type: str)

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout ... ;

idle-timeout-peer ... ;

source-address ... ;

plug-to ... ;

session-timeout ... ;

register ... ;

h323-address ... ;

client-altq ... ;

server-altq ... ;

}

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

447

APPENDIX B. KERNUN UTM REFERENCE (5)

Changes to the session-acl section:

Item user is not valid.

Item auth is not valid.

Item H323-ADDRESS required.

Item REGISTER required.

Item idle-timeout (see acl(5))

Element seconds is optional, default: 120.

Added items & subsections:

session-timeout [seconds];

Maximum duration of session.

seconds (type: uint31, optional, default: 0)

Duration in seconds (0 = unlimited).

register client;

register [force] addr ;

Address to be registered on gatekeeper.

<branching element> (type: source-port-mode, optional, default:

force)

addr (type: sock)

Use specified address.

h323-address addr ;

Listening Address of H.323 Proxy

addr (type: sock)

client-altq altq ;

ALTQ queue for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

server-altq altq ;

ALTQ queue for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

[End of section gk-proxy.session-acl description.]

[End of section gk-proxy description.]

SEE ALSO

configuration(7), acl(5), application(5), auth(5), common(5), listen-on(5), log(5), monitoring(5),

pf-queue(5), source-address(5), time(5), h323-proxy(8)

448

NAME

gk-proxy.cfg — format of gk-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the gk-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in gk-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

449

APPENDIX B. KERNUN UTM REFERENCE (5)

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

source-port-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

dbglev (see log(5))

logfail-mode (see log(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ITEMS AND SECTIONS

Program gk-proxy recognizes following items and sections:

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* gk-proxy name { ... }

ipv6-mode ... ;

Description:

450

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

451

APPENDIX B. KERNUN UTM REFERENCE (5)

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

452

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

453

APPENDIX B. KERNUN UTM REFERENCE (5)

name (type: name of resolver, see resolver(5))

gk-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

source-address ... ;

doctype-identification { ... }

map-file ... ;

* session-acl name { ... }

}

The gk-proxy section is derived from gk-proxy section prototype.

For detail description of it, see gk-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), gk-proxy(8), acl(5), auth(5), common(5), gk-proxy(5), interface(5), ipc(5),

ldap(5), listen-on(5), log(5), pf-queue(5), radius(5), resolver(5), source-address(5), sysctl(5),

time(5), host-matching(7), h323-proxy(8)

454

NAME

h323-proxy — format of h323-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the h323-proxy component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in h323-proxy configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

455

APPENDIX B. KERNUN UTM REFERENCE (5)

doctype-ident-method (see acl(5))

listen-on-sock (see listen-on(5))

ITEMS AND SECTIONS

Configuration of h323-proxy library component consists of following prototypes:

* h323-proxy name { ... }

Description:

h323-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-ctrl { ... }

server-ctrl { ... }

data-channel { ... }

map-file ... ;

* session-acl name { ... }

max-channel-ports ... ;

}

This section defines H.323-proxy attributes.

456

The h323-proxy section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the h323-proxy section:

Section udpserver is not valid.

Item source-address is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

Section monitoring (see monitoring(5))

Monitoring is not functional in H.323 proxies in this version.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 1720.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 1720.

Element proto is optional, default: tcp.

Added items & subsections:

client-ctrl {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client H.225/H.245 connection options.

The client-ctrl section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

server-ctrl {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Server H.225/H.245 connection options.

457

APPENDIX B. KERNUN UTM REFERENCE (5)

The server-ctrl section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

data-channel {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Multimedia data channel options.

The data-channel section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

map-file name;

RAS Yellow Pages File.

This file name must be identical with one defined in Gatekeeper Proxy.

name (type: str)

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

client-altq ... ;

server-altq ... ;

ras ... ;

allow-peer ... ;

}

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

458

Changes to the session-acl section:

Item user is not valid.

Item auth is not valid.

Item idle-timeout-peer is not valid.

Added items & subsections:

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

ras;

Use this ACL for RAS-driven connections.

allow-peer peers;

Allow additional peers for data channels.

Without this item, just client/server addresses can be used as data channel targets.

Any other address offered by peers will be refused.

peers (type: host-set)

[End of section h323-proxy.session-acl description.]

max-channel-ports [limit];

Maximum of per-session logical channel ports.

limit (type: uint16, optional, default: 16)

[End of section h323-proxy description.]

SEE ALSO

configuration(7), acl(5), application(5), auth(5), common(5), ipc(5), listen-on(5), log(5),

monitoring(5), netio(5), pf-queue(5), source-address(5), time(5), gk-proxy(8)

459

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

h323-proxy.cfg — format of h323-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the h323-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in h323-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

460

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ITEMS AND SECTIONS

Program h323-proxy recognizes following items and sections:

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* h323-proxy name { ... }

ipv6-mode ... ;

Description:

461

APPENDIX B. KERNUN UTM REFERENCE (5)

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

462

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

463

APPENDIX B. KERNUN UTM REFERENCE (5)

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

464

name (type: name of resolver, see resolver(5))

h323-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-ctrl { ... }

server-ctrl { ... }

data-channel { ... }

map-file ... ;

* session-acl name { ... }

max-channel-ports ... ;

}

The h323-proxy section is derived from h323-proxy section proto-

type. For detail description of it, see h323-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

465

APPENDIX B. KERNUN UTM REFERENCE (5)

SEE ALSO

configuration(7), h323-proxy(8), acl(5), auth(5), common(5), h323-proxy(5), interface(5), ipc(5),

ldap(5), listen-on(5), log(5), pf-queue(5), radius(5), resolver(5), source-address(5), sysctl(5),

time(5), host-matching(7), gk-proxy(8)

466

NAME

http-cache — format of http-cache component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the http-cache component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in http-cache configuration directives:

ip-version (see common(5))

osi4-proto (see common(5))

listen-on-sock (see listen-on(5))

ITEMS AND SECTIONS

Configuration of http-cache library component consists of following prototypes:

http-cache { ... }

Description:

http-cache {

phase ... ;

* tag ... ;

listen-on { ... }

hand-off ... ;

cache-size ... ;

max-object-size ... ;

* raw ... ;

}

HTTP Cache Daemon configuration.

Currently, the Squid daemon is used for Kernun caching.

467

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Addresses to listen on must be specified.

HTTP cache size must be specified.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

listen-on {

* socket ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

Item non-transparent used as socket.

Item transparent is not valid.

At least one address to listen on must be specified.

Item socket (see listen-on(5))

Element proto is optional, default: tcp.

hand-off addr ;

Next-hop proxy.

See CACHE_PEER configuration item of squid.conf.

addr (type: sock)

cache-size size;

Disc cache size.

See CACHE_DIR configuration item of squid.conf.

size (type: uint64)

468

max-object-size size;

Maximum object size to be kept in cache.

See MAX_OBJECT_SIZE configuration item of squid.conf.

size (type: uint64)

raw line;

Raw line to be written to squid.conf configuration file.

line (type: str)

[End of section http-cache description.]

SEE ALSO

configuration(7), common(5), listen-on(5), squid(8)

469

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

http-control — format of http-control component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the http-control component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Configuration of http-control library component consists of following prototypes:

deny-msg ... ;

Description:

deny-msg [template template] [msg];

The error page returned when a request is denied by ACL. If not set, a generic "denied by

security policy" page is returned, except when the denying ACL contains item CLEAR-WEB-

DB-MATCH. In this case, the returned page will display the categories of the request URI

that match the CLEAR-WEB-DB-MATCH item. See also http-proxy(8) for the instructions

how to create custom error pages.

template template (type: str, optional, default: "")

error page template file name, without the .html.LANGUAGE-CHARSET suffix, rela-

tive to the DOCUMENT-ROOT directory

msg (type: str, optional, default: "")

a message inserted into the error page template

SEE ALSO

configuration(7), http-proxy(8)

470

NAME

http-proxy — format of http-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the http-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in http-proxy configuration directives:

yes-no (see common(5))

language (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

virus-status (see antivirus(5))

471

APPENDIX B. KERNUN UTM REFERENCE (5)

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

listen-on-sock (see listen-on(5))

clear-web-db-category (see clear-web-db(5))

clear-web-db-match-mode (see clear-web-db(5))

replace-authorization-mode (name-usage obligatory)

Variants of authorization replace mode

simple

Replace the authorization data using a lookup table

radius

Replace the authorization data using a lookup table. Moreover, use a radius for au-

thentication.

proxy-via (name-usage obligatory)

Values for controlling Via header.

pass

If a request or reply contains a Via header, it is passed through unchanged.

add

Each request or reply will get a Via header line added for the firewall host.

full

Each generated Via: header line will additionally have the http-proxy identification

version shown as a Via comment field.

block

Every proxy request or reply will have all its Via header lines removed. No new Via

header will be generated.

fake

All Via headers will be removed and then a fake header will be added.

http-protocol (name-usage obligatory)

Version of HTTP

HTTP-OTHER-VER

HTTP v. other than 0.9, 1.0, or 1.1

472

HTTP-0-9

HTTP v. 0.9

HTTP-1-0

HTTP v. 1.0

HTTP-1-1

HTTP v. 1.1

http-scheme (name-usage obligatory)

Scheme in HTTP URI

HTTP

http://...

FTP

ftp://...

cookie-table-clean (name-usage obligatory)

When to clean cookie table.

never

Table is persistent, must be deleted manually if corrupted.

on-restart

Table is deleted and recreated when the proxy is restarted, but not when reloaded.

always

Table is deleted when the proxy is restarted, reloaded, or stopped.

accept-gzip (name-usage obligatory)

How to handle the Accept-Encoding header.

no

Do not modify the Accept-Encoding header.

yes

Always add "Accept-Encoding: gzip" to the request.

client

Keep the Accept-Encoding header, but remove all encodings except gzip/x-gzip and

identity. Do not add if missing.

client-add

Keep the Accept-Encoding header, but remove all encodings except gzip/x-gzip and

identity. Add empty if missing.

content-gzip (name-usage obligatory)

How to handle the Content-Encoding header. Controls conversion of gzip and x-gzip values

in the header. The same operation is applied also to compress and x-compress values.

473

APPENDIX B. KERNUN UTM REFERENCE (5)

keep

Do not modify Content-Encoding.

gzip

Convert x-gzip to gzip.

x-gzip

Convert gzip to x-gzip.

http

As X-GZIP for HTTP/1.0 clients and GZIP for HTTP/1.1 clients.

accept

Use the same form (gzip or x-gzip) as used by the client in the Accept-Encoding request

header. Works as HTTP if Accept-Encoding is not present or does not contain gzip nor

x-gzip.

http-redirect (name-usage optional)

Status code for HTTP redirection.

permanent (301)

HTTP status 301 Moved Permanently

temporary (302)

HTTP status 302 Found

temporary-same-method (307)

HTTP status 307 Temporary Redirect

kerberos-user-match (name-usage obligatory)

How a Kerberos user name is matched in ACL and logged.

short

Match and log only the user name without the @REALM part.

full

Match and log the whole user@REALM name.

ldap-select (name-usage obligatory)

How a LDAP-CLIENT-AUTH section is selected.

name

Select by section name.

domain

Select by domain name.

auth-headers (name-usage obligatory)

Which authentication-related headers and responses are used.

474

proxy

Uses proxy authentication headers (Proxy-Authenticate, Proxy-Authorization) and re-

sponses (407 Proxy Authentication Required).

server

Uses origin server authentication headers (WWW-Authenticate, Authorization) and

responses (401 Unauthorized).

sni-result (name-usage obligatory)

SNI inspection result.

specified

TLS 1.0 or higher with specified SNI so host and URI were changed to value from TLS

ClientHello.

unspecified

TLS 1.0 or higher without specified SNI so host and URI remained unchanged.

ssl3

SSLv3 detected, therefore SNI inspection was skipped so host and URI remained un-

changed.

skype

Skype protocol detected, therefore SNI inspection skipped so host and URI remained

unchanged. Note that Skype uses HTTPS as well so only part of Skype communication

will have this result.

unknown-protocol

Unknown protocol detected, therefore SNI inspection was skipped so host and URI

remained unchanged.

ITEMS AND SECTIONS

Configuration of http-proxy library component consists of following prototypes:

via-mode ... ;

* start-line-check ... ;

* header-check ... ;

* aproxy name { ... }

* web-filter name { ... }

* ntlm-auth name { ... }

* kerberos-auth name { ... }

* http-proxy name { ... }

Description:

via-mode pass;

475

APPENDIX B. KERNUN UTM REFERENCE (5)

via-mode add [faked];

via-mode full [faked];

via-mode [block];

via-mode fake [faked];

Processing Via headers.

<branching element> (type: proxy-via, optional, default: block)

faked (type: str, optional, default: "")

full Via header value if FAKE, replacement for firewall hostname for ADD, FULL

start-line-check text-match max-len;

Check of the start-line of a HTTP message.

text-match (type: str-set)

The line must match this.

max-len (type: uint32)

Maximum number of characters in the line

header-check name-match val-match max-val-len;

Check of a HTTP message header.

name-match (type: str-set)

The header name must match this.

val-match (type: str-set)

The header value must match this.

max-val-len (type: uint32)

Maximum number of characters of the header value

aproxy name {

auth ... ;

insecure-cookies ... ;

oob-auth ... ;

cookie-name ... ;

logout ... ;

timeout-idle ... ;

timeout-unauth ... ;

bufsz ... ;

}

Settings of authentication proxy for HTTP servers and of authentication server for

out-of-band authentication.

476

Constraints:

Authentication method must be set.

Items & subsections:

auth none;

auth passwd file;

auth radius client ;

auth ldap ldap;

auth ext file;

auth oob oob [mode [loose]];

Authentication method and attributes specification.

For more details, see auth(7).

<branching element> (type: auth-method)

file (type: str)

Password/utility file name.

client (type: name of radius-client, see radius(5))

RADIUS client configuration name.

ldap (type: name of ldap-client-auth, see ldap(5))

LDAP client configuration parameters.

oob (type: name of oob-auth, see auth(5))

OOB authentication parameters.

mode (type: obligation, optional, default: required)

loose (type: key, optional)

Constraints:

Out-of-band authentication cannot be used here.

insecure-cookies;

Allow client to send session cookie using insecure (non-SSL/TLS) connections.

oob-auth;

This is out-of-band authentication server, not an HTTP authentication proxy.

cookie-name [val];

Name of session cookie.

val (type: str, optional, default: "KernunAProxySession")

logout [path];

If request URI contains this path, user is logged out.

path (type: str, optional, default: "/logout")

timeout-idle [sec];

Number of seconds until authentication expires when the client is idle (sends no re-

quests).

477

APPENDIX B. KERNUN UTM REFERENCE (5)

sec (type: uint32, optional, default: 360)

timeout-unauth [sec];

Maximum time after which authentication expires.

sec (type: uint32, optional, default: 3600)

bufsz [bytes];

Input buffer size for mod-aproxy.

bytes (type: uint32, optional, default: 16384)

[End of section aproxy description.]

web-filter name {

connection ... ;

fail-ok ... ;

sock-opt { ... }

}

External WebFilter configuration.

Items & subsections:

connection socket ;

Network address of the web filter

socket (type: sock)

fail-ok;

Allow request if communication with the web filter fails

sock-opt {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to web filter options.

The sock-opt section is derived from sock-opt section prototype.

For detail description of it, see netio(5).

Changes to the sock-opt section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

[End of section web-filter description.]

478

ntlm-auth name {

domain ... ;

workgroup ... ;

* ad-controller ... ;

interfaces { ... }

ldap ... ;

timeout ... ;

timeout-idle ... ;

timeout-unauth ... ;

}

Constraints:

Active Directory domain name must be specified.

Active Directory controller address must be specified.

INTERFACES must be specified.

Items & subsections:

domain name;

Active Directory domain.

name (type: str)

workgroup name;

Workgroup name. If not set, the first component of the DOMAIN name (before the

first period) is used.

name (type: str)

ad-controller addr ;

Active Directory Domain Controller address.

addr (type: host)

interfaces {

* interface ... ;

* network ... ;

}

Selects the interfaces for communication with the Active Directory Domain

Controller. If not set, all interfaces can be used. It is possible to specify either an

INTERFACE section names, or network IP addresses with masks.

Constraints:

NTLM-related communication must be limited by INTERFACE or NETWORK.

Items & subsections:

479

APPENDIX B. KERNUN UTM REFERENCE (5)

interface name;

Communicate on this interface.

name (type: name of interface, see interface(5))

network addr ;

Communicate on this network.

addr (type: net)

[End of section ntlm-auth.interfaces description.]

ldap name;

Ask an LDAP server for a list of groups each NTLM-authenticated user belongs to.

name (type: name of ldap-client-auth, see ldap(5))

timeout [sec];

Timeout for communicating with the NTLM helper program (0 = unlimited).

sec (type: uint16, optional, default: 5)

timeout-idle [sec];

Number of seconds until cached OOB authentication expires when the client is idle

(sends no requests).

sec (type: uint32, optional, default: 360)

timeout-unauth [sec];

Maximum time after which cached OOB authentication expires.

sec (type: uint32, optional, default: 3600)

[End of section ntlm-auth description.]

kerberos-auth name {

domain ... ;

user-match ... ;

kinit ... ;

keytab ... ;

proxy-host ... ;

* ad-controller ... ;

ldap ... ;

timeout-idle ... ;

timeout-unauth ... ;

lock ... ;

lock-ldap ... ;

one-per-session ... ;

}

480

Constraints:

Active Directory domain name must be specified.

Active Directory controller address must be specified.

Items & subsections:

domain name;

Active Directory domain.

name (type: str)

user-match [match];

How a Kerberos user name is matched in ACL and logged.

match (type: kerberos-user-match, optional, default: short)

kinit principal ;

The Kerberos principal used to get a TGT for access to the LDAP. If not set, the

Kernun system account in the Active Directory will be used, that is, the host name

without domain followed by the dollar sign (host$). Empty principal means that the

proxy should not try to obtain a ticket.

principal (type: str)

keytab path;

The keytab file used for Kerberos authentication. If not specified, the default keytab

file /etc/krb5.keytab will be used.

path (type: name of shared-file, see common(5))

proxy-host name;

The proxy host name expected in authentication data from clients. This is also the

proxy host name that users should set in their browser configuration. The specified

host name will be used in the proxy Kerberos principal (HTTP/proxy-host). If not set,

the host name of the Kernun system will be used.

name (type: str)

ad-controller addr ;

Active Directory Domain Controller address.

addr (type: host)

ldap [name] name;

ldap domain;

Ask an LDAP server for a list of groups each Kerberos-authenticated user belongs to.

<branching element> (type: ldap-select, optional, default: name)

name (type: name of ldap-client-auth, see ldap(5))

LDAP-CLIENT-AUTH section name

timeout-idle [sec];

Number of seconds until cached group membership expires when the client is idle (sends

no requests).

481

APPENDIX B. KERNUN UTM REFERENCE (5)

sec (type: uint32, optional, default: 7200)

timeout-unauth [sec];

Maximum time after which cached group membership expires.

sec (type: uint32, optional, default: 86400)

lock none;

lock semaphore;

lock lock2 [path];

lock [multilock2] [path];

An alternative implemetation of locks.

<branching element> (type: lock-type, optional, default: multi-

lock2)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

lock-ldap [val];

Whether getting groups from LDAP should be protected by LOCK. Locking may be

used if the proxy is slowed down by many child processes performing Kerberos authen-

tication to a LDAP server at the same time.

val (type: yes-no, optional, default: no)

one-per-session [val];

Whether Kerberos authentication should be performed only once per session. Authen-

tication headers in requests following successful authentication are ignored.

val (type: yes-no, optional, default: yes)

[End of section kerberos-auth description.]

http-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

482

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

document-root ... ;

hdr-line-len ... ;

blacklist-db ... ;

connect-data-mime-db ... ;

ftp-proxy ... ;

max-aproxy-sessions ... ;

max-bypass-sessions ... ;

oob-auth-srv ... ;

ssl-session-cache { ... }

aproxy-lock ... ;

cookie-table { ... }

extended-status ... ;

* session-acl name { ... }

* request-acl name { ... }

* doc-acl name { ... }

}

HTTP proxy configuration.

The http-proxy section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the http-proxy section:

Section udpserver is not valid.

483

APPENDIX B. KERNUN UTM REFERENCE (5)

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one REQUEST-ACL must be specified.

At least one DOC-ACL must be specified.

Document root path required.

BLACKLIST-DB required by REQUEST-ACL.BLACKLIST and

DOC-ACL.BLACKLIST.

Section monitoring (see monitoring(5))

Item data used as uri.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 80.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 80.

Element proto is optional, default: tcp.

Item tcpserver.init-children (see tcpserver(5))

Element value is optional, default: 50.

Item tcpserver.max-children (see tcpserver(5))

Element value is optional, default: 1500.

Item tcpserver.min-idle (see tcpserver(5))

Element value is optional, default: 50.

Item tcpserver.max-idle (see tcpserver(5))

Element value is optional, default: 70.

Added items & subsections:

client-conn {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection from client options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-conn section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

484

server-conn {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to server options.

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the server-conn section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

document-root path;

Directory containing error documents and forced responses.

path (type: name of shared-dir, see common(5))

hdr-line-len [bytes];

Maximum (multi)line length in HTTP message headers (sets buffer size in header pro-

cessing modules)

bytes (type: uint32, optional, default: 12Ki)

blacklist-db fname;

Name of DB file with a blacklist

fname (type: str)

connect-data-mime-db filename;

CONNECT data MIME type mapping file.

filename (type: name of shared-file, see common(5))

ftp-proxy addr anon-usr anon-pass;

Parameters for ftp-proxy used for ftp scheme requests

addr (type: sock)

address of ftp-proxy

anon-usr (type: str)

username for anonymous FTP

anon-pass (type: str)

password for anonymous FTP

max-aproxy-sessions [val];

Maximum number of simultaneously active sessions.

val (type: uint16, optional, default: 100)

485

APPENDIX B. KERNUN UTM REFERENCE (5)

max-bypass-sessions [num];

Maximum number of simultaneous Clear Web DataBase bypass sessions. If set to 0,

then bypass session management will use cookies instead, which limits a bypass to a

single domain only.

num (type: uint32, optional, default: 1000)

oob-auth-srv name;

Parameters of OOB authentication server.

name (type: name of oob-auth, see auth(5))

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

The ssl-session-cache section is derived from

ssl-session-cache section prototype. For detail description

of it, see ssl(5).

aproxy-lock [path];

Lock for exclusive access to the authentication proxy and OOB authentication session

tables.

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

cookie-table {

file ... ;

clean ... ;

size ... ;

max-age ... ;

}

Table of modified cookies.

Items & subsections:

file [path];

Database file for storing the table.

path (type: str, optional, default: "/tmp/http-proxy.cookie-table")

clean [when];

When to clean then table.

486

when (type: cookie-table-clean, optional, default: on-restart)

size [sz];

Maximum number of stored cookies.

sz (type: uint32, optional, default: 1024)

Constraints:

Cookie table size must be at least 1.

max-age [sec];

Cookie lifetime (seconds). If a cookie itself specifies shorter lifetime, the shorter

value is used instead.

sec (type: uint32, optional, default: 36000)

Constraints:

Cookie lifetime must not be zero.

[End of section http-proxy.cookie-table description.]

extended-status [val];

Permit status codes in statistical messages other than ACCEPTED and REJECTED

val (type: yes-no, optional, default: yes)

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

auth ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

captured-connect ... ;

* connect-session-acl ... ;

* connect-request-acl ... ;

* ip-tos-from-client ... ;

linger-time ... ;

client-keepalive ... ;

server-keepalive ... ;

language ... ;

hand-off ... ;

487

APPENDIX B. KERNUN UTM REFERENCE (5)

client-ssl ... ;

server-ssl ... ;

* client-cert-match ... ;

* server-cert-match ... ;

simulate-connect ... ;

sni-insp ... ;

aproxy ... ;

ntlm-auth ... ;

kerberos-auth ... ;

authenticate-at ... ;

acl-error-status ... ;

server-from-tcp ... ;

}

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

SSL/TLS required on connection in order to match client certificates.

Authentication method must be set.

CONNECT-SESSION-ACL requires CAPTURED-CONNECT.

CONNECT-REQUEST-ACL requires CAPTURED-CONNECT.

Only one of NTLM-AUTH and KERBEROS-AUTH may be used.

Only one of SIMULATE-CONNECT and SNI-INSP may be used.

CLIENT-SSL and SNI-INSP are mutually exclusive.

SERVER-SSL and SNI-INSP are mutually exclusive.

Item auth (see auth(5))

Element mode is optional, default: allowed.

Added items & subsections:

captured-connect [test];

A test if this session handles a captured CONNECT request (instead of creating a

tunnel to the destination server).

test (type: yes-no, optional, default: no)

connect-session-acl name;

SESSION-ACL used to handle the captured CONNECT request.

name (type: str-set)

connect-request-acl name;

REQUEST-ACL used to handle the captured CONNECT request.

name (type: str-set)

488

ip-tos-from-client val ;

Testing an IP TOS value of received packets.

val (type: uint8-set)

linger-time [seconds];

Read end of client connection will linger for EOF after closing the write end.

seconds (type: uint32, optional, default: 1)

client-keepalive [req req] [idle idle];

Parameters of client connection keep-alive.

req req (type: uint16, optional, default: 100)

max. number of requests on single connection (0 = unlimited, 1 = persistent

client connections not used)

idle idle (type: uint16, optional, default: 15)

max. idle time before the first request or between requests on single connection

(0 = unlimited)

server-keepalive [req req] [idle idle] [conn conn];

Parameters of server connection keep-alive.

req req (type: uint16, optional, default: 100)

max. number of requests on single connection (0 = unlimited, 1 = persistent

client connections not used)

idle idle (type: uint16, optional, default: 15)

max. idle time between requests (0 = unlimited)

conn conn (type: uint16, optional, default: 4)

max. number of simultaneously open persistent connections to servers

language [lang];

Language of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

lang (type: language, optional, default: EN)

hand-off addr ;

Next-hop proxy.

addr (type: sock)

client-ssl params;

Use SSL/TLS on the connection from a client.

params (type: name of ssl-params, see ssl(5))

server-ssl params;

Parameters of SSL/TLS for the connection to a server.

This item is valid only if the client SSL-PARAMS section forces faking of the server

certificate for the client.

params (type: name of ssl-params, see ssl(5))

client-cert-match [subject subject] [issuer issuer];

Requirements for client certificate.

489

APPENDIX B. KERNUN UTM REFERENCE (5)

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

server-cert-match [subject subject] [issuer issuer];

Requirements for server certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

simulate-connect;

Behave as if the client issued a CONNECT request to the client connection destina-

tion address. Establish a TCP tunnel to the server. Note that the item CAPTURE-

CONNECT cannot be used afterwards; use SNI-INSP instead of SIMULATE-

CONNECT in such case.

sni-insp;

Obtain server name identifier for use in item sni-result of request ACLs.

aproxy name;

Act as an authentication proxy for HTTP servers.

name (type: name of aproxy, see above)

ntlm-auth name;

Enable NTLM authentication of clients.

name (type: name of ntlm-auth, see above)

kerberos-auth name [proxy-host];

Enable Kerberos authentication of clients.

name (type: name of kerberos-auth, see above)

proxy-host (type: str, optional, default: "")

The proxy host name expected in authentication data from clients. This is also

the proxy host name that users should set in their browser configuration. The

specified host name will be used in the proxy Kerberos principal (HTTP/proxy-

host). If not set, the host name of the Kernun system will be used. This value

overrides a value set in the referenced KERBEROS-AUTH section.

authenticate-at [val];

Whether the proxy will ask the client to perform proxy authentication (the default),

or authentication at the origin server.

val (type: auth-headers, optional, default: proxy)

acl-error-status code;

Status code returned when a request is denied by ACL. If not set, default is 403

Forbidden.

code (type: uint16)

490

server-from-tcp [val];

Specifies which destination IP address is used for connecting to the server, in trans-

parent sessions. By default the destination IP address of the original client TCP

connection is used. If set to ’NO’, the address specified inside the HTTP protocol

(HTTP request) is used, i.e. the Host header or the host part of the request URI.

val (type: yes-no, optional, default: yes)

[End of section http-proxy.session-acl description.]

request-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

source-address ... ;

plug-to ... ;

* request-method ... ;

* request-scheme ... ;

* request-uri ... ;

* request-path ... ;

* referer ... ;

* blacklist ... ;

* request-version ... ;

* user-agent ... ;

* client-cert-match ... ;

* aproxy-user ... ;

* clear-web-db-match ... ;

clear-web-db-bypass { ... }

web-filter ... ;

host-hdr-transp ... ;

* rewrite ... ;

http-host ... ;

uri-decode ... ;

hand-off ... ;

select-optimization ... ;

491

APPENDIX B. KERNUN UTM REFERENCE (5)

allow-req-hdr ... ;

delete-req-hdr-range ... ;

allow-resp-hdr ... ;

* add-req-hdr ... ;

* add-resp-hdr ... ;

ftp-force-utf-8 ... ;

* req-line-check ... ;

* req-hdr-check ... ;

* status-line-check ... ;

* resp-hdr-check ... ;

accept-gzip ... ;

content-gzip ... ;

request-via ... ;

response-via ... ;

request-time ... ;

language ... ;

auth-req ... ;

oob-add { ... }

max-bytes ... ;

dechunk-ignore-eof ... ;

server-ssl ... ;

* server-cert-match ... ;

sni-result ... ;

client-altq ... ;

server-altq ... ;

ip-tos-to-client { ... }

ip-tos-to-server { ... }

file-response ... ;

program-response ... ;

library-response { ... }

request-end-program ... ;

* program-env ... ;

connect-data-filter-client ... ;

connect-data-filter-server ... ;

capture-connect ... ;

* modify-cookies ... ;

delete-cookies ... ;

request-body-match ... ;

492

request-body-max-size ... ;

replace-authorization ... ;

acl-error-status ... ;

deny-msg ... ;

}

The request-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the request-acl section:

Item parent-acl used as session-acl.

SSL/TLS required on connection in order to match server certificates.

FILE-RESPONSE cannot be combined with HAND-OFF or PLUG-TO.

PROGRAM-RESPONSE cannot be combined with HAND-OFF or PLUG-TO.

LIBRARY-RESPONSE cannot be combined with HAND-OFF or PLUG-TO.

Only one of FILE-RESPONSE, PROGRAM-RESPONSE, and

LIBRARY-RESPONSE can be set.

CAPTURE-CONNECT cannot be combined with AUTH-REQ,

HAND-OFF, PLUG-TO, FILE-RESPONSE, PROGRAM-RESPONSE and

LIBRARY-RESPONSE.

Items DENY and CLEAR-WEB-DB-BYPASS are mutually exclusive.

Item CLEAR-WEB-DB-BYPASS requires CLEAR-WEB-DB-MATCH.

Item DENY-MSG requires DENY.

Added items & subsections:

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;
Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of

them is applicable:

- The CLIENT keyword means the original client IP address is used. This mode

will be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used

for a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By

default, the main address of the bridge is used, however, any preferred alias address

can be listed in the cluster list.- The PHYSICAL option means that the address of

the physical interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical

address.

493

APPENDIX B. KERNUN UTM REFERENCE (5)

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

plug-to addr ;

Final destination server.

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

request-method val ;

Request methods to which this ACL is applicable.

val (type: str-set)

request-scheme val ;

Matching scheme from request URI. If URI does not contain scheme, SCHEME-

HTTP is assumed.

val (type: http-scheme-set)

request-uri val ;

Matching the whole request URI. Proxy URIs have form

<SCHEME>://<HOST>[:PORT]<PATH>[?<QUERY>], e.g.,

http://www.tns.cz:80/kernun/index.html.

val (type: str-set)

request-path val ;

Matching request URI path.

val (type: str-set)

referer val ;

Matching Referer HTTP header.

val (type: str-set)

blacklist categories;

Select this ACL if request URI (server and possibly initial part of path) is found

in the blacklist with at least one matching category.

categories (type: str-set)

request-version val ;

HTTP protocol version in request.

494

val (type: http-protocol-set)

user-agent val ;

Select an ACL according to the User-AgentHTTP header.

val (type: str-set)

client-cert-match [subject subject] [issuer issuer];

Select an ACL according to a client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

aproxy-user none;

aproxy-user [name] [name [group group]];

User and group specification.

<branching element> (type: user-auth-spec, optional, default:

name)

name (type: str-set, optional, default: *)

user name (authenticated on firewall)

group group (type: str-set, optional, default: *)

list of groups, if present, both NAME and GROUP must match

clear-web-db-match [any] categories-set ;

clear-web-db-match all categories-list ;

clear-web-db-match subset categories-set ;

clear-web-db-match exact categories-list ;

Clear Web Matching Control.

This item is used as an ACL entry condition for a URL based on Clear Web category

matching.

<branching element> (type: clear-web-db-match-mode, optional,

default: any)

categories-set (type: clear-web-db-category-set)

categories-list (type: clear-web-db-category-list)

clear-web-db-bypass {

status ... ;

cookie ... ;

activation ... ;

duration ... ;

}

The clear-web-db-bypass section is derived from

clear-web-db-bypass section prototype. For detail descrip-

tion of it, see clear-web-db(5).

web-filter name;

Enables web filter and selects web filter server

495

APPENDIX B. KERNUN UTM REFERENCE (5)

name (type: name of web-filter, see above)

host-hdr-transp [enable-loopback];

Enables transparent proxy behavior for non-transparent connections. If the request

URI contains only path and no server address, uses the content of the Host header

as the server address.

enable-loopback (type: key, optional)

Permits connections to local addresses.

rewrite match subst [redirect redirect];

Change request URI.

match (type: regexp)

URIs matching this regular expression

subst (type: str)

will be substituted with this ($1..$9 are references to parenthesized subexpres-

sions of MATCH, $$ means $)

redirect redirect (type: http-redirect, optional, default: unde-

fined)

the proxy will return HTTP redirect with the rewritten URI instead of directly

serving the rewritten URI

http-host addr ;

Change request URI host and Host header.

addr (type: sock)

uri-decode [val];

Decode unreserved characters in a request URI encoded as %XX. This item must

be set to NO for some clients or servers that require their URIs to be passed

unmodified. Matching of REQUEST-URI and REQUEST-PATH is always done

with decoded unreserved characters, regadless the value of this item.

val (type: yes-no, optional, default: no)

hand-off addr ;

Next-hop proxy.

addr (type: sock)

select-optimization [c2s [s2c]];

Optimization of read/write/select operations.

c2s (type: uint32, optional, default: 0)

max. number of client->server reads/writes without calling select

s2c (type: uint32, optional, default: 0)

max. number of server->client reads/writes without calling select

allow-req-hdr name;

Pass only these request headers. If not used, all request headers.

name (type: str-set)

names of allowed headers

delete-req-hdr-range;

Remove request header Range.

496

allow-resp-hdr name;

Pass only these response headers.

name (type: str-set)

names of allowed headers

add-req-hdr name value;

Add a request header. The header is added literaly and does not replace any already

existing header of the same name. The header is not checked for compliance with

RFC.

name (type: str)

Header name.

value (type: str)

Header value.

add-resp-hdr name value;

Add a response header. The header is added literaly and does not replace any

already existing header of the same name. The header is not checked for compliance

with RFC.

name (type: str)

Header name.

value (type: str)

Header value.

ftp-force-utf-8;

When retrieving and displaying FTP directory, use UTF-8.

It means sending the "OPTS UTF8 ON" command to the server, and adding the

"charset=UTF-8" info to the web page displayed.

req-line-check text-match max-len;

Check of request line.

text-match (type: str-set)

The line must match this.

max-len (type: uint32)

Maximum number of characters in the line

req-hdr-check name-match val-match max-val-len;

Check of request headers.

name-match (type: str-set)

The header name must match this.

val-match (type: str-set)

The header value must match this.

max-val-len (type: uint32)

Maximum number of characters of the header value

status-line-check text-match max-len;

Check of response status line.

497

APPENDIX B. KERNUN UTM REFERENCE (5)

text-match (type: str-set)

The line must match this.

max-len (type: uint32)

Maximum number of characters in the line

resp-hdr-check name-match val-match max-val-len;

Check of response headers.

name-match (type: str-set)

The header name must match this.

val-match (type: str-set)

The header value must match this.

max-val-len (type: uint32)

Maximum number of characters of the header value

accept-gzip [gzip-only];

Modify Accept-Encoding header so that only identity and gzip encodings will be

accepted. This is useful if the response will be passed to HTML filter later.

gzip-only (type: accept-gzip, optional, default: client-add)

content-gzip [mode];

Convert between gzip and x-gzip in the Content-Encoding response header.

mode (type: content-gzip, optional, default: accept)

request-via pass;

request-via add [faked];

request-via full [faked];

request-via [block];

request-via fake [faked];

Processing Via headers in requests.

<branching element> (type: proxy-via, optional, default: block)

faked (type: str, optional, default: "")

full Via header value if FAKE, replacement for firewall hostname for ADD,

FULL

response-via pass;

response-via add [faked];

response-via full [faked];

response-via [block];

response-via fake [faked];

Processing Via headers in responses.

<branching element> (type: proxy-via, optional, default: block)

faked (type: str, optional, default: "")

full Via header value if FAKE, replacement for firewall hostname for ADD,

FULL

498

request-time seconds;

Limited time of single request.

seconds (type: uint32)

language lang ;

Language of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

lang (type: language)

auth-req realm;

Send authentication request back to client.

realm (type: str)

realm sent to clients

oob-add {

timeout-idle ... ;

timeout-unauth ... ;

}

If this is an OOB authentication server and the user has been

authenticated successfully, add the user to the OOB authentication session table.

Items & subsections:

timeout-idle [sec];

Number of seconds until authentication expires when the client is idle (sends

no requests).

sec (type: uint32, optional, default: 360)

timeout-unauth [sec];

Maximum time after which authentication expires.

sec (type: uint32, optional, default: 3600)

[End of section http-proxy.request-acl.oob-add description.]

max-bytes [cout [cin [sout [sin]]]];

Maximum number of transferred bytes (0 = unlimited).

cout (type: uint64, optional, default: 0)

(received from client)

cin (type: uint64, optional, default: 0)

(sent to client)

sout (type: uint64, optional, default: 0)

(sent to server)

sin (type: uint64, optional, default: 0)

(received from server)

dechunk-ignore-eof [val];

499

APPENDIX B. KERNUN UTM REFERENCE (5)

Ignore premature connection close by a server when waiting for a chunk (behave

as if there was a terminating zero-sized chunk).

val (type: yes-no, optional, default: no)

server-ssl params;

Use SSL/TLS on the connection to a server.

params (type: name of ssl-params, see ssl(5))

server-cert-match [subject subject] [issuer issuer];

Requirements for server certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

sni-result [result];

Result of the SNI inspection. Default value is "specified".

result (type: sni-result-set, optional, default: {})

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

ip-tos-to-client {

fixed ... ;

received ... ;

other ... ;

}

The ip-tos-to-client section is derived from ip-tos-to-client

section prototype. For detail description of it, see netio(5).

ip-tos-to-server {

fixed ... ;

received ... ;

other ... ;

}

500

The ip-tos-to-server section is derived from ip-tos-to-server

section prototype. For detail description of it, see netio(5).

file-response [status-code status-code] [mime-type mime-type]

[path [request-uri]];
Do not contact a server and send a local file obtained by concatenating the

document-root path and the specified file path or the request URI path.

status-code status-code (type: uint16, optional, default: 200)

status code of response

mime-type mime-type (type: str, optional, default: "text/html")

Document Content-Type.

path (type: str, optional, default: "")

Path of the response file (under DOCUMENT-ROOT).

request-uri (type: key, optional)

Append request URI path after request (return file selected by request URI in

subdirectory PATH of DOCUMENT-ROOT).

program-response path [runtime];

Do not contact a server and start a program. The program is passed the complete

request to the standard input. The standard output of the program is sent to the

client. The program mustgenerate a complete response beginning with a response

lineand headers.

path (type: name of shared-file, see common(5))

Program name.

runtime (type: uint32, optional, default: 10)

Maximum allowed runtime of the program (seconds). After expiration, the

program is signalled by SIGTERM. If zero, the allowed runtime is unlimited.

library-response {

lib ... ;

* param ... ;

}

Constraints:

Item LIB must be specified.

Items & subsections:

lib path;

Path to the shared library.

path (type: str)

param name value;

Optional parameters for the library.

name (type: str)

Parameter name.

501

APPENDIX B. KERNUN UTM REFERENCE (5)

value (type: str)

Parameter value.

[End of section http-proxy.request-acl.library-response description.]

request-end-program path;

A program executed asynchronously by the proxy when a request processing fin-

ishes.

path (type: name of shared-file, see common(5))

Program name.

program-env name val ;

Additional environment variables passed to programs executed

PROGRAM-RESPONSE and REQUEST-END-PROGRAM.

name (type: str)

Name of the environment variable.

val (type: str)

Value of the environment variable.

connect-data-filter-client rules;

Client CONNECT data filtering.

rules (type: name of data-match, see mod-match(5))

connect-data-filter-server rules;

Server CONNECT data filtering.

rules (type: name of data-match, see mod-match(5))

capture-connect [stats-log stats-log];

In the case of a CONNECT request, restart the session and handle the communi-

cation itself instead of creating a TCP tunnel to the destination server.

stats-log stats-log (type: yes-no, optional, default: no)

Whether statistics log message is produced for capture-connect request itself.

Stats messages for the requests performed later in this ’caputre-connected’ ses-

sion are not affected by this value, they are logged anyway.

modify-cookies name [params params] [max-age max-age]

[any-client] [keep-not-found];
Matching cookies will be modified so that they are useless outside the internal

network.

name (type: str-set)

Modify only cookies with matching name.

params params (type: str-set, optional, default: *)

Modify only cookies with matching parameters. Is matched against the string

containing all cookie parameters following the cookie NAME and VALUE.

max-age max-age (type: uint32, optional, default: 0)

Cookie lifetime (seconds). If zero or not set, the value from

HTTP-PROXY.COOKIE-TABLE.MAX-AGE is used. If a cookie itself

specifies shorter lifetime, the shorter value is used instead.

502

any-client (type: key, optional)

Modify a cookie even if it comes from other client address than it was previously

sent to.

keep-not-found (type: key, optional)

Keep the cookie value unchanged if not found in the cookie table. Otherwise,

values of unknown cookies are set to the empty string.

delete-cookies [ip-from-query];

Delete all cookies for the client IP in the cookie table.

ip-from-query (type: key, optional)

Use IP address written in the query part of the request URI instead of the

client IP address.

request-body-match rules;

Rules for matching content of the request body.

rules (type: name of data-match, see mod-match(5))

request-body-max-size bytes;

Maximum size of the request body.

bytes (type: uint64)

replace-authorization [simple] db-file [keep-not-found]

[replace-not-found replace-not-found];

replace-authorization radius db-file [keep-not-found]

[replace-not-found replace-not-found] radius radius

radius-delimiter radius-delimiter ;

Replaces user name and password in a request Authorization header.

<branching element> (type: replace-authorization-mode, op-

tional, default: simple)

Mode of the authorization replacement

db-file (type: str)

A database file for replacement. It must be in the format used by action

HTML-REPLACE in REQUEST-BODY-MATCH.RULES. Each record of the

replacement database must contain two values: user name and password.

keep-not-found (type: key, optional)

If set and replacement values are not found in the database, pass the selected

HTML form controls unchanged. Otherwise, values of the selected controls are

deleted.

replace-not-found replace-not-found (type: str, optional, default:

<NULL>)

If set and replacement values are not found in the database, replace values of

the selected HTML form controls by this value.

radius radius (type: name of radius-client, see radius(5))

Radius client configuration to be used for authentication.

radius-delimiter radius-delimiter (type: str)

A single character used as delimiter of the internal password and the radius

password. Last occurence of the delimiter is used. If not present in the partic-

ular password, all the password text is interpreted as the radius password.

503

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Only one of elements KEEP-NOT-FOUND and REPLACE-NOT-FOUND may

be specified.

acl-error-status code;

Status code returned when a request is denied by ACL. If not set, default is 403

Forbidden.

code (type: uint16)

deny-msg [template template] [msg];

The error page returned when a request is denied by ACL. If not set, a generic

"denied by security policy" page is returned, except when the denying ACL contains

item CLEAR-WEB-DB-MATCH. In this case, the returned page will display the

categories of the request URI that match the CLEAR-WEB-DB-MATCH item.

See also http-proxy(8) for the instructions how to create custom error pages.

template template (type: str, optional, default: "")

error page template file name, without the .html.LANGUAGE-CHARSET suf-

fix, relative to the DOCUMENT-ROOT directory

msg (type: str, optional, default: "")

a message inserted into the error page template

[End of section http-proxy.request-acl description.]

doc-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* request-acl ... ;

deny ... ;

accept ... ;

rule ... ;

* content-type ... ;

* mime-type ... ;

force-doctype-ident ... ;

html-filter ... ;

* request-scheme ... ;

* referer ... ;

* request-path ... ;

* blacklist ... ;

set-mime-type ... ;

replace-response ... ;

504

jpeg-scan-sz ... ;

* filter-images ... ;

antivirus ... ;

accept-antivirus-status ... ;

response-body-match ... ;

client-altq ... ;

server-altq ... ;

deny-msg ... ;

}

The doc-acl section is derived from acl-3 section prototype. For

detail description of it, see acl(5).

Changes to the doc-acl section:

Item parent-acl used as request-acl.

Item direction is not valid.

Item size is not valid.

Item virus-status is not valid.

Item modify-header is not valid.

Item replace is not valid.

SET-MIME-TYPE and REPLACE-RESPONSE are mutually exclusive.

SET-MIME-TYPE and FORCE-DOCTYPE-IDENT are mutually exclusive.

REPLACE-RESPONSE and FORCE-DOCTYPE-IDENT are mutually exclusive.

Item DENY-MSG requires DENY..

Added items & subsections:

request-scheme val ;

Matching scheme from request URI. If URI does not contain scheme, SCHEME-

HTTP is assumed.

val (type: http-scheme-set)

referer val ;

Matching Referer HTTP header.

val (type: str-set)

request-path val ;

Matching request URI path. Proxy URIs have form

[<SCHEME>://<HOST>[:PORT]]<PATH>[?<QUERY>], e.g.,

http://www.tns.cz:80/kernun/index.html

val (type: str-set)

blacklist categories;

Select this ACL if request URI (server and possibly initial part of path) is found

in the blacklist with at least one matching category.

categories (type: str-set)

set-mime-type val ;

Set Content-Type header sent to the client.

505

APPENDIX B. KERNUN UTM REFERENCE (5)

val (type: str)

replace-response status-code mime-type path;

Send a local file instead of a server response.

status-code (type: uint16)

status code of response

mime-type (type: str)

Document Content-Type.

path (type: str)

file to send (relative to document-root if relative path)

jpeg-scan-sz [sz];

Maximum length of the initial part of an JPEG image file scanned for image type

and size.

sz (type: uint16, optional, default: 1024)

filter-images width height path;

Send a local file instead of some images (MIME types image/gif, image/jpeg, im-

age/png). Matching is done according to image size, image which has invalid format

orunknown size is treated as 0 x 0 image for matching.

width (type: uint16-set)

images width

height (type: uint16-set)

images height

path (type: str)

file to send (relative to document-root if relative path), an extension according

to type (.gif/.jpeg/.png) will be appended

antivirus channel [interval interval] [chunk chunk] [limit limit];

Antivirus usage mode.

Check document by antivirus, with settings for passing initial part of unchecked

data through the antivirus module during antivirus checking.

channel (type: name-list of antivirus, see antivirus(5))

Name of ANTIVIRUS global section used.

interval interval (type: uint16, optional, default: 0)

Seconds between passing blocks of unchecked data (0 = do not send unchecked

data).

chunk chunk (type: uint32, optional, default: 0)

Size of each block of unchecked data.

limit limit (type: uint32, optional, default: 0)

Maximum size of unchecked data passed before antivirus check is completed.

Remaining data will be passed only after successful checking.

accept-antivirus-status status;

Defines set of antivirus status codes (in addition to FREE) that allow further

passing of data. Other status codes cause termination of data transfer. If not set,

data are passed only if the antivirus returns status FREE.

506

status (type: virus-status-set)

response-body-match rules;

Rules for matching content of the response body.

rules (type: name of data-match, see mod-match(5))

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

deny-msg [template template] [msg];

The error page returned when a request is denied by ACL. If not set, a generic

"denied by security policy" page is returned, except when the denying ACL contains

item CLEAR-WEB-DB-MATCH. In this case, the returned page will display the

categories of the request URI that match the CLEAR-WEB-DB-MATCH item.

See also http-proxy(8) for the instructions how to create custom error pages.

template template (type: str, optional, default: "")

error page template file name, without the .html.LANGUAGE-CHARSET suf-

fix, relative to the DOCUMENT-ROOT directory

msg (type: str, optional, default: "")

a message inserted into the error page template

[End of section http-proxy.doc-acl description.]

[End of section http-proxy description.]

SEE ALSO

configuration(7), acl(5), antivirus(5), application(5), auth(5), clear-web-db(5), common(5),

interface(5), ipc(5), ldap(5), listen-on(5), log(5), mod-match(5), monitoring(5), netio(5),

pf-queue(5), radius(5), source-address(5), ssl(5), tcpserver(5), time(5), auth(7), http-proxy(8)

507

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

http-proxy.cfg — format of http-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the http-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in http-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

language (see common(5))

nls (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

508

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

proc-priority (see application(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

data-match-action (see mod-match(5))

509

APPENDIX B. KERNUN UTM REFERENCE (5)

clear-web-db-category (see clear-web-db(5))

clear-web-db-match-mode (see clear-web-db(5))

replace-authorization-mode (see http-proxy(5))

proxy-via (see http-proxy(5))

http-protocol (see http-proxy(5))

http-scheme (see http-proxy(5))

cookie-table-clean (see http-proxy(5))

accept-gzip (see http-proxy(5))

content-gzip (see http-proxy(5))

http-redirect (see http-proxy(5))

kerberos-user-match (see http-proxy(5))

ldap-select (see http-proxy(5))

auth-headers (see http-proxy(5))

sni-result (see http-proxy(5))

ITEMS AND SECTIONS

Program http-proxy recognizes following items and sections:

admin ... ;

* antivirus name { ... }

* aproxy name { ... }

clear-web-db { ... }

* data-match name { ... }

* fake-cert name { ... }

* html-filter name { ... }

* interface name { ... }

* kerberos-auth name { ... }

* ldap-client-auth name { ... }

* ntlm-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

* ssl-params name { ... }

510

sysctl { ... }

use-resolver ... ;

* web-filter name { ... }

* http-proxy name { ... }

ipv6-mode ... ;

Description:

admin system [contact];

Firewall administrator and contact e-mail addresses.

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration. If

not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

aproxy name {

auth ... ;

insecure-cookies ... ;

oob-auth ... ;

511

APPENDIX B. KERNUN UTM REFERENCE (5)

cookie-name ... ;

logout ... ;

timeout-idle ... ;

timeout-unauth ... ;

bufsz ... ;

}

The aproxy section is derived from aproxy section prototype. For

detail description of it, see http-proxy(5).

clear-web-db {

internal-servers ... ;

db ... ;

lock ... ;

local-db { ... }

}

The clear-web-db section is derived from clear-web-db section

prototype. For detail description of it, see clear-web-db(5).

data-match name {

max-size ... ;

init-match ... ;

max-match ... ;

step-size ... ;

step-match ... ;

* test ... ;

}

The data-match section is derived from data-match section proto-

type. For detail description of it, see mod-match(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

512

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

513

APPENDIX B. KERNUN UTM REFERENCE (5)

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

kerberos-auth name {

domain ... ;

user-match ... ;

kinit ... ;

keytab ... ;

proxy-host ... ;

* ad-controller ... ;

ldap ... ;

timeout-idle ... ;

timeout-unauth ... ;

lock ... ;

lock-ldap ... ;

one-per-session ... ;

}

514

The kerberos-auth section is derived from kerberos-auth section

prototype. For detail description of it, see http-proxy(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

ntlm-auth name {

domain ... ;

workgroup ... ;

* ad-controller ... ;

interfaces { ... }

ldap ... ;

timeout ... ;

timeout-idle ... ;

timeout-unauth ... ;

}

The ntlm-auth section is derived from ntlm-auth section prototype.

For detail description of it, see http-proxy(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

515

APPENDIX B. KERNUN UTM REFERENCE (5)

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

516

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

517

APPENDIX B. KERNUN UTM REFERENCE (5)

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

web-filter name {

connection ... ;

fail-ok ... ;

sock-opt { ... }

}

The web-filter section is derived from web-filter section proto-

type. For detail description of it, see http-proxy(5).

http-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

518

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

document-root ... ;

hdr-line-len ... ;

blacklist-db ... ;

connect-data-mime-db ... ;

ftp-proxy ... ;

max-aproxy-sessions ... ;

max-bypass-sessions ... ;

oob-auth-srv ... ;

ssl-session-cache { ... }

aproxy-lock ... ;

cookie-table { ... }

extended-status ... ;

* session-acl name { ... }

* request-acl name { ... }

* doc-acl name { ... }

}

The http-proxy section is derived from http-proxy section proto-

type. For detail description of it, see http-proxy(5).

519

APPENDIX B. KERNUN UTM REFERENCE (5)

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), http-proxy(8), acl(5), antivirus(5), application(5), auth(5), clear-web-db(5),

common(5), http-proxy(5), interface(5), ipc(5), ldap(5), listen-on(5), log(5), mod-html-filter(5),

mod-match(5), pf-queue(5), radius(5), resolver(5), source-address(5), ssl(5), sysctl(5), time(5),

host-matching(7)

520

NAME

ica — format of ica component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ica component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ica configuration directives:

ip-version (see common(5))

osi4-proto (see common(5))

listen-on-sock (see listen-on(5))

ITEMS AND SECTIONS

Configuration of ica library component consists of following prototypes:

icamd { ... }

icasd { ... }

Description:

icamd {

phase ... ;

* tag ... ;

listen-on { ... }

priv-key ... ;

* slave name { ... }

}

Kernun inter-node communication master. ICAM allows this node to control other

KERNUN device(s), which run the ICAS daemon.

521

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Listen-on must be specified.

Private key must be specified.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 20)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

listen-on {

* socket ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

Item non-transparent used as socket.

Item transparent is not valid.

At least one address to listen on must be specified.

Item socket (see listen-on(5))

Element version is optional, default: ipv4=4.

Element proto is optional, default: tcp.

priv-key id-rsa;

Private SSH key used by the icamd daemon

id-rsa (type: name of shared-file, see common(5))

slave name {

pub-key ... ;

}

ICAS slave allowed to connect to this master

522

Constraints:

Public key must be specified.

Items & subsections:

pub-key id-rsa-pub;

Public SSH key of the slave used to check its identity

id-rsa-pub (type: name of shared-file, see common(5))

[End of section icamd.slave description.]

[End of section icamd description.]

icasd {

phase ... ;

* tag ... ;

priv-key ... ;

* master name { ... }

}

Kernun inter-node communication slave. ICAS allows this node to be controlled by

other KERNUN device(s), which run the ICAM daemon.

Constraints:

Private key must be specified.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 20)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

priv-key id-rsa;

Private SSH key used by the icas daemon

id-rsa (type: name of shared-file, see common(5))

523

APPENDIX B. KERNUN UTM REFERENCE (5)

master name {

addr ... ;

pub-key ... ;

}

ICAS master to connect to

Constraints:

Address of the icas daemon must be specified.

Public key must be specified.

Items & subsections:

addr addr ;

Address and port to connect to

addr (type: sock)

pub-key id-rsa-pub;

Public SSH key of the master used to check its identity

id-rsa-pub (type: name of shared-file, see common(5))

[End of section icasd.master description.]

[End of section icasd description.]

SEE ALSO

configuration(7), common(5), listen-on(5)

524

NAME

icap-server — format of icap-server component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the icap-server component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in icap-server configuration directives:

enabling (see common(5))

yes-no (see common(5))

language (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

525

APPENDIX B. KERNUN UTM REFERENCE (5)

user-match-mode (see auth(5))

virus-status (see antivirus(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

listen-on-sock (see listen-on(5))

clear-web-db-category (see clear-web-db(5))

clear-web-db-match-mode (see clear-web-db(5))

ITEMS AND SECTIONS

Configuration of icap-server library component consists of following prototypes:

* icap-server name { ... }

Description:

icap-server name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

526

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

document-root ... ;

hdr-line-len ... ;

preview ... ;

blacklist-db ... ;

max-bypass-sessions ... ;

ssl-session-cache { ... }

ldap-cache { ... }

* session-acl name { ... }

* service-acl name { ... }

* request-acl name { ... }

* doc-acl name { ... }

}

This section defines ICAP server attributes.

The icap-server section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the icap-server section:

Section udpserver is not valid.

Item source-address is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one SERVICE-ACL must be specified.

At least one REQUEST-ACL must be specified.

At least one DOC-ACL must be specified.

Document root path required.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as uri.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 1344.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 1344.

Element proto is optional, default: tcp.

527

APPENDIX B. KERNUN UTM REFERENCE (5)

Added items & subsections:

client-conn {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection from client options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-conn section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

document-root path;

Directory containing error documents and forced responses.

path (type: name of shared-dir, see common(5))

hdr-line-len [bytes];

Maximum (multi)line length in ICAP message headers (sets buffer size in header pro-

cessing modules).

bytes (type: uint32, optional, default: 12Ki)

preview disable;

preview [enable] bytes;

Default document preview mode and size.

If used, this setting is valid whenever no re-setting is defined in a particular SERVICE-

ACL.

If not used, just the particular SERVICE-ACL setting is significant for the preview

mode and size.

<branching element> (type: enabling, optional, default: enable)

bytes (type: uint32)

blacklist-db fname;

Blacklist categorization database file.

fname (type: str)

max-bypass-sessions [num];

Maximum number of simultaneous Clear Web DataBase bypass sessions.

num (type: uint32, optional, default: 1000)

528

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

The ssl-session-cache section is derived from

ssl-session-cache section prototype. For detail description

of it, see ssl(5).

ldap-cache {

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

timeout ... ;

file ... ;

lock ... ;

}

Use cache for LDAP groups results.

Items & subsections:

max-sessions [val];

Maximum number of simultaneously active LDAP user sessions.

val (type: uint16, optional, default: 200)

Constraints:

MAX-SESSIONS must be nonzero.

max-user [val];

Maximum length of a user name.

val (type: uint16, optional, default: 48)

Constraints:

MAX-USER must be nonzero.

max-groups [val];

Maximum space used by a list of groups for a single user.

Each group name of length L takes L+1 characters from this space.

val (type: uint16, optional, default: 1024)

Constraints:

MAX-GROUPS must be nonzero.

truncate-groups;

Too long group list handling flag.

If used, a too long list of groups is truncated.

If omitted, the user cannot authenticate if his/her list of groups does not fit to the

space allocated according to MAX-GROUPS.

529

APPENDIX B. KERNUN UTM REFERENCE (5)

timeout [sec];

User record expiration timeout.

sec (type: uint32, optional, default: 3600)

file [path];

LDAP caching file name.

path (type: str, optional, default: "/tmp/ldap-cache")

lock none;

lock semaphore;

lock lock2 [path];

lock [multilock2] [path];

An alternative implemetation of locks.

<branching element> (type: lock-type, optional, default: multi-

lock2)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy,

PID is the proxy parent process ID and X is a random suffix. If not set,

directory /tmp is assumed. Automatic generation of lock file name is strongly

recommended, because each lock must have a unique name.

[End of section icap-server.ldap-cache description.]

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

auth ... ;

idle-timeout ... ;

source-address ... ;

linger-time ... ;

client-keepalive ... ;

language ... ;

client-ssl ... ;

* client-cert-match ... ;

}

530

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

Item plug-to is not valid.

SSL/TLS required on connection in order to match client certificates.

Item auth (see auth(5))

Element mode is optional, default: allowed.

Added items & subsections:

linger-time seconds;

Read end of client connection will linger for EOF after closing the write end.

seconds (type: uint32)

client-keepalive [req req] [idle idle];

Parameters of client connection keep-alive.

req req (type: uint16, optional, default: 100)

Max. number of requests on single connection (0 = unlimited, 1 = persistent

client connections not used).

idle idle (type: uint16, optional, default: 15)

Max. idle time before the first request or between requests on single connection

(0 = unlimited).

language [lang];

Language of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

lang (type: language, optional, default: EN)

client-ssl params;

Use SSL/TLS on the connection from a client.

params (type: name of ssl-params, see ssl(5))

client-cert-match [subject subject] [issuer issuer];

Requirements for client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

[End of section icap-server.session-acl description.]

service-acl name {

* from ... ;

* server ... ;

* user ... ;

531

APPENDIX B. KERNUN UTM REFERENCE (5)

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

* request-method ... ;

* request-uri ... ;

* request-path ... ;

* user-agent ... ;

* client-cert-match ... ;

use-antivirus ... ;

request-time ... ;

language ... ;

preview ... ;

send-opt-clearweb ... ;

auth-req ... ;

user-match ... ;

ldap-groups ... ;

max-bytes ... ;

flush ... ;

client-altq ... ;

}

The ICAP service sublevel of the second level of ACL.

This sublevel decides about particular ICAP service, i.e. types of document inspection

required. It exploits data from ICAP protocol level.

The service-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the service-acl section:

Item parent-acl used as session-acl.

Added items & subsections:

request-method val ;

Entry condition - ICAP request method.

val (type: str-set)

request-uri val ;

Entry condition - ICAP request URI.

ICAP URIs have form

icap://[<USER>@]<HOST>[:<PORT>]<PATH>[?<QUERY>] (e.g.,

icap://icap.tns.cz/av-scan).

532

val (type: str-set)

request-path val ;

Entry condition - ICAP URI path.

val (type: str-set)

user-agent val ;

Entry condition - User-Agent ICAP header.

val (type: str-set)

client-cert-match [subject subject] [issuer issuer];

Entry condition - client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

use-antivirus disable [interval interval] [chunk chunk] [limit

limit];

use-antivirus enable channel [interval interval] [chunk chunk]

[limit limit];

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any AN-

TIVIRUS global section can be present nor any ACL can have VIRUS item speci-

fied.

If enabled, it can be configured for passing initial part of unchecked data to the

client before the antivirus check is completed. In this case, if a virus is found later,

the connection to the client is broken.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see antivirus(5))

interval interval (type: uint16, optional, default: 0)

Seconds between passing blocks of unchecked data (0 = do not send unchecked

data).

chunk chunk (type: uint32, optional, default: 0)

Size of each block of unchecked data.

limit limit (type: uint32, optional, default: 0)

Maximum size of unchecked data passed before antivirus check is completed.

Remaining data will be passed only after successful checking.

request-time seconds;

Limited time of single request.

seconds (type: uint32)

language lang ;

Language of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

533

APPENDIX B. KERNUN UTM REFERENCE (5)

lang (type: language)

preview disable;

preview [enable] bytes;

Document preview mode and size.

If used, this setting is valid for the OPTIONS request response belonging to this

SERVICE-ACL.

If not used and the global setting (ICAP-SERVER level) is defined, the global

setting is valid.

If no PREVIEW setting is specified on neither ICAP-SERVER nor SERVICE-ACL

level, the OPTIONS response is derived by the icap-server according to services

offered (document type identification by the magic library, antivirus scanning, etc.).

<branching element> (type: enabling, optional, default: enable)

bytes (type: uint32)

send-opt-clearweb;

OPTIONS response control.

If used, the server includes clearweb categories into the response to the OPTIONS

request.

auth-req realm;

Send authentication request back to client.

realm (type: str)

realm sent to clients

user-match [mode];

ACL matching mode of authenticated usernames.

mode (type: user-match-mode, optional, default: short)

ldap-groups [name];

Get list of user groups by LDAP.

name (type: name of ldap-client-auth, see ldap(5), optional, de-

fault: NULL)

Default LDAP connection for the case of no user domain sent by the ICAP

client.

max-bytes [cout [cin]];

Maximum number of transferred bytes (0 = unlimited).

cout (type: uint64, optional, default: 0)

Bytes received from client.

cin (type: uint64, optional, default: 0)

Bytes sent to client.

flush client;

Force immediate data flushing to network.

client (type: key)

Flush data to client.

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

534

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section icap-server.service-acl description.]

request-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* service-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

* request-method ... ;

* request-uri ... ;

* request-scheme ... ;

* request-path ... ;

* blacklist ... ;

* clear-web-db-match ... ;

clear-web-db-bypass { ... }

replace-response ... ;

deny-msg ... ;

language ... ;

client-altq ... ;

}

The HTTP request sublevel of the second level of ACL.

This sublevel decides about particular document inspection methods according to the

encapsulated document HTTP data.

The request-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the request-acl section:

Item parent-acl used as service-acl.

Items DENY and CLEAR-WEB-DB-BYPASS are mutually exclusive.

Item CLEAR-WEB-DB-BYPASS requires CLEAR-WEB-DB-MATCH.

Items REPLACE-RESPONSE and CLEAR-WEB-DB-BYPASS are mutually ex-

clusive.

Item DENY-MSG requires DENY.

535

APPENDIX B. KERNUN UTM REFERENCE (5)

Added items & subsections:

request-method val ;

Entry condition - HTTP request method.

val (type: str-set)

request-uri val ;

Entry condition - HTTP message URI.

Encapsulated HTTP messages have URI in form

<SCHEME>://<HOST>[:PORT]<PATH>[?<QUERY>] (e.g.,

http://www.tns.cz:80/kernun/index.html).

val (type: str-set)

request-scheme val ;

Entry condition - HTTP message URI scheme.

If URI does not contain scheme, scheme HTTP is assumed.

val (type: str-set)

request-path val ;

Entry condition - HTTP message URI path.

val (type: str-set)

blacklist categories;

Entry condition - HTTP message URI blacklist category.

If used, this ACL is selected if request URI (server and possibly initial part of path)

is found in the blacklist with at least one matching category.

categories (type: str-set)

clear-web-db-match [any] categories-set ;

clear-web-db-match all categories-list ;

clear-web-db-match subset categories-set ;

clear-web-db-match exact categories-list ;

Entry condition - HTTP message URI Clear Web category.

If used, this ACL is selected if the request URI is found in the Clear Web DataBase

with at least one matching category.

<branching element> (type: clear-web-db-match-mode, optional,

default: any)

categories-set (type: clear-web-db-category-set)

categories-list (type: clear-web-db-category-list)

clear-web-db-bypass {

status ... ;

cookie ... ;

activation ... ;

duration ... ;

}

536

The clear-web-db-bypass section is derived from

clear-web-db-bypass section prototype. For detail descrip-

tion of it, see clear-web-db(5).

replace-response code reason mime-type path;

Send a local file instead of a server response.

code (type: uint16)

Status code of response.

reason (type: str)

Reason phrase.

mime-type (type: str)

Document Content-Type.

path (type: str)

File to send (absolute, or relative to document-root).

Constraints:

Reply-code must be 4xx or 5xx.

deny-msg [template template] [msg];

The error page returned when a request is denied by ACL. If not set, a generic

"denied by security policy" page is returned, except when the denying ACL contains

item CLEAR-WEB-DB-MATCH. In this case, the returned page will display the

categories of the request URI that match the CLEAR-WEB-DB-MATCH item.

See also http-proxy(8) for the instructions how to create custom error pages.

template template (type: str, optional, default: "")

error page template file name, without the .html.LANGUAGE-CHARSET suf-

fix, relative to the DOCUMENT-ROOT directory

msg (type: str, optional, default: "")

a message inserted into the error page template

language lang ;

Language of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

lang (type: language)

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section icap-server.request-acl description.]

doc-acl name {

* from ... ;

537

APPENDIX B. KERNUN UTM REFERENCE (5)

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* request-acl ... ;

deny ... ;

accept ... ;

rule ... ;

* content-type ... ;

* mime-type ... ;

virus-status ... ;

force-doctype-ident ... ;

html-filter ... ;

replace-response ... ;

deny-msg ... ;

client-altq ... ;

}

The doc-acl section is derived from acl-3 section prototype. For

detail description of it, see acl(5).

Changes to the doc-acl section:

Item parent-acl used as request-acl.

Item direction is not valid.

Item size is not valid.

Item modify-header is not valid.

Item replace is not valid.

Item DENY-MSG requires DENY.

Added items & subsections:

replace-response code reason mime-type path;

Send a local file instead of a server response.

code (type: uint16)

Status code of response.

reason (type: str)

Reason phrase.

mime-type (type: str)

Document Content-Type.

path (type: str)

File to send (absolute, or relative to document-root).

Constraints:

Reply-code must be 4xx or 5xx.

538

deny-msg [template template] [msg];

The error page returned when a request is denied by ACL. If not set, a generic

"denied by security policy" page is returned, except when the denying ACL contains

item CLEAR-WEB-DB-MATCH. In this case, the returned page will display the

categories of the request URI that match the CLEAR-WEB-DB-MATCH item.

See also http-proxy(8) for the instructions how to create custom error pages.

template template (type: str, optional, default: "")

error page template file name, without the .html.LANGUAGE-CHARSET suf-

fix, relative to the DOCUMENT-ROOT directory

msg (type: str, optional, default: "")

a message inserted into the error page template

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section icap-server.doc-acl description.]

[End of section icap-server description.]

SEE ALSO

configuration(7), acl(5), antivirus(5), application(5), auth(5), clear-web-db(5), common(5),

ipc(5), ldap(5), listen-on(5), log(5), monitoring(5), netio(5), pf-queue(5), source-address(5),

ssl(5), time(5), http-proxy(8)

539

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

icap-server.cfg — format of icap-server program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the icap-server.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in icap-server.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

language (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

540

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

user-match-mode (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

clear-web-db-category (see clear-web-db(5))

clear-web-db-match-mode (see clear-web-db(5))

541

APPENDIX B. KERNUN UTM REFERENCE (5)

ITEMS AND SECTIONS

Program icap-server recognizes following items and sections:

admin ... ;

* antivirus name { ... }

clear-web-db { ... }

* fake-cert name { ... }

* html-filter name { ... }

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

* ssl-params name { ... }

sysctl { ... }

use-resolver ... ;

* icap-server name { ... }

ipv6-mode ... ;

Description:

admin system [contact];

Firewall administrator and contact e-mail addresses.

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration. If

not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

542

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

clear-web-db {

internal-servers ... ;

db ... ;

lock ... ;

local-db { ... }

}

The clear-web-db section is derived from clear-web-db section

prototype. For detail description of it, see clear-web-db(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

543

APPENDIX B. KERNUN UTM REFERENCE (5)

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

544

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

545

APPENDIX B. KERNUN UTM REFERENCE (5)

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

546

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

547

APPENDIX B. KERNUN UTM REFERENCE (5)

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

icap-server name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

548

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

document-root ... ;

hdr-line-len ... ;

preview ... ;

blacklist-db ... ;

max-bypass-sessions ... ;

ssl-session-cache { ... }

ldap-cache { ... }

* session-acl name { ... }

* service-acl name { ... }

* request-acl name { ... }

* doc-acl name { ... }

}

The icap-server section is derived from icap-server section pro-

totype. For detail description of it, see icap-server(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), icap-server(8), acl(5), antivirus(5), auth(5), clear-web-db(5), common(5),

icap-server(5), interface(5), ipc(5), ldap(5), listen-on(5), log(5), mod-html-filter(5), pf-queue(5),

radius(5), resolver(5), source-address(5), ssl(5), sysctl(5), time(5), host-matching(7)

549

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

imap4-proxy — format of imap4-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the imap4-proxy component configu-

ration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in imap4-proxy configuration directives:

enabling (see common(5))

yes-no (see common(5))

nls (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

550

virus-status (see antivirus(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

listen-on-sock (see listen-on(5))

mime-header-check-type (see mod-mail-doc(5))

imap4-cmd (name-usage obligatory)

IMAP4 commands

UNKNOWN

command unknown to the proxy

CAPABILITY

NOOP

LOGOUT

STARTTLS

AUTHENTICATE

LOGIN

SELECT

EXAMINE

CREATE

DELETE

RENAME

SUBSCRIBE

UNSUBSCRIBE

LIST

LSUB

STATUS

APPEND

CHECK

CLOSE

EXPUNGE

SEARCH

551

APPENDIX B. KERNUN UTM REFERENCE (5)

FETCH

STORE

COPY

UID-COPY

UID-FETCH

UID-STORE

UID-SEARCH

SETACL

DELETEACL

GETACL

LISTRIGHTS

MYRIGHTS

SETQUOTA

GETQUOTA

GETQUOTAROOT

IDLE

UID-EXPUNGE

ID

UNSELECT

imap4-capa (name-usage obligatory)

IMAP4 capabilities

UNKNOWN

capability unknown to the proxy

IMAP4rev1

STARTTLS

LOGINDISABLED

AUTH-PLAIN

AUTH-GSSAPI

ACL

QUOTA

LITERALPLUS

IDLE

UIDPLUS

ID

MULTIAPPEND

BINARY

UNSELECT

552

ITEMS AND SECTIONS

Configuration of imap4-proxy library component consists of following prototypes:

* imap4-proxy name { ... }

Description:

imap4-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

ssl-session-cache { ... }

mail-pool ... ;

* session-acl name { ... }

* command-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

IMAP4 proxy configuration.

553

APPENDIX B. KERNUN UTM REFERENCE (5)

The imap4-proxy section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the imap4-proxy section:

Section udpserver is not valid.

MAIL-POOL must be specified.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one COMMAND-ACL must be specified.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as uri.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 143.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 143.

Element proto is optional, default: tcp.

Added items & subsections:

client-conn {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to client options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-conn section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

server-conn {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to server options.

554

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the server-conn section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

The ssl-session-cache section is derived from

ssl-session-cache section prototype. For detail description

of it, see ssl(5).

mail-pool name;

Mail pool directory.

name (type: str)

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

auth ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

client-ssl ... ;

* client-cert-match ... ;

language ... ;

}

The first level ACL decides how to handle incoming connections.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

SSL/TLS required on in order to match client certificates.

IDLE-TIMEOUT has no use without SSL/TLS.

555

APPENDIX B. KERNUN UTM REFERENCE (5)

Item auth (see auth(5))

Element mode is optional, default: allowed.

Only out-of-band authentication is supported in this proxy.

Added items & subsections:

client-ssl params;

Use SSL/TLS on the connection from a client.

params (type: name of ssl-params, see ssl(5))

client-cert-match [subject subject] [issuer issuer];

Requirements for client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

language [code];

Language and charset of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

code (type: nls, optional, default: EN)

[End of section imap4-proxy.session-acl description.]

command-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

source-address ... ;

plug-to ... ;

* client-cert-match ... ;

server-ssl ... ;

* server-cert-match ... ;

language ... ;

max-bytes-in ... ;

max-bytes-out ... ;

max-mail-in ... ;

556

max-mail-out ... ;

max-time ... ;

idle-timeout ... ;

commands ... ;

capabilities ... ;

upload { ... }

download { ... }

client-altq ... ;

server-altq ... ;

}

The second level ACL sets parameters of the connection to the server and

decides about handling individual commands.

The command-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the command-acl section:

Item parent-acl used as session-acl.

SSL/TLS required on in order to match server certificates.

Added items & subsections:

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;
Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of

them is applicable:

- The CLIENT keyword means the original client IP address is used. This mode

will be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used

for a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By

default, the main address of the bridge is used, however, any preferred alias address

can be listed in the cluster list.- The PHYSICAL option means that the address of

the physical interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical

address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

557

APPENDIX B. KERNUN UTM REFERENCE (5)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

plug-to addr ;

Final destination server.

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

client-cert-match [subject subject] [issuer issuer];

Select an ACL according to a client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

server-ssl params;

Use SSL/TLS on the connection to a server.

params (type: name of ssl-params, see ssl(5))

server-cert-match [subject subject] [issuer issuer];

Requirements for server certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

language code;

Language and charset of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

code (type: nls)

max-bytes-in bytes;

Maximum number of bytes from server to client in a session.

bytes (type: uint64)

max-bytes-out bytes;

Maximum number of bytes from client to server in a session.

bytes (type: uint64)

max-mail-in bytes;

Maximum size of any single mail transferred from client to server.

558

bytes (type: uint64)

max-mail-out bytes;

Maximum size of any single mail transferred from server to client.

bytes (type: uint64)

max-time seconds;

Maximum time of session

seconds (type: uint32)

idle-timeout [seconds];

If no data transmitted for this session in the period of idle-timeout seconds, con-

nection is closed.

If omitted, value of proxy session-acl.idle-timeout is used.

seconds (type: uint32, optional, default: 0)

commands [cmd];

Set of allowed IMAP4 commands.

cmd (type: imap4-cmd-set, optional, default: *)

capabilities [cap];

Set of allowed IMAP4 capabilities (sent in response to command.

cap (type: imap4-capa-set, optional, default: *)

upload {

mail-filter ... ;

use-antispam ... ;

use-antivirus ... ;

no-mail-scanning ... ;

}

Settings for uploading mail from client to server.

Constraints:

MAIL-FILTER, USE-ANTISPAM, and USE-ANTIVIRUS cannot be used to-

gether with NO-MAIL-SCANNING.

Items & subsections:

mail-filter name;

Filter for mails

name (type: name of mail-filter, see mod-mail-doc(5))

use-antispam disable;

use-antispam enable channel [limit];

Antispam usage.

This section defines type of antispam daemon used and mode of antispam

checking operation.

<branching element> (type: enabling)

559

APPENDIX B. KERNUN UTM REFERENCE (5)

channel (type: name of antispam, see mod-antispam(5))

Name of antispam global section used.

Referred section defines the way how to communicate with the antispam

daemon (see above).

limit (type: uint64, optional, default: 0)

Size limit (in bytes) for antispam check.

Antispam checking used to be very exhausting operation, and typical spam

mails used to be not very large (both for passing by size limit filters and for

being able to send a lot of copies). That’s why it can be desired to avoid

checking of very large mails.

Setting of this limit says antispam module not to check mails larger than

given limit and declare their spam score to zero.

Setting this limit to zero disables this feature and enables using of antispam

to all mails. Be prepared for high machine load and noticeable delay in

delivery if used so.

use-antivirus disable;

use-antivirus enable channel ;

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any AN-

TIVIRUS global section can be present nor any MAIL-ACL and DOC-ACL

can have VIRUS item specified.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see antivirus(5))

no-mail-scanning;

Pass mail to the client without checking.

[End of section imap4-proxy.command-acl.upload description.]

download {

mail-filter ... ;

use-antispam ... ;

use-antivirus ... ;

no-mail-scanning ... ;

}

Settings for downloading mail from server to client.

Constraints:

MAIL-FILTER, USE-ANTISPAM, and USE-ANTIVIRUS cannot be used to-

gether with NO-MAIL-SCANNING.

Items & subsections:

mail-filter name;

560

Filter for mails

name (type: name of mail-filter, see mod-mail-doc(5))

use-antispam disable;

use-antispam enable channel [limit];

Antispam usage.

This section defines type of antispam daemon used and mode of antispam

checking operation.

<branching element> (type: enabling)

channel (type: name of antispam, see mod-antispam(5))

Name of antispam global section used.

Referred section defines the way how to communicate with the antispam

daemon (see above).

limit (type: uint64, optional, default: 0)

Size limit (in bytes) for antispam check.

Antispam checking used to be very exhausting operation, and typical spam

mails used to be not very large (both for passing by size limit filters and for

being able to send a lot of copies). That’s why it can be desired to avoid

checking of very large mails.

Setting of this limit says antispam module not to check mails larger than

given limit and declare their spam score to zero.

Setting this limit to zero disables this feature and enables using of antispam

to all mails. Be prepared for high machine load and noticeable delay in

delivery if used so.

use-antivirus disable;

use-antivirus enable channel ;

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any AN-

TIVIRUS global section can be present nor any MAIL-ACL and DOC-ACL

can have VIRUS item specified.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see antivirus(5))

no-mail-scanning;

Pass mail to the client without checking.

[End of section imap4-proxy.command-acl.download description.]

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

561

APPENDIX B. KERNUN UTM REFERENCE (5)

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section imap4-proxy.command-acl description.]

mail-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* command-acl ... ;

deny ... ;

accept ... ;

rule ... ;

direction ... ;

* content-type ... ;

virus-status ... ;

* modify-header ... ;

replace ... ;

* spam-score ... ;

* header ... ;

prefix-subject ... ;

}

The first ACL on the third level decides how to handle the whole mail.

The mail-acl section is derived from mail-acl section prototype.

For detail description of it, see mod-mail-doc(5).

Changes to the mail-acl section:

Item parent-acl used as command-acl.

Item size is not valid.

Item sender is not valid.

Item recipient is not valid.

Item recipients is not valid.

Item from-quarantine is not valid.

562

doc-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* command-acl ... ;

deny ... ;

accept ... ;

rule ... ;

direction ... ;

* size ... ;

* content-type ... ;

* mime-type ... ;

virus-status ... ;

* modify-header ... ;

force-doctype-ident ... ;

replace ... ;

html-filter ... ;

* spam-score ... ;

* header ... ;

* filename ... ;

add-virus-names ... ;

}

The doc-acl section is derived from mail-doc-acl section proto-

type. For detail description of it, see mod-mail-doc(5).

Changes to the doc-acl section:

Item parent-acl used as command-acl.

Item sender is not valid.

Item recipient is not valid.

Item from-quarantine is not valid.

[End of section imap4-proxy description.]

SEE ALSO

configuration(7), acl(5), antivirus(5), application(5), auth(5), common(5), ipc(5), listen-on(5),

log(5), mod-antispam(5), mod-mail-doc(5), monitoring(5), netio(5), pf-queue(5),

source-address(5), ssl(5), time(5)

563

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

imap4-proxy.cfg — format of imap4-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the imap4-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in imap4-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

nls (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

564

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

mail-reaction (see mod-mail-doc(5))

mail-fallback (see mod-mail-doc(5))

mime-header-check-type (see mod-mail-doc(5))

imap4-cmd (see imap4-proxy(5))

imap4-capa (see imap4-proxy(5))

565

APPENDIX B. KERNUN UTM REFERENCE (5)

ITEMS AND SECTIONS

Program imap4-proxy recognizes following items and sections:

* antispam name { ... }

* antivirus name { ... }

* fake-cert name { ... }

* html-filter name { ... }

* interface name { ... }

* ldap-client-auth name { ... }

* mail-filter name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

* ssl-params name { ... }

sysctl { ... }

use-resolver ... ;

* imap4-proxy name { ... }

ipv6-mode ... ;

Description:

antispam name {

connection ... ;

sock-opt { ... }

altq ... ;

}

The antispam section is derived from antispam section prototype.

For detail description of it, see mod-antispam(5).

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

566

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

567

APPENDIX B. KERNUN UTM REFERENCE (5)

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

568

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

mail-filter name {

stamp-limit ... ;

stamp-filter ... ;

* unflagged-8bit ... ;

* bad-end-of-line ... ;

* invalid-header ... ;

* long-header-lines ... ;

* invalid-chars ... ;

* header-8bit-chars ... ;

* bad-boundary-chars ... ;

* bad-boundary-length ... ;

* long-body-lines ... ;

* long-encoded-lines ... ;

enc-line-len ... ;

* bad-mime-struct ... ;

* invalid-encoding ... ;

treat-rfc822-as-text ... ;

}

The mail-filter section is derived from mail-filter section pro-

totype. For detail description of it, see mod-mail-doc(5).

569

APPENDIX B. KERNUN UTM REFERENCE (5)

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

570

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

571

APPENDIX B. KERNUN UTM REFERENCE (5)

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

imap4-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

572

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

ssl-session-cache { ... }

mail-pool ... ;

* session-acl name { ... }

* command-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

The imap4-proxy section is derived from imap4-proxy section pro-

totype. For detail description of it, see imap4-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), imap4-proxy(8), acl(5), antivirus(5), auth(5), common(5), imap4-proxy(5),

interface(5), ipc(5), ldap(5), listen-on(5), log(5), mod-antispam(5), mod-html-filter(5),

mod-mail-doc(5), pf-queue(5), radius(5), resolver(5), source-address(5), ssl(5), sysctl(5), time(5),

host-matching(7)

573

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

interface — format of interface component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the interface component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in interface configuration directives:

yes-no (see common(5))

lagg-protocol (name-usage obligatory)

Line Aggregation Protocols.

none

failover

fec

lacp

loadbalance

roundrobin

ITEMS AND SECTIONS

Configuration of interface library component consists of following prototypes:

ipv4 ... ;

ipv6 ... ;

ipv6-rtadv { ... }

tunnel ... ;

* interface name { ... }

Description:

574

ipv4 addr [dest];

IPv4 address definition.

addr (type: addr)

Interface address and mask.

dest (type: host, optional, default: [0.0.0.0])

Point-to-point destination address.

Methods:

net (type: net)

Method to get network address.

host (type: host)

Method to get address w/o mask.

ipv6 addr ;

IPv6 address definition.

addr (type: addr)

Interface address with prefix.

Methods:

net (type: net)

Method to get network address.

host (type: host)

Method to get address w/o prefix.

ipv6-rtadv {

enable ... ;

managed-address ... ;

other-stateful ... ;

* raw ... ;

}

Settings of IPv6 router advertisements.

Items & subsections:

enable [val];

Enables or disables IPv6 router advertisements on this interface.

val (type: yes-no, optional, default: no)

managed-address [val];

Sets Managed address configuration flag bit.

val (type: yes-no, optional, default: no)

575

APPENDIX B. KERNUN UTM REFERENCE (5)

other-stateful [val];

Sets Other stateful configuration flag bit.

val (type: yes-no, optional, default: no)

raw field ;

Raw configuration field.

It must be written in the format specified in rtadvd.conf(5). The FIELD value of this

item is written (separated properly by colons) to the end of the rtadvd.conf ’default’

entry (if used in the global RTADVD section), or just before the terminal ’tc=default’

field of a particular interface entry (if used in an INTERFACE section).

field (type: str)

[End of section ipv6-rtadv description.]

tunnel addr dest ;

Pair of tunnel addresses.

addr (type: addr)

Interface address with prefix.

dest (type: host)

Tunnel destination address.

Constraints:

Tunnel addresses must have the same family..

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

Interface description.

576

There are two main reasons for defining of interfaces:

- All interfaces except VIRTUAL ones will be added into operating system startup and a

formal Kernun component will be added to ease its management.

- All interfaces (their names) can be used for proxy listen-on socket definition.

Constraints:

Device name must be specified.

Tunnel addresses needed and allowed only for GIF and GRE.

Destination address needed and allowed only for IPv4 in GIF, GRE and TUN..

Tunnel IPv6 addresses not allowed for GRE.

AGGREGATE is obligatory item of LAGG interfaces.

VLAN is obligatory item of VLAN interfaces.

PIKE is obligatory item of PIKE interfaces.

Items & subsections:

dev name [virtual] [media media] [mediaopt mediaopt];

Device description.

name (type: str)

Device name.

virtual (type: key, optional)

Virtual device, do not include to rc.conf.

media media (type: str, optional, default: <NULL>)

Device media type.

mediaopt mediaopt (type: str, optional, default: <NULL>)

Device media options.

Constraints:

Media options can be set only if media is set, too.

ipv4 addr [dest];

Interface base IPv4 address.

addr (type: addr)

Interface address and mask.

dest (type: host, optional, default: [0.0.0.0])

Point-to-point destination address.

Methods:

net (type: net)

Method to get network address.

host (type: host)

Method to get address w/o mask.

ipv6 addr ;

Interface base IPv6 address.

577

APPENDIX B. KERNUN UTM REFERENCE (5)

addr (type: addr)

Interface address with prefix.

Methods:

net (type: net)

Method to get network address.

host (type: host)

Method to get address w/o prefix.

mac addr ;

Hardware address.

addr (type: str)

aggregate [proto proto] iface;

Aggregated interface parameters definition.

proto proto (type: lagg-protocol, optional, default: failover)

iface (type: name-list of interface, see above)

pike iface [nomadic];

PIKE interface parameters definition.

iface (type: name of interface, see above)

Real interface.

nomadic (type: key, optional)

Flag to hide address in backup state.

vlan id parent ;

VLAN interface parameters definition.

id (type: uint16)

VLAN ID

parent (type: name of interface, see above)

Parent interface

tunnel addr dest ;

Pair of tunnel addresses.

addr (type: addr)

Interface address with prefix.

dest (type: host)

Tunnel destination address.

Constraints:

Tunnel addresses must have the same family..

dhcp-client;

DHCP configuration mode definition.

If used, the interface will be configured via DHCP.

578

If used together with the IPv4 item, the address MUST be assigned statically and

interface behaves as normal interface except the dhclient daemon running.

If the address is assigned by the DHCP server randomly, the IPv4 item must not be

used. In this case, the interface cannot be referenced by the name in non-transparent

listen-on case.

ipv6-rtadv {

enable ... ;

managed-address ... ;

other-stateful ... ;

* raw ... ;

}

The ipv6-rtadv section is derived from ipv6-rtadv section proto-

type. For detail description of it, see above.

alias name {

ipv4 ... ;

ipv6 ... ;

}

Interface aliases definition.

Items & subsections:

ipv4 addr [dest];

IPv4 address definition.

addr (type: addr)

Interface address and mask.

dest (type: host, optional, default: [0.0.0.0])

Point-to-point destination address.

Methods:

net (type: net)

Method to get network address.

host (type: host)

Method to get address w/o mask.

ipv6 addr ;

IPv6 address definition.

addr (type: addr)

Interface address with prefix.

Methods:

net (type: net)

Method to get network address.

host (type: host)

Method to get address w/o prefix.

579

APPENDIX B. KERNUN UTM REFERENCE (5)

[End of section interface.alias description.]

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

[End of section interface description.]

SEE ALSO

configuration(7), common(5), rtadvd.conf(5)

580

NAME

ipc — format of ipc component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ipc component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ipc configuration directives:

lock-type (name-usage obligatory)

Type of an alternative lock.

none

No locking done.

semaphore

Lock implemented by a SysV semaphore.

lock2

Two levels of locks with a single lock file.

multilock2

Two levels of locks with multiple lock files.

ITEMS AND SECTIONS

Configuration of ipc library component consists of following prototypes:

lock ... ;

alt-lock ... ;

Description:

lock [path];

Lock file used as a lock.

581

APPENDIX B. KERNUN UTM REFERENCE (5)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name PREFIX.PID.XXXXXX,

where PREFIX is a string defined by the proxy, PID is the proxy parent process ID

and X is a random suffix. If not set, directory /tmp is assumed. Automatic generation

of lock file name is strongly recommended, because each lock must have a unique name.

alt-lock none;

alt-lock semaphore;

alt-lock lock2 [path];

alt-lock [multilock2] [path];

An alternative implemetation of locks.

<branching element> (type: lock-type, optional, default: multi-

lock2)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name PREFIX.PID.XXXXXX,

where PREFIX is a string defined by the proxy, PID is the proxy parent process ID

and X is a random suffix. If not set, directory /tmp is assumed. Automatic generation

of lock file name is strongly recommended, because each lock must have a unique name.

SEE ALSO

configuration(7)

582

NAME

ipsec — format of ipsec component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ipsec component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ipsec configuration directives:

ipsec-encryption1 (name-usage obligatory)

Available encryption algorithms for ISAKMP phase 1.

aes

des3

cast128

blowfish

ipsec-encryption2 (name-usage obligatory)

Available encryption algorithms for ISAKMP phase 2.

aes

des3

cast128

blowfish

rc5

rc4

idea

twofish

ipsec-hash1 (name-usage obligatory)

Available hash algorithms for ISAKMP phase 1.

md5

583

APPENDIX B. KERNUN UTM REFERENCE (5)

sha1

sha256

sha384

sha512

ipsec-auth2 (name-usage obligatory)

Available authentication algorithms for ISAKMP phase 2.

hmac_md5

hmac_sha1

hmac_sha256

hmac_sha384

hmac_sha512

ipsec-dh-group (name-usage optional)

Diffie-Hellman group for ISAKMP.

modp768 (1)

modp1024 (2)

modp1536 (5)

modp2048 (14)

modp3072 (15)

modp4096 (16)

modp6144 (17)

modp8192 (18)

ipsec-tunnel-sa-mode (name-usage obligatory)

Mode of creating IPsec security associations in the tunnel mode.

network

There will be a single SA for each pair of networks.

host

There will be a separate SA for each pair of communicating hosts.

ipsec-auth-method (name-usage obligatory)

Method of ISAKMP phase 1 authentication

psk

Pre-shared key.

x509

X.509 certificate.

584

ipsec-protocol (name-usage optional)

Protocols handled by IPsec in tunnel mode.

any (0)

icmp (1)

ipencap (4)

gif (4)

tcp (6)

udp (17)

gre (47)

ipsec-remote-mode (name-usage obligatory)

Remote host definition mode.

address

Remote address is defined directly.

tunnel

Remote address is taken from INTERFACE.TUNNEL.

ipsec-rekey-mode (name-usage obligatory)

Automatic renegotiation of expired phase1 modes.

off

No automatic rekeying.

on

Rekeying bound to DPD monitoring.

force

Rekeying unconditional.

ITEMS AND SECTIONS

Configuration of ipsec library component consists of following prototypes:

ipsec-global { ... }

* ipsec name { ... }

* ipsec-remote name { ... }

Description:

ipsec-global {

phase ... ;

* tag ... ;

}

Global parameters of IPsec.

585

APPENDIX B. KERNUN UTM REFERENCE (5)

Items & subsections:

phase [number];

ISAKMP daemon startup phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

[End of section ipsec-global description.]

ipsec name {

phase ... ;

* tag ... ;

transport-mode ... ;

tunnel-mode { ... }

phase2 { ... }

}

Definition of a single IPsec tunnel.

Constraints:

Either TRANSPORT-MODE or TUNNEL-MODE must be specified.

TRANSPORT-MODE and TUNNEL-MODE are mutually exclusive.

Section PHASE2 required.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

586

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

transport-mode interface;

Use IPsec in transport mode to secure a GIF or GRE tunnel.

interface (type: name of interface, see interface(5))

IPsec will be used for traffic on this tunnel interface.

tunnel-mode {

tunnel ... ;

local ... ;

remote ... ;

protocol ... ;

sa-mode ... ;

}

Use IPsec in tunnel mode.

Constraints:

Tunnel addresses must be specified.

LOCAL networks must be specified.

REMOTE networks must be specified.

PROTOCOL must be specified.

Items & subsections:

tunnel addr dest ;

Pair of tunnel addresses.

addr (type: addr)

Interface address with prefix.

dest (type: host)

Tunnel destination address.

Constraints:

Tunnel addresses must have the same family..

Remote IP address must be specified..

local nets;

Addresses of local networks that communicate via this tunnel.

nets (type: net-list)

Constraints:

At least one LOCAL network must be specified.

587

APPENDIX B. KERNUN UTM REFERENCE (5)

remote nets;

Addresses of remote networks that communicate via this tunnel.

nets (type: net-list)

Constraints:

At least one REMOTE network must be specified.

protocol proto;

List of protocols handled by IPsec in this tunnel.

proto (type: ipsec-protocol-list)

Constraints:

At least one PROTOCOL must be specified.

sa-mode [mode];

Mode of creating IPsec security associations in the tunnel mode.

mode (type: ipsec-tunnel-sa-mode, optional, default: network)

[End of section ipsec.tunnel-mode description.]

phase2 {

lifetime ... ;

* encryption ... ;

auth-alg ... ;

pfs-group ... ;

}

ISAKMP phase 2 parameters.

Items & subsections:

lifetime [sec];

Lifetime of a SA (in seconds).

sec (type: uint32, optional, default: 43200)

Constraints:

Lifetime must not be zero.

encryption alg [bits];

The encryption algorithms for the phase 2 proposals. If not set, AES256 will be

used.

alg (type: ipsec-encryption2-list)

bits (type: uint16, optional, default: 0)

Key length in bits of the encryption algorithm. The value, if nonzero, applies to

all algorithm in the list. The value 0 means the default length for each selected

algorithm.

Constraints:

At least one algorithm required.

auth-alg alg ;

The authentication algorithms for the phase 2 proposals.If not set, HMAC-SHA1

will be used.

588

alg (type: ipsec-auth2-list)

Constraints:

At least one algorithm required.

pfs-group group;

The group of Diffie-Hellman exponentiations. If not set, PFS will not be used.

group (type: ipsec-dh-group)

Constraints:

Bad DH group number.

[End of section ipsec.phase2 description.]

[End of section ipsec description.]

ipsec-remote name {

peer ... ;

lifetime ... ;

encryption ... ;

hash ... ;

dh-group ... ;

authentication ... ;

dpd ... ;

rekey ... ;

ike-frag ... ;

esp-frag ... ;

}

ISAKMP phase 1 parameters for remote host.

Constraints:

Remote peer must be specified.

Authentication method must be specified.

Items & subsections:

peer address peer ;

peer tunnel iface;

Remote peer address definition.

<branching element> (type: ipsec-remote-mode)

iface (type: name of interface, see interface(5))

Tunnel interface used for ipsec to this host.

peer (type: host)

Remote host address.

589

APPENDIX B. KERNUN UTM REFERENCE (5)

lifetime [sec];

Lifetime proposed in the phase 1 negotiations (in seconds).

sec (type: uint32, optional, default: 3600)

Constraints:

Lifetime must not be zero.

encryption [alg [bits]];

The encryption algorithm used for the phase 1 negotiations.

alg (type: ipsec-encryption1, optional, default: aes)

bits (type: uint16, optional, default: 0)

Key length in bits of the encryption algorithm. The value 0 means the default

length for the selected algorithm.

hash [alg];

The hash algorithm used for the phase 1 negotiations.

alg (type: ipsec-hash1, optional, default: sha1)

dh-group [group];

The group used for the Diffie-Hellman exponentiations.

group (type: ipsec-dh-group, optional, default: modp1024=2)

Constraints:

Bad DH group number.

authentication psk psk ;

authentication x509 ca cert key ;

Method and data for authentication.

<branching element> (type: ipsec-auth-method)

psk (type: str)

The pre-shared key.

ca (type: name of shared-file, see common(5))

Root CA certificate.

cert (type: name of shared-file, see common(5))

A certificate.

key (type: name of shared-file, see common(5))

A private key.

dpd [delay [retry [maxfail]]];

DPD enabling and parameters setting.

delay (type: uint16, optional, default: 0)

Time between two proofs of liveness.

By default, the DPD monitoring is disabled.

retry (type: uint16, optional, default: 5)

Proof of liveness timeout.

590

maxfail (type: uint16, optional, default: 5)

Maximum number of proof retry.

rekey [mode];

Automatic phase1 renegotiation.

mode (type: ipsec-rekey-mode, optional, default: on)

ike-frag mode;

Receiver-side IKE fragmentation.

mode (type: ipsec-rekey-mode)

esp-frag fraglen;

Forcing ESP over UDP of fragmented packets instead of fragmented ESP over UDP

packets.

fraglen (type: uint16)

[End of section ipsec-remote description.]

SEE ALSO

configuration(7), ipsec(4), common(5), interface(5), racoon.conf(5), racoon(8), setkey(8)

591

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

kernun.cml — format of Kernun configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the whole Kernun configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in kernun.cml configuration directives:

yes-no (see common(5))

language (see common(5))

nls (see common(5))

on-off (see common(5))

genesis (see common(5))

permission (see common(5))

direction (see common(5))

name-selection (see common(5))

destination (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

in-out (see common(5))

report-mode (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

592

range-op (see common(5))

inline-file-format (see common(5))

yes-no-always (see common(5))

task-frequency (see common(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

user-match-mode (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

source-port-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

product-type (see license(5))

component-group (see license(5))

component-type (see license(5))

593

APPENDIX B. KERNUN UTM REFERENCE (5)

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

user-type (see system(5))

route-flag (see system(5))

usb-auto-setup-policy (see system(5))

dbglev (see log(5))

logfail-mode (see log(5))

dns-type (see resolver(5))

dns-opcode (see resolver(5))

dns-response (see resolver(5))

dns-qaction (see resolver(5))

dns-raction (see resolver(5))

dns-fake (see resolver(5))

xfr-mode (see resolver(5))

udp-session-type (see udpserver(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

proc-priority (see application(5))

pf-osi4-proto (see packet-filter(5))

icmp-type (see packet-filter(5))

pf-scheduler (see packet-filter(5))

pf-proc-mode (see packet-filter(5))

ids-agent-log-level (see adaptive-firewall(5))

ids-agent-detection-direction (see adaptive-firewall(5))

ids-agent-protocol (see adaptive-firewall(5))

ids-agent-rule-action (see adaptive-firewall(5))

ids-agent-threshold-type (see adaptive-firewall(5))

ids-agent-threshold-track-by (see adaptive-firewall(5))

ids-agent-rate-filter-track-by (see adaptive-firewall(5))

594

ids-agent-suppress-direction (see adaptive-firewall(5))

policy-level (see adaptive-firewall(5))

ids-agent-rules-download-type (see update(5))

forward (see nameserver(5))

atr-strategy (see atr(5))

atr-fallback (see atr(5))

pike-control-type (see pike(5))

ntp-rest-flag (see ntp(5))

ovpn-protocols (see openvpn(5))

ovpn-remote-proto (see openvpn(5))

ovpn-comp-lzo-mode (see openvpn(5))

ovpn-cert-types (see openvpn(5))

ovpn-cipher-algs (see openvpn(5))

ovpn-redirect-gateway-flags (see openvpn(5))

ovpn-dhcp-option (see openvpn(5))

ovpn-topology (see openvpn(5))

ovpn-local-scope (see openvpn(5))

tls-mat-variants (see openvpn(5))

ipsec-encryption1 (see ipsec(5))

ipsec-encryption2 (see ipsec(5))

ipsec-hash1 (see ipsec(5))

ipsec-auth2 (see ipsec(5))

ipsec-dh-group (see ipsec(5))

ipsec-tunnel-sa-mode (see ipsec(5))

ipsec-auth-method (see ipsec(5))

ipsec-protocol (see ipsec(5))

ipsec-remote-mode (see ipsec(5))

ipsec-rekey-mode (see ipsec(5))

snmpd-disk-mode (see snmpd(5))

595

APPENDIX B. KERNUN UTM REFERENCE (5)

snmpd-source-mode (see snmpd(5))

snmpd-view-type (see snmpd(5))

snmpd-security-level (see snmpd(5))

snmpd-auth-hash (see snmpd(5))

snmpd-encr-alg (see snmpd(5))

ssh-key-type (see ssh(5))

ssh-proto (see ssh(5))

export-import-mode (see router(5))

ospf-authentication (see router(5))

ospf-area-id-mode (see router(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

data-match-action (see mod-match(5))

dns-name-type (see dns-proxy(5))

pass-remove (see ftp-proxy(5))

data-type (see ftp-proxy(5))

ftp-cmd (see ftp-proxy(5))

clear-web-db-category (see clear-web-db(5))

clear-web-db-match-mode (see clear-web-db(5))

replace-authorization-mode (see http-proxy(5))

proxy-via (see http-proxy(5))

http-protocol (see http-proxy(5))

http-scheme (see http-proxy(5))

cookie-table-clean (see http-proxy(5))

accept-gzip (see http-proxy(5))

content-gzip (see http-proxy(5))

596

http-redirect (see http-proxy(5))

kerberos-user-match (see http-proxy(5))

ldap-select (see http-proxy(5))

auth-headers (see http-proxy(5))

sni-result (see http-proxy(5))

smtp-error (see mod-mail-doc(5))

mail-reaction (see mod-mail-doc(5))

mail-fallback (see mod-mail-doc(5))

mime-header-check-type (see mod-mail-doc(5))

imap4-cmd (see imap4-proxy(5))

imap4-capa (see imap4-proxy(5))

pop3-cmd (see pop3-proxy(5))

pop3-capa (see pop3-proxy(5))

peer (see sip-proxy(5))

smtp-size-usage (see smtp-proxy(5))

ssl-startup-mode (see smtp-proxy(5))

postfix-security-level (see smtp-proxy(5))

postfix-transport-map-mode (see smtp-proxy(5))

smtp-err-switch (see smtp-proxy(5))

spf-result (see smtp-proxy(5))

spf-modes (see smtp-proxy(5))

redirection-mode (see sqlnet-proxy(5))

session-protocol (see proxy-ng(5))

json-type (see proxy-ng(5))

http-version (see proxy-ng(5))

597

APPENDIX B. KERNUN UTM REFERENCE (5)

ITEMS AND SECTIONS

Program cml recognizes following items and sections:

* shared-file name { ... }

* shared-dir name { ... }

* system name { ... }

Description:

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

system name {

product ... ;

admin ... ;

hostname ... ;

domain ... ;

kernun-root ... ;

usb-auto-setup ... ;

apply-host ... ;

config-sync ... ;

users { ... }

sysctl { ... }

* interface name { ... }

ipv6-router ... ;

ipv6-addrctl { ... }

pikemon { ... }

598

routes { ... }

rc-conf { ... }

hosts-table { ... }

* rotate-log name { ... }

ntp { ... }

dhcp-server { ... }

dhcp6-server { ... }

crontab { ... }

periodic-conf { ... }

local-mailer { ... }

* ssh-server name { ... }

ssh-keys { ... }

ica-auto ... ;

icamd { ... }

icasd { ... }

watch { ... }

* acl name { ... }

use-services ... ;

use-resolver ... ;

* resolver name { ... }

* nameserver name { ... }

* ns-list name { ... }

* atrmon name { ... }

* pf-queue name { ... }

packet-filter { ... }

adaptive-firewall { ... }

alertd { ... }

bird4 { ... }

bird6 { ... }

rtadvd { ... }

* ssl-params name { ... }

* fake-cert name { ... }

* html-filter name { ... }

* mail-filter name { ... }

599

APPENDIX B. KERNUN UTM REFERENCE (5)

* aproxy name { ... }

* radius-client name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* antivirus name { ... }

* antispam name { ... }

* smtp-forwarder name { ... }

* web-filter name { ... }

clear-web-db { ... }

* openvpn name { ... }

ipsec-global { ... }

* ipsec-remote name { ... }

* ipsec name { ... }

* data-match name { ... }

* ntlm-auth name { ... }

* kerberos-auth name { ... }

cwcatd { ... }

snmpd { ... }

http-cache { ... }

update { ... }

feedback { ... }

stats { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

* tcp-proxy name { ... }

* udp-proxy name { ... }

* dns-proxy name { ... }

* ftp-proxy name { ... }

* gk-proxy name { ... }

* h323-proxy name { ... }

* http-proxy name { ... }

* icap-server name { ... }

* imap4-proxy name { ... }

600

* pop3-proxy name { ... }

* sip-proxy name { ... }

* smtp-proxy name { ... }

* sqlnet-proxy name { ... }

* proxy-ng name { ... }

proxy-ng-transp-ports ... ;

}

The system section is derived from system section prototype. For

detail description of it, see system(5).

SEE ALSO

configuration(7), acl(5), adaptive-firewall(5), antivirus(5), application(5), atr(5), auth(5),

clear-web-db(5), common(5), dns-proxy(5), ftp-proxy(5), http-proxy(5), imap4-proxy(5),

interface(5), ipc(5), ipsec(5), ldap(5), license(5), listen-on(5), log(5), mod-html-filter(5),

mod-mail-doc(5), mod-match(5), nameserver(5), ntp(5), openvpn(5), packet-filter(5),

pf-queue(5), pike(5), pop3-proxy(5), proxy-ng(5), radius(5), resolver(5), router(5), sip-proxy(5),

smtp-proxy(5), snmpd(5), source-address(5), sqlnet-proxy(5), ssh(5), ssl(5), sysctl(5), system(5),

time(5), udpserver(5), update(5)

601

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

ldap — format of ldap component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ldap component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ldap configuration directives:

ldap-tls-reqcert-mode (name-usage obligatory)

Specifies what checks to perform on LDAP server certificates in a TLS session, if any.

never

The client (fw) will not request or check any server certificate.

demand

The server certificate is requested. If no certificate is provided, or bad certificate is

provided, authentication immediately fails.

ldap-search-scope (name-usage obligatory)

Specifies the scope for searching users and groups.

subtree

Search the subtree of the given node.

onelevel

Search the level that is directly below the given node.

ldap-group-match (name-usage obligatory)

How a group name obtained from LDAP is matched in ACL and logged.

short

Match and log only the first component (CN) of the group name.

domain

Match and log the first component (CN) of the group name with appended ’@DOMAIN’

(extracted from the DC components of the group distinguished name), for example,

Users@EXAMPLE.COM.

602

ITEMS AND SECTIONS

Configuration of ldap library component consists of following prototypes:

* ldap-client-auth name { ... }

Description:

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

LDAP Client authorisation attributes.

Server identification and description of its attributes.

Constraints:

Item server required.

Items BINDINFO a KERBEROS are mutually exclusive.

Item BINDINFO or KERBEROS required.

Pair of items USERS and GROUPS or item ACTIVE-DIRECTORY required.

Item ACTIVE-DIRECTORY is mutually exclusive with USERS and GROUPS.

Items & subsections:

server uri [timeout timeout];

Definition of LDAP server location.

uri (type: str-list)

URI of the ldap server. If more than one server is configured, the first accessible

server will be used.

timeout timeout (type: uint32, optional, default: 2)

Timeout for ldap operations; in seconds.

ssl {

id ... ;

auth-cert ... ;

tls-reqcert ... ;

}

603

APPENDIX B. KERNUN UTM REFERENCE (5)

Items & subsections:

id private-key certificate;

Private key and certificate.

private-key (type: name of shared-file, see common(5))

The file that contains the private key that matches the certificate stored in the

’certificate’ file. The private key must not be protected with a password, so it

is of critical importance that the key file is protected carefully.

certificate (type: name of shared-file, see common(5))

The file that contains the client certificate.

auth-cert [file file] [dir dir];

Certificates of trusted certification authorities.

file file (type: name of shared-file, see common(5), optional,

default: NULL)

The file that contains certificates for all of the Certificate Authorities the LDAP

client will recognize.

dir dir (type: name of shared-dir, see common(5), optional, de-

fault: NULL)

The directory that contains Certificate Authority certificates in separate indi-

vidual files. File is always used before dir.

tls-reqcert [tls-reqcert-mode];

tls-reqcert-mode (type: ldap-tls-reqcert-mode, optional, default:

demand)

Specifies what checks to perform on LDAP server certificates in a TLS session,

if any.

[End of section ldap-client-auth.ssl description.]

bindinfo binddn bindpasswd ;

binddn (type: str)

Distinguished name (dn) of the user for accessing the LDAP directory.

bindpasswd (type: str)

Password for accessing the LDAP directory.

kerberos;

Use Kerberos authentication for accessing the LDAP directory. A valid Kerberos ticket

is needed.

users dnusers [uname-attr uname-attr] [gidnum-attr gidnum-attr]

[search-scope search-scope];

Definition of user list properties.

dnusers (type: str)

Distinguished name (dn) of the node where the user list is stored within LDAP

directory.

uname-attr uname-attr (type: str, optional, default: "uid")

Attribute name where user name is stored within the user definition node.

gidnum-attr gidnum-attr (type: str, optional, default: "gidNum-

ber")

Attribute name where default group is stored within the user definition node.

604

search-scope search-scope (type: ldap-search-scope, optional,

default: onelevel)

Specifies where to search for the users (directly below the dnusers or in the whole

subtree of dnusers).

groups dngroups [gidnum-attr gidnum-attr] [gmember-attr

gmember-attr] [gname-attr gname-attr] [search-scope search-

scope];

Distinguished name (dn) of the node where the group list is stored within LDAP direc-

tory.

dngroups (type: str)

Distinguished name (dn) of the node where group list is stored within LDAP di-

rectory.

gidnum-attr gidnum-attr (type: str, optional, default: "gidNum-

ber")

Attribute name where group ID is stored within the group definition node.

gmember-attr gmember-attr (type: str, optional, default: "mem-

berUID")

Attribute name where members of the group are stored within the group definition

node.

gname-attr gname-attr (type: str, optional, default: "cn")

Attribute name where group name is stored within the group definition node.

search-scope search-scope (type: ldap-search-scope, optional,

default: onelevel)

Specifies where to search for the groups (directly below the dngroups or in the

whole subtree of dngroups).

active-directory domain [group-match group-match]

[users-search-base users-search-base] [users-object

users-object] [username-attribute username-attribute]

[member-of-attribute member-of-attribute];

The LDAP server is Microsoft Windows Active Directory.

domain (type: str)

Domain name used by the AD.

group-match group-match (type: ldap-group-match, optional, de-

fault: short)

How a group name obtained from LDAP is matched in ACL and logged.

users-search-base users-search-base (type: str, optional, default:

"")

Starting point for the search of users within the AD; if omitted, USERS-SEARCH-

BASE is created from DOMAIN.

users-object users-object (type: str, optional, default: "user")

Name of the object class for users

username-attribute username-attribute (type: str, optional, de-

fault: "sAMAccountName")

Attribute where the username is stored

member-of-attribute member-of-attribute (type: str, optional,

default: "memberOf")

Attribute where the group membership is stored within the user object

605

APPENDIX B. KERNUN UTM REFERENCE (5)

[End of section ldap-client-auth description.]

SEE ALSO

configuration(7), common(5)

606

NAME

license — format of license component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the license component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in license configuration directives:

product-type (name-usage obligatory)

Type of a Kernun product.

unspecified

Product type not specified, KERNUN (Kernun Net Access) assumed, but not checked

during application of the configuration.

kernun

Products based on the Kernun Net Access code.

component-group (name-usage obligatory)

Groups of licensed components.

adaptive-kernun

kernun

kernun-net-access

kernun-mail-access

kernun-vpn-access

kernun-office-access

kernun-web-access

kernun-business-intelligence

kernun-clear-web

kernun-secure-box

607

APPENDIX B. KERNUN UTM REFERENCE (5)

kernun-secure-box-retail

kernun-atr

kernun-antivirus

modules-data-scanning

modules-secure-box

modules-web-filter

modules-clear-web-db

component-type (name-usage obligatory)

Types of licensed components.

product-kernun

product-kernun-net-access

product-kernun-mail-access

product-kernun-vpn-access

product-kernun-office-access

product-kernun-web-access

product-kernun-clear-web

product-kernun-secure-box

product-kernun-secure-box-retail

atc

atr

clear-web-db

dns-proxy

ftp-proxy

gk-proxy

h323-proxy

http-cookie

http-proxy

icap-server

imap4-proxy

isds

isds-retail

ips

kernun-business-intelligence

mod-antivirus

608

mod-antivirus-agent

mod-antispam

mod-kav-httpd

mod-match

mod-match-replace

mod-pwf

pop3-proxy

sip-proxy

smtp-proxy

sqlnet-proxy

tcp-proxy

udp-proxy

ITEMS AND SECTIONS

Configuration of license library component consists of following prototypes:

SEE ALSO

configuration(7)

609

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

listen-on — format of listen-on component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the listen-on component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in listen-on configuration directives:

ip-version (see common(5))

osi4-proto (see common(5))

listen-on-sock (name-usage obligatory)

address

Listening socket defined by IP address.

iface

Listening socket defined by INTERFACE section.

ITEMS AND SECTIONS

Configuration of listen-on library component consists of following prototypes:

listen-on { ... }

Description:

listen-on {

* non-transparent ... ;

* transparent ... ;

}

Addresses to listen on (both for transparent and non-transparent traffic).

610

Items & subsections:

non-transparent [address] addr [version version] port port [to

to] [proto proto];

non-transparent iface iface [alias alias] [version version] port

port [to to] [proto proto];

Sockets to bind for non-transparent connections.

Socket can be defined by an IP address. However, in this case, the proxy cannot be

started if the interface is not ready in the time when the proxy is started.

The second way is to specify the interface section name. In this case, the proxy takes

interface address and bind it.

Using of an alias address instead of the interface main one can be specified by an ALIAS

element.

<branching element> (type: listen-on-sock, optional, default:

address)

addr (type: host)

Address to be bound

iface (type: name of interface, see interface(5))

Interface to be bound

alias alias (type: str-set, optional, default: {})

Aliases names

version version (type: ip-version, optional, default: undefined)

IP version selection

port port (type: port)

Port to be bound (lowest)

to to (type: port, optional, default: 0)

Highest port to be bound

proto proto (type: osi4-proto, optional, default: default)

TCP/UDP selection

Constraints:

Port number must be positive.

Port upper bound must be higher than lower one.

transparent [address] addr [version version] port port [to to]

[proto proto] [server-addr server-addr];

transparent iface iface [version version] port port [to to] [proto

proto] [server-addr server-addr];

Sockets to bind for transparent connections.

Socket can be defined by an IP address. In this case, the proxy derives the proper

interface name from it to detect traffic that should be processed by the proxy.

The second way is to specify the interface section name directly.

<branching element> (type: listen-on-sock, optional, default:

address)

addr (type: host)

Address to be bound

611

APPENDIX B. KERNUN UTM REFERENCE (5)

iface (type: name of interface, see interface(5))

Interface to be bound

version version (type: ip-version, optional, default: undefined)

IP version selection

port port (type: port)

Port to be bound (lowest)

to to (type: port, optional, default: 0)

Highest port to be bound

proto proto (type: osi4-proto, optional, default: default)

TCP/UDP selection

server-addr server-addr (type: host, optional, default: [0.0.0.0])

Server’s IP address

Constraints:

Port number must be positive.

Port upper bound must be higher than lower one.

[End of section listen-on description.]

SEE ALSO

configuration(7), common(5), interface(5)

612

NAME

log — format of log component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the log component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in log configuration directives:

time-cond (see common(5))

zip-mode (see common(5))

dbglev (name-usage optional)

Log Debugging Level.

error (3)

Only errors and statistical messages are logged.

warning (4)

Errors, warnings and statistical messages are logged.

normal (6)

Normal level of logging, all operation messages are logged, no debugging.

debug (7)

Debugging level, firewall operations are logged in detail.

trace (8)

Tracing level, firewall routines calls can be traced.

full (9)

Full debug level, full data flow is logged.

logfail-mode (name-usage obligatory)

Logging to syslog failure mode.

This enumeration describes proxy behavior in case of syslog daemon is not operating.

613

APPENDIX B. KERNUN UTM REFERENCE (5)

ignore

Ignore syslog write failure.

file

Switch logging to file.

stop

Stop proxy immediately.

ITEMS AND SECTIONS

Configuration of log library component consists of following prototypes:

log { ... }

Description:

log {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

dump-hold-time ... ;

}

Firewall logging parameters.

If omitted, default values of all attributes are used.

Constraints:

FACILITY and FILE are mutually exclusive.

Cannot use ROTATE without FILE.

Items & subsections:

level [value];

Log debugging level.

value (type: dbglev, optional, default: normal=6)

Constraints:

Logging of error messages cannot be switched off.

Maximal logging level is 9 (full).

614

mem-level value;

Log level for transient logging to memory.

value (type: dbglev)

Constraints:

Logging of error messages cannot be switched off.

Maximal logging level is 9 (full).

facility value;

Syslog LOCALn facility number.

value (type: uint8)

Constraints:

Maximal facility number is 7.

file name [usec];

Filename used for logging instead of syslogd daemon.

If omitted, syslogd is used.

name (type: str)

usec (type: key, optional)

Log time with microseconds.

rotate [user user] [group group] [mode mode] [count count] [size

size] [when [zip]];

Log file rotation description.

If user not specified, PROXY-USER is used.

user user (type: str, optional, default: <NULL>)

Log file owner - user.

group group (type: str, optional, default: "wheel")

Log file owner - group.

mode mode (type: uint16, optional, default: 640)

Log file permissions.

count count (type: uint16, optional, default: 31)

Number of days being archived.

size size (type: uint16, optional, default: 0)

Size limit for rotation in KB (ignore log file size if omitted).

when (type: time-cond, optional, default: anytime)

Rotation periodicity (use SIZE condition if omitted).

zip (type: zip-mode, optional, default: bzip2)

Zipping mode.

Constraints:

Use either size criterion or defined periodicity.

mem-file name [size];

File name (.PID will be added) and size for logging to memory.

615

APPENDIX B. KERNUN UTM REFERENCE (5)

name (type: str)

size (type: uint32, optional, default: 16384)

syslog-failure [ignore];

syslog-failure file file;

syslog-failure stop;

Proxy behavior in case of syslog failure.

<branching element> (type: logfail-mode, optional, default: ig-

nore)

file (type: str)

data-limit [bytes];

Per block data limit for full log.

This limit is used as a default value, it can be redefined by means of SOCK-OPT.LOG-

LIMIT (see netio(5) manual page).

bytes (type: uint32, optional, default: 128)

dump-hold-time [seconds];

Extensive log dump hold time.

Proxies log in various situations very extensive dumps. Logging of this dump very

often is both space consuming and meaningless, so the frequence of such dumps can be

controlled by this item.

seconds (type: uint32, optional, default: 60)

[End of section log description.]

SEE ALSO

configuration(7), common(5), netio(5), logging(7)

616

NAME

mod-antispam — format of mod-antispam component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the mod-antispam component config-

uration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in mod-antispam configuration directives:

enabling (see common(5))

ITEMS AND SECTIONS

Configuration of mod-antispam library component consists of following prototypes:

* antispam name { ... }

use-antispam ... ;

Description:

antispam name {

connection ... ;

sock-opt { ... }

altq ... ;

}

Channel to antispam daemon.

This global section defines the way to communicate with selected antispam daemon. Name of

such section is to be used in particular proxy configuration when defining mode of operation.

The current version of antispam module has implemented usage of the only antispam daemon,

namely SpamAssassin (spamd). However, the antispam score is multiplied by 1000 for future

compatibility. For the same reason, the negative values are changed to zero.

617

APPENDIX B. KERNUN UTM REFERENCE (5)

If the check fails, the SPAM-SCORE value is set to a special value (-2) which is later matched

by special value of UNKNOWN (see common(5)).

Constraints:

Connection parameters of SpamAssassin server must be defined.

Items & subsections:

connection socket ;

Socket address of SpamAssassin (spamd).

socket (type: sock)

sock-opt {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to spamd options.

The sock-opt section is derived from sock-opt section prototype.

For detail description of it, see netio(5).

Changes to the sock-opt section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

altq altq [paltq paltq];

ALTQ queues for data sent to antispam.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section antispam description.]

use-antispam disable;

use-antispam enable channel [limit];

Antispam usage.

This section defines type of antispam daemon used and mode of antispam checking operation.

<branching element> (type: enabling)

channel (type: name of antispam, see above)

Name of antispam global section used.

Referred section defines the way how to communicate with the antispam daemon (see

above).

618

limit (type: uint64, optional, default: 0)

Size limit (in bytes) for antispam check.

Antispam checking used to be very exhausting operation, and typical spam mails used

to be not very large (both for passing by size limit filters and for being able to send a

lot of copies). That’s why it can be desired to avoid checking of very large mails.

Setting of this limit says antispam module not to check mails larger than given limit

and declare their spam score to zero.

Setting this limit to zero disables this feature and enables using of antispam to all mails.

Be prepared for high machine load and noticeable delay in delivery if used so.

SEE ALSO

configuration(7), common(5), netio(5), pf-queue(5)

619

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

mod-html-filter — format of mod-html-filter component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the mod-html-filter component config-

uration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in mod-html-filter configuration directives:

accept-deny (name-usage obligatory)

Specifies whether a particular part of a document should be accepted (kept in the document)

or denied (deleted from the document).

accept

deny

ITEMS AND SECTIONS

Configuration of mod-html-filter library component consists of following prototypes:

* filter-spec ... ;

* html-filter name { ... }

Description:

filter-spec action val ;

Various instances of this prototype item (e.g., script-tag-language) control deleting some

parts of the document. If no item is present, nothing is deleted. If at least one item is

present, the first one with matching VAL determines the result according to its ACTION. If

no item matches, the respective part of the document is deleted.

action (type: accept-deny)

val (type: str-set)

620

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

}

Settings of HTML filtration.

Items & subsections:

621

APPENDIX B. KERNUN UTM REFERENCE (5)

script-tag-language action val ;

Controls deleting <SCRIPT> elements. If this item is not present, all scripts are pre-

served. If at least one item is present, the first one with matching VAL determines the

result according to its ACTION. If no item matches, the script is deleted. A script

with unspecified language is matched by the empty string. According to HTML defini-

tion, each <SCRIPT> tag should contain attribute TYPE which defines the scripting

language. Instead of TYPE, (deprecated) attribute LANGUAGE can be used. If

both TYPE and LANGUAGE are present, http-proxy makes its decisions according to

TYPE (as browsers usually do). A script without a specification of scripting language

is a HTML error, but browsers often treat such scripts as JavaScript.

action (type: accept-deny)

val (type: str-set)

replace-head-script-tags val ;

Replacement text for deleted scripts in <HEAD>.

val (type: str)

replace-body-script-tags val ;

Replacement text for deleted scripts. in <BODY>.

val (type: str)

style-tag-type action val ;

Controls deleting <STYLE> elements. Matching is done like in

SCRIPT-TAG-LANGUAGE. The empty string matches an unknown type (missing

TYPE attribute).

action (type: accept-deny)

val (type: str-set)

replace-style-tags val ;

Replacement text for deleted <STYLE> elements.

val (type: str)

iframe-tag-src action val ;

Controls deleting <IFRAME> elements.

action (type: accept-deny)

val (type: str-set)

replace-iframe-tags val ;

Replacement text for deleted <IFRAME> elements.

val (type: str)

intrinsic-language action val ;

Controls deleting intrinsic events according to scripting language. Like SCRIPT-TAG-

LANGUAGE, but controls deleting attributes defining intrinsic event scripts (e.g.,

622

ONCLICK attribute in HTML). Scripting language is defined by Content-Script-Type

HTTP header (or an equivalent <META> HTML tag). Occurrence of an intrinsic event

in a document without scripting language definition is a HTML error, but browsers treat

such scripts as JavaScript. Such an intrinsic event with undefined scripting language is

matched by the empty string.

action (type: accept-deny)

val (type: str-set)

intrinsic-hack action val ;

Controls deleting intrinsic events according to attribute value. If both INTRINSIC-

LANGUAGE and INTRINSIC-HACK are used then being denied by one of the direc-

tives suffices for an intrinsic attribute to be deleted.

action (type: accept-deny)

val (type: str-set)

replace-intrinsic val ;

Replacement of deleted intrinsic events.

val (type: str)

macro-language action val ;

Controls deleting script macros according to scripting language. Like

SCRIPT-TAG-LANGUAGE, but controls deleting attributes with script macros in

HTML attribute values (ATTR_NAME="...&{SCRIPT};..."). Scripting language is

defined by Content-Script-Type HTTP header (or an equivalent <META> HTML

tag). Occurrence of an intrinsic event in a document without scripting language

definition (matched by the empty string) is a HTML error, but browsers treat such

scripts as JavaScript.

action (type: accept-deny)

val (type: str-set)

macro-hack action val ;

Controls deleting script macros according to attribute value. Like INTRINSIC-HACK,

but controls deleting attributes with script macros in attribute values. If both MACRO-

LANGUAGE and MACRO-HACK are used then being denied by one of the directives

suffices for an attribute with a script macro to be deleted.

action (type: accept-deny)

val (type: str-set)

replace-macros val ;

Replacement of script macros.

val (type: str)

uri action val ;

Controls deleting URI-valued attributes. Matching is done like in

SCRIPT-TAG-LANGUAGE. The following attributes are considered as URI-valued:

623

APPENDIX B. KERNUN UTM REFERENCE (5)

ACTION, ARCHIVE, BACKGROUND, CITE, CLASSID, CODE, CODEBASE,

DATA, HREF, LONGDESC, PROFILE, SRC, USEMAP. Before matching an URI, it

is always combined with the base URI of the document. Therefore, the HREF

attribute in <BASE> is never deleted, because it defines the base URI for other

relative URIs. Note that if something looks like an URI with unknown scheme (e.g.,

foo://foo_srv/), browsers often assume that it is server name and translate it to

"http://foo:80//foo_srv/".

action (type: accept-deny)

val (type: str-set)

replace-uri val ;

Replacement of deleted URI-valued attributes.

val (type: str)

embed-tag-type action val ;

Controls deleting <EMBED> elements according to type. Matching is done like in

SCRIPT-TAG-LANGUAGE. Arguments of this directive are matched with attributes

TYPE, LANG, and LANGUAGE of an <EMBED>. If more than one of these at-

tributes are present, the element is not deleted only if all match. Unknown type is

matched by the empty string.

action (type: accept-deny)

val (type: str-set)

embed-src-hack action val ;

Controls deleting <EMBED> elements according to SRC attribute. Matching is done

like in SCRIPT-TAG-LANGUAGE. The value of the attribute is compared to the set of

allowed sources from this directive. Comparison is performed as for ALLOWED-URI,

i.e., the value of SRC is combined with the base URI of the document.

action (type: accept-deny)

val (type: str-set)

embed-plugin-hack action val ;

Controls deleting <EMBED> elements according to PLUGINSPAGE attribute.

Matching is done like in SCRIPT-TAG-LANGUAGE.

action (type: accept-deny)

val (type: str-set)

replace-head-embed-tags val ;

Replacement of deleted embeds in <HEAD>.

val (type: str)

replace-body-embed-tags val ;

Replacement of deleted embeds in <BODY>.

val (type: str)

624

applet action val ;

Controls deleting Java applets (elements <APPLET>) according to code location -

attributes CODE, OBJECT. Both attributes CODE and OBJECT must pass the test

in order to ACCEPT <APPLET> in the document, but matching one of them suffices

to DENY. Matching is done like in ALLOWED-URI. If a base URI is specified for

a particular <APPLET> element by its CODEBASE attribute, it takes precedence

over a document-wide base URI. If CODEBASE is relative, it is combined with the

document-wide base URI first.

action (type: accept-deny)

val (type: str-set)

replace-applets val ;

Replacement of deleted applets.

val (type: str)

object action val ;

Controls deleting <OBJECT> elements according to their types given by attributes

TYPE and CODETYPE. Matching is done like in SCRIPT-TAG-LANGUAGE. Ar-

guments of this directive are matched with attributes TYPE and CODETYPE of an

<OBJECT>. If both these attributes are present, matching both is required to AC-

CEPT the object, but matching one of them suffices for DENY. If none of them is

present, the empty string matches.

action (type: accept-deny)

val (type: str-set)

object-classid-hack action val ;

Controls deleting <OBJECT> elements according to class-id - attribute CLASSID.

The value of the attribute is compared to the list of allowed class-id’s from this direc-

tive. Comparison is performed as for ALLOWED-URI, i.e., the value of CLASSID is

combined with the base URI. If a base URI is specified for a particular <OBJECT>

element by its CODEBASE attribute, it takes precedence over a document-wide base

URI. If CODEBASE is relative, it is combined with the document-wide base URI first.

action (type: accept-deny)

val (type: str-set)

object-data-hack action val ;

Controls deleting <OBJECT> elements according to data location - attribute DATA.

The value of the attribute is compared to the list of allowed locations from this directive.

Comparison is performed as for ALLOWED-URI, i.e., the value of DATA is combined

with the base URI. If a base URI is specified for a particular <OBJECT> element by

its CODEBASE attribute, it takes precedence over a document-wide base URI.

action (type: accept-deny)

val (type: str-set)

625

APPENDIX B. KERNUN UTM REFERENCE (5)

replace-head-object-tags val ;

Replacement of deleted objects in <HEAD>.

val (type: str)

replace-body-object-tags val ;

Replacement of deleted objects in <BODY>.

val (type: str)

param-tags action name value;

Controls deleting <PARAM> tags according to their attributes NAME and VALUE.

If this item is not present, all <PARAM> tags are preserved. If at least one item is

present, the first one with matching both NAME and VALUE determines the result

according to its ACTION. If no item matches, the tag is deleted.

action (type: accept-deny)

name (type: str-set)

value (type: str-set)

replace-param val ;

Replacement of deleted <PARAM> tags.

val (type: str)

script-end-hack;

How <SCRIPT> and <STYLE> elements are terminated. If Off, scripts in SCRIPT

elements and content of STYLE elements end at the first occurrence of "</" followed by

letter (according to HTML 4.0 Specification). If set, scripts end only at </SCRIPT>

or </STYLE> tag, respectively, which is how scripts are usually treated by browsers.

[End of section html-filter description.]

SEE ALSO

configuration(7)

626

NAME

mod-mail-doc — format of mod-mail-doc component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the mod-mail-doc component configu-

ration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in mod-mail-doc configuration directives:

direction (see common(5))

range-op (see common(5))

week-day (see time(5))

month (see time(5))

virus-status (see antivirus(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

mail-hdr (name-usage obligatory)

STMP/MIME Headers

Unknown

Date

From

Sender

Reply-To

To

627

APPENDIX B. KERNUN UTM REFERENCE (5)

Cc

Bcc

Message-ID

In-Reply-To

References

Subject

Comments

Keywords

Resent-Date

Resent-From

Resent-Sender

Resent-Reply-To

Resent-To

Resent-Cc

Resent-Bcc

Resent-Message-ID

Return-Path

Received

MIME-Version

Content-Type

Content-Transfer-Encoding

Content-ID

Content-Description

Content-Disposition

DKIM-Signature

X-Kernun-Loop-Info

X-Kernun-Spam-Score

X-Kernun-Virus-Status

X-Kernun-Virus-Name

X-Kernun-Quarantine-Tag

X-Orig-Content-Type

X-Orig-Content-Disposition

content-transfer-encoding (name-usage obligatory)

MIME Content-Transfer-Encoding types.

628

eight-bit

quoted-printable

base64

smtp-error (name-usage obligatory)

Types of SMTP command errors.

cmd-missing

SMTP command missing.

arg-invalid

SMTP cmd argument has invalid syntax.

too-long

SMTP cmd argument exceeds RFC size limitation.

no-domain

SMTP cmd argument has no domain part.

ip-address

SMTP cmd argument with IP address (deprecated).

unknown-perm

SMTP cmd argument DNS resolution failed permanently.

unknown-temp

SMTP cmd argument DNS resolution failed temporarily.

hdr-handling (name-usage obligatory)

Types of header line handling.

fail

Mail processing fails.

keep

Line is not changed.

remove

Line is removed.

mail-reaction (name-usage obligatory)

Types of reaction to mail RFCs violations.

reject

The mail is rejected.

pass

The text is passed without changes, still violating the RFC.

drop

The element (e.g. header line) is dropped from the mail.

629

APPENDIX B. KERNUN UTM REFERENCE (5)

fix

The text is corrected according to the RFC.

mail-fallback (name-usage obligatory)

Types of fallback reaction to mail RFCs violations.

reject

The mail is rejected.

pass

The text is passed without changes, still violating the RFC.

drop

The element (e.g. header line) is dropped from the mail.

mime-header-check-type (name-usage obligatory)

MIME headers matching types.

txt

Header is matched after decoding to actual value and converting to ISO-8859-2 (ignoring

inconvertible chars).

enc

Header is matched after decoding and converting to UTF-8, pattern is given in MIME

format encoding.

raw

Header is matched without decoding, in raw format.

err

Fallback choice for the case of header decoding error.

ITEMS AND SECTIONS

Configuration of mod-mail-doc library component consists of following prototypes:

* smtp-adr-check ... ;

* mail-correction ... ;

* mail-hdr-correction ... ;

* mail-len-correction ... ;

* mail-hdr-len-correction ... ;

* mail-filter name { ... }

* mime-header-check ... ;

* mail-acl name { ... }

* mail-doc-acl name { ... }

Description:

630

smtp-adr-check [addrs];

This item defines SMTP addresses matching conditions.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses matching:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-part in

any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address within

given domain and any its subdomain.

mail-correction [clear [signed [fallback fallback]]];

Items of this type define corrections of various mail RFCs violations.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

mail-hdr-correction [clear [signed [fallback fallback] [header]]];

Items of this type define corrections of various mail RFCs violations, where the decision is

based on the header name.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

header (type: str-set, optional, default: *)

mail-len-correction [clear [signed [fallback fallback] [limit]]];

Items of this type define corrections of various mail RFCs violations, where the decision is

based on the line length.

631

APPENDIX B. KERNUN UTM REFERENCE (5)

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

limit (type: uint16, optional, default: 0)

Lower bound for line length; lines shorter than this limit are not affected by this item.

mail-hdr-len-correction [clear [signed [fallback fallback]

[header [limit]]]];

Items of this type define corrections of various mail RFCs violations, where the decision is

based on the header name and line length.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

header (type: str-set, optional, default: *)

limit (type: uint16, optional, default: 0)

Lower bound for line length; lines shorter than this limit are not affected by this item.

mail-filter name {

stamp-limit ... ;

stamp-filter ... ;

* unflagged-8bit ... ;

* bad-end-of-line ... ;

* invalid-header ... ;

* long-header-lines ... ;

* invalid-chars ... ;

* header-8bit-chars ... ;

* bad-boundary-chars ... ;

* bad-boundary-length ... ;

* long-body-lines ... ;

* long-encoded-lines ... ;

enc-line-len ... ;

632

* bad-mime-struct ... ;

* invalid-encoding ... ;

treat-rfc822-as-text ... ;

}

This section defines SMTP/MIME document handling attributes.

Items & subsections:

stamp-limit [number [text]];

Maximum number of Received-headers in mail.

This check prevents from mail loops of three categories:

• loops caused by wrong forwarding policy of a user

• loops caused by DNS resolution errors or attack

• loops caused by proxy of forwarder misconfiguration.

number (type: uint16, optional, default: 30)

text (type: str, optional, default: <NULL>)

If omitted, default text is used.

stamp-filter;

SMTP stamp headers removal.

Enabling this feature causes removing ’Received:’ headers (containing local-dependent

information) from mails. Number of removed lines is counted and added to mail as a

special header X-Kernun-Loop-Info.

unflagged-8bit [clear [signed [fallback fallback]]];

Handling of unannounced 8bit transport.

Some MUAs ignore RFC and use non-US-ASCII characters in mail bodies or MIME

documents without announcing (in MAIL commands and MIME headers) the 8bit

transport.

By default, the proxy fixes unsigned and passes signed mails with this violation; this

item allows to change this behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

Constraints:

DROP reaction is not allowed here.

bad-end-of-line [clear [signed [fallback fallback]]];

Handling of incorrect EOL sequences.

Some buggy MUAs use no or two CR chars before LF.

633

APPENDIX B. KERNUN UTM REFERENCE (5)

By default, the proxy fixes unsigned and passes signed mails with this violation; this

item allows to change this behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

Constraints:

DROP reaction is not allowed here.

invalid-header [clear [signed [fallback fallback] [header]]];

Handling of headers with invalid format.

Some MUAs create mail/MIME headers with various format errors (missing semicolon,

unquoted chars like spaces, missing terminating double quote etc.).

Such headers cannot be fixed, so if you configure FIX reaction, the FALLBACK elem

will be used, instead.

By default, the proxy passes all mails with bad headers, this item allows to change this

behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

header (type: str-set, optional, default: *)

long-header-lines [clear [signed [fallback fallback] [header

[limit]]]];

Handling of too long headers.

Some MUAs create mail/MIME headers exceeding the allowed length limit (1000 chars).

By default, the proxy tries to pass signed mails with this violation and tries to fix it

for unsigned mails. In case of unsuccessful correction it passes such a mail. This item

allows to change this behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

header (type: str-set, optional, default: *)

634

limit (type: uint16, optional, default: 0)

Lower bound for line length; lines shorter than this limit are not affected by this

item.

invalid-chars [clear [signed [fallback fallback]]];

Handling of bare NUL and CR characters.

Some MUAs ignore RFC and use NUL char (0x00) and bare CR (not followed by LF)

in mail bodies or document headers.

By default, the proxy fixes unsigned and passes signed mails with this violation, this

item allows to change this behavior. The only exception is the case of NUL in header

which cannot be handled at all.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

Constraints:

DROP reaction is not allowed here.

header-8bit-chars [clear [signed [fallback fallback] [header]]];

Handling of non-US-ASCII characters in headers.

Some MUAs ignore RFC and use non-US-ASCII characters in mail or MIME documents

headers.

Such headers cannot be fixed, so if you configure FIX reaction, the FALLBACK elem

will be used, instead.

By default, the proxy passes all mails with non ASCII headers, this item allows to

change this behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

header (type: str-set, optional, default: *)

bad-boundary-chars [clear [signed [fallback fallback]]];

Handling of BOUNDARY values with invalid characters.

Some MUAs ignore RFC and use invalid characters in boundaries.By default, the proxy

fixes unsigned and passes signed mails with incorrect boundary content, this item allows

to change this behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

635

APPENDIX B. KERNUN UTM REFERENCE (5)

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

Constraints:

DROP reaction is not allowed here.

bad-boundary-length [clear [signed [fallback fallback]]];

Handling of BOUNDARY strings longer than 70 characters.

Some MUAs ignore RFC and use too long boundaries.By default, the proxy fixes all

mails with too long boundary string, this item allows to change this behavior.

WARNING! This violation is very dangerous and not very often hence we strongly

recommend not to pass such mails!

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

Constraints:

DROP reaction is not allowed here.

long-body-lines [clear [signed [fallback fallback] [limit]]];

Handling of mail body lines longer than 998 character.

Some MUAs ignore RFC and use too long lines.By default, the proxy fixes unsigned

and passes signed mails with this violation; this item allows to change this behavior.

WARNING! Allowing to pass very long lines may be dangerous!

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

limit (type: uint16, optional, default: 0)

Lower bound for line length; lines shorter than this limit are not affected by this

item.

Constraints:

DROP reaction is not allowed here.

long-encoded-lines [clear [signed [fallback fallback] [limit]]];

Handling of mail body encoded lines longer than 76 character.

Some MUAs ignore RFC and use too long lines.By default, the proxy fixes unsigned

and passes signed mails with this violation; this item allows to change this behavior.

WARNING! Allowing to pass very long lines may be dangerous!

636

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

limit (type: uint16, optional, default: 0)

Lower bound for line length; lines shorter than this limit are not affected by this

item.

Constraints:

DROP reaction is not allowed here.

enc-line-len [len];

Encoded lines line length limit.

len (type: uint16, optional, default: 80)

bad-mime-struct [clear [signed [fallback fallback]]];

Handling of invalid structure of MIME documents.

Some MUAs ignore RFC and send MIME documents with invlaid format (e.g. missing

empty lines as separatoes etc.).

By default, the proxy fixes unsigned and passes signed mails with this violation; this

item allows to change this behavior.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

Constraints:

DROP reaction is not allowed here.

invalid-encoding [clear [signed [fallback fallback] [header]]];

Handling of invalid Content-Transfer-Encoding modes.

Some MUAs ignore RFC and use invalid Content-Transfer-Encoding (e.g. BINARY

despite no meaning of it in current SMTP).By default, the proxy fixes unsigned and

passes signed mails with this violation; fixing means converting to 8bit mode. This

item allows to change this behavior, various encoding modes can be handled separately

according their names.

clear (type: mail-reaction, optional, default: fix)

reaction to errors in non-signed parts of mail

signed (type: mail-reaction, optional, default: pass)

reaction to errors in signed parts of mail

637

APPENDIX B. KERNUN UTM REFERENCE (5)

fallback fallback (type: mail-fallback, optional, default: pass)

reaction in case of fixing failure

header (type: str-set, optional, default: *)

Constraints:

DROP reaction is not allowed here.

treat-rfc822-as-text;

Handle included documents as text.

If a mailserver reports mail delivery failure it can include original mail into the report.

If such a mail is incorrect the proxy will reject whole mail. This item tells proxy to

read included documents as plain text and thus to avoid rejection risc.

[End of section mail-filter description.]

mime-header-check name [txt] value;

mime-header-check name enc pattern;

mime-header-check name raw value;

mime-header-check name err;

Entry condition - MIME header content.

name (type: str-set)

Header name set (pure strings are case insensitive)

<branching element> (type: mime-header-check-type, optional,

default: txt)

value (type: str-set)

Set of header values (in ISO-8859-2 charset).

pattern (type: str-list)

List of header patterns (case sensitive substrings in any charset) encoded in MIME

format.

Constraints:

MIME encoded strings must comply with MIME definition.

mail-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* parent-acl ... ;

deny ... ;

accept ... ;

rule ... ;

638

direction ... ;

* size ... ;

* content-type ... ;

virus-status ... ;

* modify-header ... ;

replace ... ;

* sender ... ;

* recipient ... ;

* recipients ... ;

* spam-score ... ;

* header ... ;

from-quarantine ... ;

prefix-subject ... ;

}

The first ACL on the third level decides how to treat the whole mail after finishing

all checks.

The mail-acl section is derived from acl-3 section prototype. For

detail description of it, see acl(5).

Changes to the mail-acl section:

Item server is not valid.

Item user is not valid.

Item mime-type is not valid.

Item force-doctype-ident is not valid.

Item html-filter is not valid.

Added items & subsections:

sender [addrs];

Entry condition (SMTP only) - MAIL FROM address.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses match-

ing:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-part

in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

639

APPENDIX B. KERNUN UTM REFERENCE (5)

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

recipient [addrs];

Entry condition (SMTP only) - RCPT TO address.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses match-

ing:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-part

in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

recipients unknown [addrs];

recipients lt limit [addrs];

recipients le limit [addrs];

recipients eq limit [addrs];

recipients ne limit [addrs];

recipients gt limit [addrs];

recipients ge limit [addrs];

recipients in lower upper [addrs];

recipients ni lower upper [addrs];

Entry condition - number of recipients.

<branching element> (type: range-op)

limit (type: uint64)

Tested value limitation.

lower (type: uint64)

Tested value lower bound.

upper (type: uint64)

Tested value upper bound.

addrs (type: str-set, optional, default: *)

Restriction to addresses - only ones matching this condition are counted.

Exact address matching conditions are described at SENDER or RECIPENT items.

spam-score unknown;

spam-score lt limit ;

640

spam-score le limit ;

spam-score eq limit ;

spam-score ne limit ;

spam-score gt limit ;

spam-score ge limit ;

spam-score in lower upper ;

spam-score ni lower upper ;

Entry condition - antispam check score.

For score interpretation, see mod-antispam(5).

<branching element> (type: range-op)

limit (type: uint64)

Tested value limitation.

lower (type: uint64)

Tested value lower bound.

upper (type: uint64)

Tested value upper bound.

header name [txt] value;

header name enc pattern;

header name raw value;

header name err;

Entry condition - MIME header content.

name (type: str-set)

Header name set (pure strings are case insensitive)

<branching element> (type: mime-header-check-type, optional,

default: txt)

value (type: str-set)

Set of header values (in ISO-8859-2 charset).

pattern (type: str-list)

List of header patterns (case sensitive substrings in any charset) encoded in MIME

format.

Constraints:

MIME encoded strings must comply with MIME definition.

from-quarantine [tags];

Entry condition (SMTP only) - mail sent by admin from quarantine.

This item is valid in smtp-proxy only. If omitted, any mail can match this ACL.

tags (type: str-set, optional, default: *)

Allowed X-Kernun-Quarantine-Tag header values

prefix-subject prefix ;

Change Subject: mail header.

641

APPENDIX B. KERNUN UTM REFERENCE (5)

prefix (type: str)

String to be written before the original Subject.

Constraints:

Subject prefix must comply with RFC.

[End of section mail-acl description.]

mail-doc-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* parent-acl ... ;

deny ... ;

accept ... ;

rule ... ;

direction ... ;

* size ... ;

* content-type ... ;

* mime-type ... ;

virus-status ... ;

* modify-header ... ;

force-doctype-ident ... ;

replace ... ;

html-filter ... ;

* sender ... ;

* recipient ... ;

* spam-score ... ;

* header ... ;

* filename ... ;

from-quarantine ... ;

add-virus-names ... ;

}

The second ACL on the third level decides how to process particular document(s)

contained in the mail.

The mail-doc-acl section is derived from acl-3 section prototype.

For detail description of it, see acl(5).

642

Changes to the mail-doc-acl section:

Item server is not valid.

Item user is not valid.

Item ADD-VIRUS-NAMES is not allowed if DENY is on.

Added items & subsections:

sender [addrs];

Entry condition (SMTP only) - MAIL FROM address.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses match-

ing:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-part

in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

recipient [addrs];

Entry condition (SMTP only) - RCPT TO address.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses match-

ing:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-part

in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

spam-score unknown;

spam-score lt limit ;

spam-score le limit ;

spam-score eq limit ;

spam-score ne limit ;

643

APPENDIX B. KERNUN UTM REFERENCE (5)

spam-score gt limit ;

spam-score ge limit ;

spam-score in lower upper ;

spam-score ni lower upper ;

Entry condition - antispam check score.

For score interpretation, see mod-antispam(5).

<branching element> (type: range-op)

limit (type: uint64)

Tested value limitation.

lower (type: uint64)

Tested value lower bound.

upper (type: uint64)

Tested value upper bound.

header name [txt] value;

header name enc pattern;

header name raw value;

header name err;

Entry condition - MIME header content.

name (type: str-set)

Header name set (pure strings are case insensitive)

<branching element> (type: mime-header-check-type, optional,

default: txt)

value (type: str-set)

Set of header values (in ISO-8859-2 charset).

pattern (type: str-list)

List of header patterns (case sensitive substrings in any charset) encoded in MIME

format.

Constraints:

MIME encoded strings must comply with MIME definition.

filename names;

Entry condition - name of document.

The name is expected either in the FILENAME parameter of Content-Disposition

header, or in the NAME parameter of Content-Type header.Only the last part of the

file name (without path) is used for matching.

names (type: str-set)

from-quarantine [tags];

Entry condition (SMTP only) - mail sent by admin from quarantine.

This item is valid in smtp-proxy only. If omitted, any mail can match this ACL.

644

tags (type: str-set, optional, default: *)

Allowed X-Kernun-Quarantine-Tag header values

add-virus-names;

Add X-Kernun-Virus-Name header for each virus found.

[End of section mail-doc-acl description.]

SEE ALSO

configuration(7), acl(5), antivirus(5), common(5), mod-antispam(5), time(5),

doctype-identification(7)

645

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

mod-match — format of mod-match component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the mod-match component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in mod-match configuration directives:

data-match-action (name-usage obligatory)

Types of action done for matching data.

pass

Starts passing the received data. Continues executing other tests.

accept

Accepts the data and stops further scanning, regardless of any tests specified as RE-

QUIRE. No more tests are executed.

deny

Does not pass any data, immediately stops processing and commands the proxy to

report an error. No more tests are executed.

require

Requires matching data to appear in the data stream. If scanning reaches the end of

data or maximum size of scanned data without a match, the module stops processing,

does not pass any data and commands the proxy to report an error. Continues to

following tests even after a match.

html-save

Interprets data as HTML form data inapplication/x-www-form-urlencoded encoding

and saves the values of controls with matching names in a text file.

html-hash

Interprets data as HTML form data and saves hashes of values of controls with matching

names in a database file.

646

html-alert

Interprets data as HTML form data and checks whether any controls have values cor-

responding to hashes stored by some HTML-HASH action. If the check succeeds, logs

alert and optionally does not pass any data, stops processing and commands the proxy

to report an error. No more tests are executed.

html-replace

Interprets data as HTML form data and replaces selected controls values with values

computed from it using a lookup table.

html-replace-radius

Extension to HTML-REPLACE: password contains a combination of internal password

and radius pasword. Radius authentication is performed before the lookup is done.

ITEMS AND SECTIONS

Configuration of mod-match library component consists of following prototypes:

* data-match name { ... }

Description:

data-match name {

max-size ... ;

init-match ... ;

max-match ... ;

step-size ... ;

step-match ... ;

* test ... ;

}

Matching data trasferred by a proxy. Data are passed further by the module only if

they pass the specified TESTs.

Items & subsections:

max-size [bytes];

The module performs the last matching attempt after reading this amount of data (or

after it reaches end of data). The module then generates the final decision about the

scanned data and terminates its operation. It does not process following data.

bytes (type: uint32, optional, default: 512)

init-match [bytes];

The module performs PASS tests within this amount of received data. No more PASS

tests are executed afterwards.

647

APPENDIX B. KERNUN UTM REFERENCE (5)

bytes (type: uint32, optional, default: 0)

max-match [bytes];

The maximum length of the matching piece of data. The module keeps this amount of

data in the input buffer.

bytes (type: uint32, optional, default: 0)

step-size bytes;

Until the module’s operation terminates, matching is repeated each time STEP-SIZE

additional bytes are read or STEP-MATCH matches. If STEP-MATCH is not specified,

the default value of STEP-SIZE is 1 byte. Otherwise, if STEP-SIZE is not set the default

is to repeat matching according to STEP-MATCH.

bytes (type: uint32)

step-match cond [back];

Until the module’s operation terminates, matching is repeated each time STEP-SIZE

additional bytes are read or STEP-MATCH matches.

cond (type: str-set)

Matching condition.

back (type: uint32, optional, default: 0)

Match against so many bytes back in data read earlier plus any newly received

data.

test pass match [match-data-mime];

test accept match [match-data-mime];

test deny match [match-data-mime];

test require match [match-data-mime];

test html-save match file [store-orig];

test html-hash match file;

test html-alert file [deny];

test html-replace controls file [report-controls report-controls]

[keep-not-found] [replace-not-found replace-not-found];

test html-replace-radius controls file [report-controls report-

controls] [keep-not-found] [replace-not-found replace-not-found]

radius radius radius-delimiter radius-delimiter ;

A single matching test of transferred data.

<branching element> (type: data-match-action)

Action done if data match.

match (type: str-set)

Strings for matching.

match-data-mime (type: key, optional)

Match the detected MIME type instead of the actual data.

648

controls (type: str-list)

Selection of HTML form control names for replacement.

file (type: str)

A data file.

report-controls report-controls (type: str-list, optional, de-

fault: <NULL>)

Selection of HTML form control names for logging of values and passing to the

executed programs.

store-orig (type: key, optional)

Store also the original value before hashing. This may be a security threat if

HTML-HASH/HTML-ALERT is used for sensitive data, like passwords.

deny (type: key, optional)

Do not pass data if matched.

keep-not-found (type: key, optional)

If set and replacement values are not found in the lookup table, pass the selected

HTML form controls unchanged. Otherwise, values of the selected controls are

deleted.

replace-not-found replace-not-found (type: str, optional, default:

<NULL>)

If set and replacement values are not found in the lookup table, replace values of

the selected HTML form controls by this value.

radius radius (type: name of radius-client, see radius(5))

Radius client configuration to be used for authentication. The first form control (see

element CONTROLS) is implicitly used as an username. The second form control

(see element CONTROLS) is implicitly used as a combination of its internal value

and radius password (see element RADIUS-DELIMITER.

radius-delimiter radius-delimiter (type: str)

A single character used as delimiter of the internal password and the radius pass-

word. Last occurence of the delimiter is used. If not present in the particular

password, all the password text is interpreted as the radius password.

Constraints:

Only one of elements KEEP-NOT-FOUND and REPLACE-NOT-FOUND may be

specified.

CONTROL must contain at least 2 items if HTML-REPLACE-RADIUS action is

used..

[End of section data-match description.]

SEE ALSO

configuration(7), radius(5)

649

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

monitoring — format of monitoring component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the monitoring component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Configuration of monitoring library component consists of following prototypes:

monitoring { ... }

Description:

monitoring {

disabled ... ;

comm-dir ... ;

interval ... ;

user ... ;

aproxy-user ... ;

data ... ;

}

Runtime monitoring of current proxy state.

Items & subsections:

disabled;

Disabling monitoring function.

Use this item to disable monitoring; otherwise it is enabled by default.

comm-dir [path];

Directory for monitoring communication files.

path (type: str, optional, default: "/tmp")

650

interval [seconds];

Size of data sent during last INTERVAL seconds are used for computing current com-

munication speed.

seconds (type: uint16, optional, default: 5)

user [chars];

Maximum number of characters from user name stored in the variable-length data area

of a monitoring record.

chars (type: uint16, optional, default: 8)

aproxy-user [chars];

Maximum number of characters from authentication proxy user name stored in the

variable-length data area of a monitoring record.

chars (type: uint16, optional, default: 8)

data [chars [tail tail]];

Maximum number of characters from data info (filename, URI etc.) stored in the

variable-length data area of a monitoring record.

chars (type: uint16, optional, default: 180)

tail tail (type: uint16, optional, default: 60)

long data info is stored as <CHARS-3-TAIL initial characters>...<TAIL trailing

characters>

Constraints:

CHARS must be greater than TAIL plus 3.

[End of section monitoring description.]

SEE ALSO

configuration(7), monitoring(7)

651

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

nameserver — format of nameserver component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the nameserver component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in nameserver configuration directives:

yes-no (see common(5))

genesis (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

listen-on-sock (see listen-on(5))

forward (name-usage obligatory)

only

Only query the forwarders.

first

First query the forwarders. If that doesn’t answer the question, resolve recursively from

root name servers.

disable

Do not use forwarders. Resolve from root servers only.

ITEMS AND SECTIONS

Configuration of nameserver library component consists of following prototypes:

* nameserver name { ... }

652

Description:

nameserver name {

phase ... ;

* tag ... ;

use-ipv4-only ... ;

listen-on { ... }

forward ... ;

* forwarder ... ;

* from ... ;

dnssec { ... }

send-cookie ... ;

* option ... ;

* raw ... ;

* zone name { ... }

}

Domain Name System Server Configuration.

This section allows to define a configuration for a simple nameserver serving local clients

as a caching forwarder (typically forwarding to the DNS-PROXY) and an authoritative

nameserver for local zones.

For configuration attributes details, see named.conf(5).

Constraints:

Addresses to listen on must be specified.

FORWARDER must be specified for forward mode ONLY or FIRST.

FORWARDER must not be specified for forward mode DISABLE.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 30)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

653

APPENDIX B. KERNUN UTM REFERENCE (5)

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

use-ipv4-only;

IPv4 only mode of nameserver.

This item affects usage of the -4 option of the named daemon.

If used, the daemon is started with the -4 option.

If omitted, the daemon is started without this option if at least one IPv6 interface is

configured in the system.

listen-on {

* socket ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

Item non-transparent used as socket.

Item transparent is not valid.

At least one address to listen on must be specified.

Item socket (see listen-on(5))

Element port is optional, default: 53.

Element proto is optional, default: tcp-udp.

forward [mode];

mode (type: forward, optional, default: only)

Whether use the forwarders, resolve from root servers, or both.

forwarder [static] addr ;

forwarder dynamic;

Next-hop nameserver address.

Usually the forwarder will be a local dns-proxy.

DYNAMIC mode means getting the address via the DHCP.

<branching element> (type: genesis, optional, default: static)

addr (type: sock)

from clients;

Valid clients definition (ALLOW-QUERY).

clients (type: net-set)

Constraints:

Regexps and discontiguous masks not allowed in nameserver lists.

654

dnssec {

managed-keys { ... }

validate ... ;

}

DNSSEC configuration.

DNSSEC support is always switched on.

Items & subsections:

managed-keys {

directory ... ;

* initial-key ... ;

}

DNSSEC validation keys configuration.

Items & subsections:

directory [path];

Managed keys directory.

path (type: str, optional, default: "/var/lib/named/dyn/")

initial-key domain flags protocol algorithm key ;

Initial validation key.

domain (type: str)

Domain name.

flags (type: uint32)

protocol (type: uint32)

algorithm (type: uint32)

key (type: str)

[End of section nameserver.dnssec.managed-keys description.]

validate [val];

Whether to validate DNSSEC.

val (type: yes-no, optional, default: no)

[End of section nameserver.dnssec description.]

send-cookie;

DNS cookie sending configuration.

option line;

Raw lines into options definition.

655

APPENDIX B. KERNUN UTM REFERENCE (5)

line (type: str)

raw line;

Raw lines into global definition.

line (type: str)

zone name {

name ... ;

reverse ... ;

* master-server ... ;

* raw ... ;

generate { ... }

}

Nameserver zone definition.

Zone name is defined either by the NAME item (for a regular one) or by the REVERSE

item (for a reverse one).

Zone type (master/slave) is defined by using of MASTER-SERVER item(s). If not

used, this zone is MASTER, otherwise SLAVE.

Constraints:

Exactly one of NAME and REVERSE must be specified.

MASTER-SERVER and GENERATE are mutually exclusive.

Items & subsections:

name zone;

Zone domain name.

zone (type: str)

reverse zone;

Reverse zone specification.

zone (type: net)

master-server addr ;

Define master server for domain.

addr (type: sock)

raw line;

Raw lines into zone definition.

line (type: str)

generate {

* raw ... ;

}

Zone data generation parameters.

If used, KGB will generate zone database file from HOST-TABLE. Otherwise,

zone file is expected to be created outside the CML and will be used without

modifications.

656

Items & subsections:

raw line;

Raw lines into zone database file.

line (type: str)

[End of section nameserver.zone.generate description.]

[End of section nameserver.zone description.]

[End of section nameserver description.]

SEE ALSO

configuration(7), common(5), listen-on(5), named.conf(5)

657

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

netio — format of netio component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the netio component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Configuration of netio library component consists of following prototypes:

sock-opt { ... }

* ip-tos-from ... ;

ip-tos-received ... ;

ip-tos-to { ... }

ip-tos-to-client { ... }

ip-tos-to-server { ... }

Description:

sock-opt {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Network I/O Module Attributes.

Items & subsections:

conn-timeout [seconds];

Maximum connection time.

658

seconds (type: uint16, optional, default: 75)

Constraints:

Timeout must not be set to zero.

recv-timeout [seconds];

Maximum socket read time.

seconds (type: uint16, optional, default: 120)

Constraints:

Timeout must not be set to zero.

recv-bufsize [bytes];

Input buffer size.

bytes (type: uint32, optional, default: 16384)

send-timeout [seconds];

Maximum socket write wait time.

seconds (type: uint16, optional, default: 120)

Constraints:

Timeout must not be set to zero.

close-timeout [seconds];

Maximum time for waiting for the peer to close its half of the TCP connection after

the proxy has closed its half. If set to zero, the peer gets TCP reset whenever it does

not close the connection earlier than the proxy.

seconds (type: uint16, optional, default: 5)

send-bufsize [bytes];

Output buffer size.

bytes (type: uint32, optional, default: 16384)

log-limit bytes;

Per block data limit for full log.

bytes (type: uint32)

Default for this value is set by the DATA-LIMIT item in the proxy LOG section.

[End of section sock-opt description.]

ip-tos-from val ;

Testing an IP TOS value of received packets.

val (type: uint8-set)

ip-tos-received [mask mask] [add add];

Send a possibly modified received IP TOS value. The value used for for sending will be

(RECEIVED & MASK) | ADD.

659

APPENDIX B. KERNUN UTM REFERENCE (5)

mask mask (type: uint8, optional, default: 255)

A mask of bits used from the received value.

add add (type: uint8, optional, default: 0)

A mask of bits added to the value to be sent.

ip-tos-to {

fixed ... ;

received ... ;

other ... ;

}

Set an IP TOS value for sent packets.

Items & subsections:

fixed [val];

Use a fixed TOS value.

val (type: uint8, optional, default: 0)

received [mask mask] [add add];

Use a value received from this connection.

mask mask (type: uint8, optional, default: 255)

A mask of bits used from the received value.

add add (type: uint8, optional, default: 0)

A mask of bits added to the value to be sent.

other [mask mask] [add add];

Use a value received from the other connection.

mask mask (type: uint8, optional, default: 255)

A mask of bits used from the received value.

add add (type: uint8, optional, default: 0)

A mask of bits added to the value to be sent.

[End of section ip-tos-to description.]

ip-tos-to-client {

fixed ... ;

received ... ;

other ... ;

}

Set an IP TOS value for packets sent to the client. If OTHER is specified, it will

be set only after a connection to the server is established. Until then, the value specified by

FIXED or RECEIVED (from the client) will be used.

660

The ip-tos-to-client section is derived from ip-tos-to section

prototype. For detail description of it, see above.

Changes to the ip-tos-to-client section:

Only one of FIXED and RECEIVED may be specified.

ip-tos-to-server {

fixed ... ;

received ... ;

other ... ;

}

Set an IP TOS value for packets sent to the server.

The ip-tos-to-server section is derived from ip-tos-to section

prototype. For detail description of it, see above.

Changes to the ip-tos-to-server section:

Only one of FIXED, RECEIVED, and OTHER may be specified.

SEE ALSO

configuration(7), netio(7)

661

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

nls — format of nls component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the nls component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in nls configuration directives:

language (see common(5))

nls (see common(5))

ITEMS AND SECTIONS

Configuration of nls library component consists of following prototypes:

nls ... ;

language ... ;

Description:

nls code;

Language and charset of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings from

lower layer is used.

code (type: nls)

language lang ;

Language of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings from

lower layer is used.

lang (type: language)

662

SEE ALSO

configuration(7), common(5)

663

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

ntp — format of ntp component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ntp component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ntp configuration directives:

destination (see common(5))

ntp-rest-flag (name-usage obligatory)

NTP configuration RESTRICT flags.

ignore

kod

limited

lowpriotrap

nomodify

noquery

nopeer

noserve

notrap

notrust

ntpport

version

ITEMS AND SECTIONS

Configuration of ntp library component consists of following prototypes:

ntp { ... }

664

Description:

ntp {

phase ... ;

* tag ... ;

cfg-resolution ... ;

drift-file ... ;

* peer ... ;

* server ... ;

* clock ... ;

* restrict ... ;

}

NTP daemon definition.

Most configuration directives are synonyms of NTP.CONF ones. See ntp.conf(5) for details.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 70)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

cfg-resolution [max-addrs [min-ttl [def-ttl [max-ttl [hosts-ttl

[pool-dir]]]]]];

Attributes for resolution of domain names in configuration.

max-addrs (type: uint8, optional, default: 10)

Maximum of addresses per a single domain name.

min-ttl (type: uint32, optional, default: 10)

Minimum TTL accepted, used instead of too small TTL values (e.g. 0).

def-ttl (type: uint32, optional, default: 1m)

Default TTL used in case of unsuccessful DNS resolution.

665

APPENDIX B. KERNUN UTM REFERENCE (5)

max-ttl (type: uint32, optional, default: 1d)

Maximum TTL accepted, used instead of large TTL values.

hosts-ttl (type: uint32, optional, default: 1d)

TTL used for names in /etc/hosts.

pool-dir (type: str, optional, default: "/tmp")

Directory for temporary files used to share results.

drift-file path;

NTP daemon drift-file full name.

path (type: str)

Constraints:

Path must be absolute and must not contain punctuation chars.

peer machine;

Host for peer-to-peer synchronization.

machine (type: host)

server machine;

Host for client-to-server synchronization.

machine (type: host)

clock type num stratum;

Device for local synchronization.

type (type: uint8)

Clock type.

num (type: uint8)

Unit number.

stratum (type: uint8)

Stratum number.

Constraints:

Unit number must be at most 3.

Stratum number must be at most 15.

restrict host host [flags];

restrict net net [flags];

restrict default [flags];

Host-based service restrictions.

<branching element> (type: destination)

host (type: host)

net (type: net)

flags (type: ntp-rest-flag-list, optional, default: {})

[End of section ntp description.]

666

SEE ALSO

configuration(7), common(5), ntp.conf(5)

667

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

openvpn — format of openvpn component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the openvpn component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in openvpn configuration directives:

enabling (see common(5))

yes-no (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

week-day (see time(5))

month (see time(5))

dbglev (see log(5))

logfail-mode (see log(5))

ovpn-protocols (name-usage obligatory)

udp

Use UDP protocol. UDP must be specified on both peers.

tcp-client

Use TCP protocol, be the TCP client (the other peer must use tcp-server). TCP client

will attempt to connect, and if that fails, will sleep for a period and try it again.

tcp-server

Use TCP protocol, be the TCP server (the other peer must use tcp-client). TCP server

will wait indefinitely for an incomming connection.

udp6

Use UDP protocol over IPv6. UDP6 must be specified on both peers.

668

tcp6-client

Use TCP protocol over IPv6, be the TCP client (the other peer must use tcp6-server).

TCP client will attempt to connect, and if that fails, will sleep for a period and try it

again.

tcp6-server

Use TCP protocol over IPv6, be the TCP server (the other peer must use tcp6-client).

TCP server will wait indefinitely for an incomming connection.

ovpn-remote-proto (name-usage obligatory)

udp

Use UDP protocol

tcp

Use TCP protocol

udp6

Use UDP protocol over IPv6

tcp6

Use TCP protocol over IPv6

implicit

Use the protocol specified by the OPENVPN.PROTO item

ovpn-comp-lzo-mode (name-usage obligatory)

yes

no

adaptive

none

The comp-lzo directive is ommited in the openvpn configuration.

ovpn-cert-types (name-usage obligatory)

client

server

ovpn-cipher-algs (name-usage obligatory)

DES-CBC

64 bit default key (fixed)

RC2-CBC

128 bit default key (variable)

DES-EDE-CBC

128 bit default key (fixed)

669

APPENDIX B. KERNUN UTM REFERENCE (5)

DES-EDE3-CBC

192 bit default key (fixed)

DESX-CBC

192 bit default key (fixed)

BF-CBC

128 bit default key (variable)

RC2-40-CBC

40 bit default key (variable)

CAST5-CBC

128 bit default key (variable)

RC5-CBC

128 bit default key (variable)

RC2-64-CBC

64 bit default key (variable)

AES-128-CBC

128 bit default key (fixed)

AES-192-CBC

192 bit default key (fixed)

AES-256-CBC

256 bit default key (fixed)

AES-128-GCM

128 bit key, 128 bit block, TLS client/server mode only

AES-192-GCM

192 bit key, 128 bit block, TLS client/server mode only

AES-256-GCM

256 bit key, 128 bit block, TLS client/server mode only

CAMELLIA-128-CBC

128 bit default key (fixed)

CAMELLIA-192-CBC

192 bit default key (fixed)

CAMELLIA-256-CBC

256 bit default key (fixed)

none

no encryption

ovpn-redirect-gateway-flags (name-usage optional)

670

local (0)

Add the local flag if both OpenVPN servers are directly connected via a common subnet,

such as with wireless. The local flag will cause step 1 above to be omitted.

def1 (1)

Use this flag to override the default gateway by using 0.0.0.0/1 and 128.0.0.0/1 rather

than 0.0.0.0/0. This has the benefit of overriding but not wiping out the original default

gateway.

bypass-dhcp (2)

Add a direct route to the DHCP server (if it is non-local) which bypasses the tunnel

(Available on Windows clients, may not be available on non-Windows clients).

bypass-dns (3)

Add a direct route to the DNS server(s) (if they are non-local) which bypasses the

tunnel (Available on Windows clients, may not be available on non-Windows clients).

ovpn-dhcp-option (name-usage obligatory)

DOMAIN

Set connection-specific DNS suffix

DNS

Set domain name server address

WINS

Set WINS server address

NBDD

Set NBDD server address

NTP

Set NTP serveer address

NBT

Set NetBIOS over TCP/IP Node type

NBS

Set NetBIOS over TCP/IP Scope

DISABLE-NBT

Disable Netbios over TCP/IP

ovpn-topology (name-usage obligatory)

net30

subnet

ovpn-local-scope (name-usage obligatory)

any

Accept connections on all interfaces

671

APPENDIX B. KERNUN UTM REFERENCE (5)

addr

Accept connections on the particular IP adress

tls-mat-variants (name-usage obligatory)

pkcs12

Cryptographic material provided in a single pkcs12 file

ca-cert-key

Cryptographic material provided in three separated files in .pem format

ITEMS AND SECTIONS

Configuration of openvpn library component consists of following prototypes:

ovpn-push { ... }

* ovpn-ccd name { ... }

ovpn-summary { ... }

* openvpn name { ... }

Description:

ovpn-push {

* route ... ;

* route-ipv6 ... ;

redirect-gateway ... ;

redirect-gateway-ipv6 ... ;

* dhcp-option ... ;

block-outside-dns ... ;

* raw ... ;

}

Configuration options to be pushed to the client for remote execution

Items & subsections:

route network [gw];

Add route to routing table after connection is established. Multiple routes can be

specified. Routes will be automatically torn down in reverse order prior to TUN/TAP

device close. Use special value of [0.0.0.0] as gw for specifying the remote VPN endpoint

(from the perspective of the client, see vpn_gateway in openvpn(8).

network (type: net)

Route destination.

672

gw (type: host, optional, default: [0.0.0.0])

Router IP address. Special value [0.0.0.0] can be used for the remote VPN endpoint

(from the client’s perspective).

route-ipv6 network [gw];

Add IPV6 route to routing table after connection is established. Multiple routes can be

specified. Routes will be automatically torn down in reverse order prior to TUN/TAP

device close. Use special value of [::] as gw for specifying the remote VPN endpoint

(from the perspective of the client, see vpn_gateway in openvpn(8).

network (type: net)

Route destination.

gw (type: host, optional, default: [::])

Router IP address. Special value [::] can be used for the remote VPN endpoint

(from the client’s perspective).

redirect-gateway flags;

Automatically execute routing commands to cause all outgoing IP traffic to be redi-

rected over the VPN. This option performs three steps: (1) Create a static route for

the remote address which forwards to the pre-existing default gateway. This is done so

that (3) will not create a routing loop. (2) Delete the default gateway route. (3) Set

the new default gateway to be the VPN endpoint address

When the tunnel is torn down, all of the above steps are reversed so that the original

default route is restored.

Using the def1 flag is highly recommended.

flags (type: ovpn-redirect-gateway-flags-list)

redirect-gateway-ipv6;

Automatically execute routing commands to cause all outgoing IPv6 traffic to be redi-

rected over the VPN. The default route is overriden by specifying route for ::/1 and

8000::/1.

dhcp-option 0;

dhcp-option domain domain;

dhcp-option dns dns;

dhcp-option wins wins;

dhcp-option nbdd nbdd ;

dhcp-option ntp ntp;

dhcp-option nbt nbt ;

dhcp-option nbs nbs;

dhcp-option disable-nbt;

Set extended TAP-Win32 TCP/IP properties. This option can be used to set additional

TCP/IP properties on the TAP-Win32 adapter, and is particularly useful for configuring

an OpenVPN client to access a Samba server across the VPN.

673

APPENDIX B. KERNUN UTM REFERENCE (5)

Note that if dhcp-option is pushed via push to a non-windows client, the option will

be saved in the client’s environment before the up script is called, under the name

"foreign_option_{n}".

<branching element> (type: ovpn-dhcp-option)

domain (type: str)

Set Connection-specific DNS Suffix.

dns (type: addr)

Set primary domain name server address. Repeat this option to set secondary DNS

server addresses.

wins (type: addr)

Set primary WINS server address (NetBIOS over TCP/IP Name Server). Repeat

this option to set secondary WINS server addresses.

nbdd (type: addr)

Set primary NBDD server address (NetBIOS over TCP/IP Datagram Distribution

Server) Repeat this option to set secondary NBDD server addresses.

ntp (type: addr)

Set primary NTP server address (Network Time Protocol). Repeat this option to

set secondary NTP server addresses.

nbt (type: uint8)

Set NetBIOS over TCP/IP Node type. Possible options: 1 = b-node (broadcasts),

2 = p-node (point-to-point name queries to a WINS server), 4 = m-node (broadcast

then query name server), and 8 = h-node (query name server, then broadcast).

nbs (type: str)

Set NetBIOS over TCP/IP Scope. A NetBIOS Scope ID provides an extended

naming service for the NetBIOS over TCP/IP (Known as NBT) module. The

primary purpose of a NetBIOS scope ID is to isolate NetBIOS traffic on a single

network to only those nodes with the same NetBIOS scope ID. The NetBIOS scope

ID is a character string that is appended to the NetBIOS name. The NetBIOS scope

ID on two hosts must match, or the two hosts will not be able to communicate.

The NetBIOS Scope ID also allows computers to use the same computer name,

as they have different scope IDs. The Scope ID becomes a part of the NetBIOS

name, making the name unique. (This description of NetBIOS scopes courtesy of

NeonSurge@abyss.com)

block-outside-dns;

Block DNS servers on other network adapters to prevent DNS leaks.

raw row ;

A raw item to be put to the OpenVPN configuration file exactly as given as the "row"

element.

row (type: str)

[End of section ovpn-push description.]

674

ovpn-ccd name {

ifconfig-push ... ;

ifconfig-ipv6-push ... ;

disable ... ;

push { ... }

push-reset ... ;

* iroute ... ;

* iroute-ipv6 ... ;

* route ... ;

* schedule ... ;

* raw ... ;

cn ... ;

}

Client-configuration-directives.

Set of the custom configuration directives to be used for the particular client. After the client

has been authenticated, the ccd section with the same name as the client’s X509 common

name is used.

Constraints:

ROUTE can only be used with IFCONFIG-PUSH.

Items & subsections:

ifconfig-push local ;

Push virtual local IP endpoint for client tunnel, overriding the ifconfig-pool dynamic

allocation.

Note that the parameter local is from the perspective of the client, not the server.

For a tun interface, the remote address is constructed from the local IP address. For

a tap interface, the netmask is taken from ˆinterface.ipv4.net. (Note that the eventual

netmask is ignored for the local element).

local (type: addr)

ifconfig-ipv6-push local ;

Push virtual local IPv6 endpoint for client tunnel, overriding the ifconfig-ipv6-pool

dynamic allocation.

Note that the parameter local is from the perspective of the client, not the server.

For a tun interface, the remote address is constructed from the local IP address. For

a tap interface, the netmask is taken from ˆinterface.ipv4.net. (Note that the eventual

netmask is ignored for the local element).

local (type: addr)

675

APPENDIX B. KERNUN UTM REFERENCE (5)

disable;

Disable a particular client (based on the common name) from connecting. Don’t use this

option to disable a client due to key or password compromise. Use a CRL (certificate

revocation list) instead (see the crl-verify option).

push {

* route ... ;

* route-ipv6 ... ;

redirect-gateway ... ;

redirect-gateway-ipv6 ... ;

* dhcp-option ... ;

block-outside-dns ... ;

* raw ... ;

}

The push section is derived from ovpn-push section prototype. For

detail description of it, see above.

push-reset;

Don’t inherit the global push list for a specific client instance.

This option will ignore push options at the global config file level.

iroute network ;

Generate an internal route to a specific client.

This directive can be used to route a fixed subnet from the server to a particular client,

regardless of where the client is connecting from. Remember that you must also add the

route to the system routing table as well. The reason why two routes are needed is that

the "system route" routes the packet fromthe kernel to OpenVPN. Once in OpenVPN,

the iroute directive routes to the specific client.

The iroute directive also has an important interaction with push "route ...". iroute

essentially defines a subnet which is owned by a particular client (we will call this client

A). If you would like other clients to be able to reach A’s subnet, you can use push

"route ..." together with client-to-client to effect this. In order for all clients to see A’s

subnet, OpenVPN must push this route to all clients EXCEPT for A, since the subnet

is already owned by A. OpenVPN accomplishes this by not not pushing a route to a

client if it matches one of the client’s iroutes.

network (type: net)

iroute-ipv6 ipv6addr ;

For ccd per-client static IPv6 route configuration, see IROUTE for more details how to

setup and use this, and how IROUTE and ROUTE interact.

ipv6addr (type: net)

route network ;

676

The given network should be routed through this client as a gateway. The route is

added as an iroute to the ccd section, as a route for the openvpn instance and as the

system route.

network (type: net)

Route destination

schedule perm [day day] [month month] [wday [hhmm]];

Schedule the permissions. The order of this repeatable item is significant. The first

matching schedule item is used. Depending on its perm element, the connection is either

enabled or disabled. The permissions are checked either when the client is actually

connecting as well as it is periodically checked in order to disconnect the clietns whose

permission would eventually expire.

perm (type: enabling)

day day (type: uint8-set, optional, default: *)

day of month (1 - 31)

month month (type: month-set, optional, default: *)

month (Jan - Dec or 1 - 12)

wday (type: week-day-set, optional, default: *)

week-day (Sun - Sat or 0 - 6)

hhmm (type: time-set, optional, default: *)

time (in form hhmm)

raw row ;

An raw item to be put to the OpenVPN configuration file exactly as given as the "row"

element.

row (type: str)

cn cn;

Entry condition: Common name (CN).

If given, common name of the client is compared to the given string. Else, the name of

the ccd section is compared to the CN. In that case, spaces (’ ’) and dots (’.’) in the

CN are substituted by underscore (’_’).

cn (type: str)

[End of section ovpn-ccd description.]

ovpn-summary {

top-clients ... ;

top-users ... ;

activity-report { ... }

}

677

APPENDIX B. KERNUN UTM REFERENCE (5)

The ovpn-summary section is derived from summary section proto-

type. For detail description of it, see application(5).

Changes to the ovpn-summary section:

Item top-groups is not valid.

Item top-servers is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

openvpn name {

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

interface ... ;

topology ... ;

local ... ;

nobind ... ;

user ... ;

group ... ;

persist-tun ... ;

persist-key ... ;

log-debug { ... }

log-stats { ... }

mute ... ;

ping-timer-rem ... ;

keepalive ... ;

678

proto ... ;

tls-mat ... ;

dh ... ;

secret ... ;

crl-verify ... ;

server ... ;

max-clients ... ;

duplicate-cn ... ;

client-to-client ... ;

ccd-exclusive ... ;

mlock ... ;

float ... ;

push { ... }

ifconfig-pool ... ;

ifconfig-ipv6-pool ... ;

tls-server ... ;

tls-client ... ;

tls-auth ... ;

* remote ... ;

remote-random ... ;

comp-lzo ... ;

verify-x509-name ... ;

remote-cert-ku ... ;

remote-cert-eku ... ;

remote-cert-tls ... ;

cipher ... ;

data-ciphers ... ;

data-ciphers-fallback ... ;

client ... ;

pull ... ;

route-nopull ... ;

no-ifconfig-noexec ... ;

ifconfig-pool-persist ... ;

client-connect ... ;

679

APPENDIX B. KERNUN UTM REFERENCE (5)

client-connect-socket ... ;

* ccd name { ... }

* raw ... ;

phase ... ;

* tag ... ;

socket-root ... ;

fast-io ... ;

}

OpenVPN configuration.

For configuration attributes details, see openvpn(8).

Constraints:

INTERFACE must be specified.

ROUTE-NOPULL must be specified if CLIENT or PULL is used.

CLIENT, TLS-CLIENT, SERVER, TLS-SERVER and SECRET are mutually exclu-

sive.

Cryptographic material (TLS-MAT) required for any of SERVER, TLS-SERVER,

CLIENT, TLS-CLIENT.

tls options (DH, TLS-MAT, PKCS12, VERIFY-X509-NAME, CRL-VERIFY,

NS-CERT-TYPE, REMOTE-CERT-KU, REMOTE-CERT-EKU) can only be

specified in tls mode (SERVER, TLS-SERVER, CLIENT, TLS-CLIENT).

DH required for SERVER or TLS-SERVER.

Each of IFCONFIG-POOL, CLIENT-CONNECT, CCD, CCD-EXCLUSIVE, CLIENT-

TO-CLIENT, DUPLICATE-CN requires SERVER.

CCD-EXCLUSIVE requires some CCD section.

SERVER may be used only with proto UDP or TCP-SERVER.

PULL can only be used with CLIENT, TLS-CLIENT or TLS-SERVER.

REMOTE ad SERVER are mutually exclusive.

REMOTE must be used in proto mode TCP-CLIENT.

proto mode TCP-SERVER allows at most one REMOTE.

NOBIND can only be used with REMOTE and without LOCAL.

Items PROTO, LOCAL and REMOTE must respect each other’s address family.

Item SERVER is mutually exclusive with items IFCONFIG-POOL and IFCONFIG-

IPV6-POOL.

Cipher AES-GCM is not supported in SECRET mode.

FAST-IO mode is allowed only in UDP.

Items & subsections:

680

stats-daily {

top-clients ... ;

top-users ... ;

activity-report { ... }

}

The stats-daily section is derived from ovpn-summary section pro-

totype. For detail description of it, see above.

stats-weekly {

top-clients ... ;

top-users ... ;

activity-report { ... }

}

The stats-weekly section is derived from ovpn-summary section

prototype. For detail description of it, see above.

stats-monthly {

top-clients ... ;

top-users ... ;

activity-report { ... }

}

The stats-monthly section is derived from ovpn-summary section

prototype. For detail description of it, see above.

interface ifname;

Interface to be used for the virtual network.

The interface must be of type TUN or TAP. The interface.ipv4.addr specifies the local

IP addressin the VPN and the network range of the VPN. For TUN, the ipv4.dest

address specifies the address of the peer in the tunnel.

ifname (type: name of interface, see interface(5))

topology topo;

OpenVPN network topology.

If omitted, default topology (net30) is used.

topo (type: ovpn-topology)

local any [port];

local [addr] addr [port];

Local IP address and port for bind. If specified, OpenVPN will bind to this address

only. If unspecified, OpenVPN will bind to all interfaces, using the default port.

<branching element> (type: ovpn-local-scope, optional, default:

addr)

681

APPENDIX B. KERNUN UTM REFERENCE (5)

addr (type: addr)

IP address to listen on

port (type: port, optional, default: 1194)

Port to listen on

nobind;

Do not bind to local address and port. This option is only suitable for peers which will

be initiating connections by using remote intem.

user [user];

Change the user ID of the OpenVPN process to user after initialization, dropping

privileges in the process. This option is useful to protect the system in the event that

some hostile party was able to gain control of an OpenVPN session. Though OpenVPN’s

security features make this unlikely, it is provided as a second line of defense.

user (type: str, optional, default: "kernun")

group [group];

Change the group ID of the OpenVPN process to group after initialization, dropping

privileges in the process. This option is useful to protect the system in the event that

some hostile party was able to gain control of an OpenVPN session. Though OpenVPN’s

security features make this unlikely, it is provided as a second line of defense.

group (type: str, optional, default: "kernun")

persist-tun [persist-tun];

Don’t close and reopen TUN/TAP device or run up/down scripts across SIGUSR1 or

ping-restart restarts.

SIGUSR1 is a restart signal similar to SIGHUP, but which offers finer-grained control

over reset options.

persist-tun (type: yes-no, optional, default: yes)

persist-key [persist-key];

Don’t re-read key files across SIGUSR1 or ping-restart.

This option can be combined with user item to allow restarts triggered by the SI-

GUSR1 signal. Normally if you drop root privileges in OpenVPN, the daemon cannot

be restarted since it will now be unable to reread protected key files.

This option solves the problem by persisting keys across SIGUSR1 resets, so they don’t

need to be re-read.

persist-key (type: yes-no, optional, default: yes)

log-debug {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

682

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

dump-hold-time ... ;

}

The log-debug section is derived from log section prototype. For

detail description of it, see log(5).

log-stats {

level ... ;

mem-level ... ;

facility ... ;

file ... ;

rotate ... ;

mem-file ... ;

syslog-failure ... ;

data-limit ... ;

dump-hold-time ... ;

}

The log-stats section is derived from log section prototype. For

detail description of it, see log(5).

mute [n];

Log at most n consecutive messages in the same category. This is useful to limit

repetitive logging of similar message types.

n (type: uint16, optional, default: 10)

ping-timer-rem [ping-timer-rem];

Run the ping-exit /ping-restart timer only if we have a remote address. Use this option

if you are starting the daemon in listen mode (i.e. without an explicit remote peer),

and you don’t want to start clocking timeouts until a remote peer connects.

ping-timer-rem (type: yes-no, optional, default: yes)

keepalive [ping [ping-restart]];

A helper directive designed to simplify the expression of ping and ping-restart. See

openvpn(8) for details on ping, ping-restart and keepalive directives.

ping (type: uint16, optional, default: 10)

ping-restart (type: uint16, optional, default: 60)

proto [proto];

Specify the protocol to be used for communicating with remote host.

683

APPENDIX B. KERNUN UTM REFERENCE (5)

OpenVPN is designed to operate optimally over UDP, but TCP capability is provided

for situations where UDP cannot be used. In comparison with UDP, TCP will usually be

somewhat less efficient and less robust when used over unreliable or congested networks.

There are certain cases, however, where using TCP may be advantageous from a se-

curity and robustness perspective, such as tunneling non-IP or application-level UDP

protocols, or tunneling protocols which don’t possess a built-in reliability layer.

proto (type: ovpn-protocols, optional, default: udp)

tls-mat pkcs12 pkcs12 ;

tls-mat [ca-cert-key] ca cert key ;

Specify the cryptographic material: root CA certificate, the local peer’s certificate

(signed by the CA), and the local peer’s private key. It can be provided either as a

single PKCS#12 file or as 3 files in .pem format.

<branching element> (type: tls-mat-variants, optional, default:

ca-cert-key)

pkcs12 (type: name of shared-file, see common(5))

PKCS #12 file

ca (type: name of shared-file, see common(5))

Certificate authority

cert (type: name of shared-file, see common(5))

Local peer’s certificate

key (type: name of shared-file, see common(5))

Local peer’s private key

dh dh;

File containing Diffie Hellman parameters in .pem format Diffie Hellman parameters

may be considered public.

dh (type: name of shared-file, see common(5))

secret secret ;

Static Key encryption mode (non-TLS). The same pre-shared secret file is used by both

peers.

secret (type: name of shared-file, see common(5))

crl-verify crl ;

Check peer certificate against the file CRL (certificate revocation list) in PEM format.

A CRL is used when a particular key is compromised but when the overall PKI is still

intact.

crl (type: name of shared-file, see common(5))

server;

This directive will set up an OpenVPN server. It will allocate addresses to clients out

of network/netmask specified in the referenced INTERFACE section. The server itself

will take the first host address of the given network (which should be specified as the

684

interface.ipv4.addr) for use as the server-side endpoint of the local TUN/TAP interface.

For TUN, the next address (second host address of the given network) should be used

as interface.ipv4.dest.

max-clients n;

Limit server to a maximum of n concurrent clients.

n (type: uint16)

duplicate-cn;

Allow multiple clients with the same common name to concurrently connect. In the

absence of this option, OpenVPN will disconnect a client instance upon connection of

a new client having the same common name.

client-to-client;

Because the OpenVPN server mode handles multiple clients through a single tun or

tap interface, it is effectively a router. The client-to-client flag tells OpenVPN to in-

ternally route client-to-client traffic rather than pushing all client-originating traffic to

the TUN/TAP interface.

When this option is used, each client will "see" the other clients which are currently

connected. Otherwise, each client will only see the server. Don’t use this option if you

want to firewall tunnel traffic using custom, per-client rules.

ccd-exclusive;

Require, as a condition of authentication, that a connecting client has an explicit ccd

section.

mlock;

Disable paging by calling the POSIX mlockall function.

Using this option ensures that key material and tunnel data are never written to disk

due to virtual memory paging operations which occur under most modern operating

systems. It ensures that even if an attacker was able to crack the box running OpenVPN,

he would not be able to scan the system swap file to recover previously used ephemeral

keys, which are used for a period of time, and then are discarded.

The downside of using mlock is that it will reduce the amount of physical memory

available to other applications.

float;

Allow remote peer to change its IP address and/or port number, such as due to DHCP

(this is the default if remote is not used). float when specified with remote allows an

OpenVPN session to initially connect to a peer at a known address, however if packets

arrive from a new address and pass all authentication tests, the new address will take

control of the session. This is useful when you are connecting to a peer which holds a

dynamic address such as a dial-in user or DHCP client.

Essentially, float tells OpenVPN to accept authenticated packets from any address, not

only the address which was specified in the remote option.

685

APPENDIX B. KERNUN UTM REFERENCE (5)

push {

* route ... ;

* route-ipv6 ... ;

redirect-gateway ... ;

redirect-gateway-ipv6 ... ;

* dhcp-option ... ;

block-outside-dns ... ;

* raw ... ;

}

The push section is derived from ovpn-push section prototype. For

detail description of it, see above.

ifconfig-pool start-ip end-ip [warn warn];

Set aside a pool of subnets to be dynamically allocated to connecting clients, similar

to a DHCP server. For tun-style tunnels, each client will be given a /30 subnet (for

interoperability with Windows clients). For tap-style tunnels, individual addresses will

be allocated, and the netmask parameter will also be pushed to clients. The netmask

value is taken from ˆinterface.ipv4.addr. (Note that the eventual netmask is ignored

for both start-IP and end_ip elements).

start-ip (type: addr)

end-ip (type: addr)

warn warn (type: yes-no, optional, default: yes)

Warn on conflicts between ifconfig-pool and ccd.ifconfig-push items.

ifconfig-ipv6-pool ipv6addr [warn warn];

Specify an IPv6 address pool for dynamic assignment to clients. The pool starts at

ipv6addr and increments by +1 for every new client (linear mode). The /bits setting

controls the size of the pool.

ipv6addr (type: addr)

warn warn (type: yes-no, optional, default: yes)

Warn on conflicts between ifconfig-pool and ccd.ifconfig-push items.

tls-server;

Enable TLS and assume server role during TLS handshake. Note that OpenVPN is

designed as a peer-to-peer application. The designation of client or server is only for

the purpose of negotiating the TLS control channel.

tls-client;

Enable TLS and assume client role during TLS handshake.

tls-auth file;

Add an additional layer of HMAC authentication on top of the TLS control channel to

mitigate DoS attacks and attacks on the TLS stack.

686

file (type: name of shared-file, see common(5))

remote host [port [proto]];

Remote host name or IP address.

On the client, multiple remote items may be specified for redundancy, each referring to

a different OpenVPN server.

If host is a DNS name which resolves to multiple IP addresses, one will be randomly

chosen, providing a sort of basic load-balancing and failover capability.

host (type: host)

Host to connect to

port (type: uint16, optional, default: 1194)

Port to connect to

proto (type: ovpn-remote-proto, optional, default: implicit)

protocol to use when connecting with the remote

remote-random;

When multiple remote items are specified, initially randomize the order of the list as a

kind of basic load-balancing measure.

comp-lzo [mode];

Use fast LZO compression. May add up to 1 byte per packet for incompressible data.

mode (type: ovpn-comp-lzo-mode, optional, default: none)

verify-x509-name name;

Accept connections only from a host with X509 common name equal to name. The

remote host must also pass all other tests of verification.

name (type: str)

remote-cert-ku ku;

Require that peer certificate was signed with an explicit key usage.

This is a useful security option for clients, to ensure that the host they connect to is a

designated server.

The key usage should be encoded in hex, more than one key usage can be specified.

ku (type: str)

remote-cert-eku oid ;

Require that peer certificate was signed with an explicit extended key usage.

This is a useful security option for clients, to ensure that the host they connect to is a

designated server.

The extended key usage should be encoded in oid notation, or OpenSSL symbolic

representation.

oid (type: str)

remote-cert-tls tls;

687

APPENDIX B. KERNUN UTM REFERENCE (5)

Require that peer certificate was signed with an explicit key usage and extended key

usage based on RFC3280 TLS rules.

This is a useful security option for clients, to ensure that the host they connect to is a

designated server.

The remote-cert-tls client option is equivalent to remote-cert-ku 80 08 88 remote-cert-

eku "TLS Web Client Authentication"

The key usage is digitalSignature and/or keyAgreement.

The remote-cert-tls server option is equivalent to remotecert-ku a0 88 remote-cert-eku

"TLS Web Server Authentication"

The key usage is digitalSignature and (keyEncipherment or keyAgreement).

This is an important security precaution to protect against a man-in-the-middle attack

where an authorized client attempts to connect to another client by impersonating the

server. The attack is easily prevented by having clients verify the server certificate

using any one of remote-cert-tls, verify-x509-name, or tls-verify.

tls (type: ovpn-cert-types)

cipher [alg];

Encrypt packets with cipher algorithm alg.

alg (type: ovpn-cipher-algs, optional, default: AES-256-CBC)

data-ciphers list ;

Allowed ciphers to be negotiated.

If omitted, it defaults to the current default in openvpn. The last known default is {

AES-256-GCM, AES-128-GCM }.

list (type: ovpn-cipher-algs-list)

data-ciphers-fallback alg ;

Fallback cipher if we could not determine which cipher the peer is willing to use.

alg (type: ovpn-cipher-algs)

client;

A helper directive designed to simplify the configuration of OpenVPN’s client mode.

This directive is equivalent to using pull and tls-client.

pull;

This option must be used on a client which is connecting to a multi-client server. It

indicates to OpenVPN that it should accept options pushed by the server, provided

they are part of the legal set of pushable options (note that the pull option is implied

by client).

route-nopull;

When used with client or pull, accept options pushed by server EXCEPT for routes.

When used on the client, this option effectively bars the server from adding routes to

the client’s routing table, however note that this option still allows the server to set the

TCP/IP properties of the client’s TUN/TAP interface.

688

no-ifconfig-noexec;

The interface configuration and management is independent on the OpenVPN in Kernun

by default. This way, the TUN/TAP interface is configured constantly, as well as the

routes specified in the routes section. Therefore, OpenVPN is not expected to configure

the interface. In order to override this default (not to generate ifconfig-noexec into

openvpn configuration), use this item

ifconfig-pool-persist file;

Persist ifconfig-pool data to file.

file (type: name of shared-file, see common(5))

client-connect client-connect-script ;

A script that is run upon each client’s connection. The common name (cn) of the client

being connected is passed to the script as the parameter. If the script exits with the

exit code 0, the client connection is enabled (the client still can be denied by other items

in the configuration, i.e. ccd.disable, etc.). If the script exits with the exit code not 0,

the client connection is denied immediately. Be sure to re-generate the configuration

after eventual change made to the script.

client-connect-script (type: name of shared-file, see common(5))

client-connect-socket filename;

The socket for determining whether the particular client is permitted to connect at the

moment. Kernun opens the socket, writes a command in form ’cc instance common-

name’ to it. If Kernun reads back word ’accept’ from the socket, the client is considered

permitted by the client-connect-socket. The client is blocked otherwise. Notice that

even if the client is permitted by client-connect-socket, it maight still be blocked by

some other part of the configuration.

filename (type: str)

ccd name {

ifconfig-push ... ;

ifconfig-ipv6-push ... ;

disable ... ;

push { ... }

push-reset ... ;

* iroute ... ;

* iroute-ipv6 ... ;

* route ... ;

* schedule ... ;

* raw ... ;

cn ... ;

}

689

APPENDIX B. KERNUN UTM REFERENCE (5)

The ccd section is derived from ovpn-ccd section prototype. For

detail description of it, see above.

raw row ;

An raw item to be put to the OpenVPN configuration file exactly as given as the "row"

element.

row (type: str)

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

socket-root [path];

Prefix of the path of the sockets used by openvpn. The sockets (ccd-provider, manage)

are created in subdirectory openvpn.NAME within the directory given in the path

element. The default is usually the desired value.

path (type: str, optional, default: "/usr/local/etc")

fast-io;

Optimize I/O writes to avoid polling.

Experimental OpenVPN feature, see openvpn(8).

[End of section openvpn description.]

SEE ALSO

configuration(7), application(5), common(5), interface(5), log(5), time(5), openvpn(8)

690

NAME

packet-filter — format of packet-filter component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the packet-filter component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in packet-filter configuration directives:

yes-no (see common(5))

on-off (see common(5))

name-selection (see common(5))

ip-version (see common(5))

in-out (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

pf-osi4-proto (name-usage obligatory)

OSI layer 4 protocols.

any

icmp

ipv6-icmp

691

APPENDIX B. KERNUN UTM REFERENCE (5)

ipencap

tcp

udp

tcp-udp

gre

ipv6

ipv6-frag

ipv6-nonxt

ipv6-opts

ipv6-route

esp

ah

esp-ah

carp

pfsync

l2tp

ospf

egp

igp

eigrp

icmp-type (name-usage optional)

ICMP types.

echorep (0)

unreach (3)

squench (4)

redir (5)

althost (6)

echoreq (8)

routeradv (9)

routersol (10)

timex (11)

paramprob (12)

timereq (13)

timerep (14)

692

inforeq (15)

inforep (16)

maskreq (17)

maskrep (18)

pf-scheduler (name-usage obligatory)

PF schedulers.

cbq

priq

hfsc

pf-proc-mode (name-usage obligatory)

PF packet processing modes.

direct

Forward packet directly without any further processing.

Technically, the packet is tagged by the NONTRANSP tag.

application

Let the packet normally process by Kernun applications.

Technically, the packet is tagged by the APPLICATION tag.

tag

Process packet normally by Kernun and tag it by a new tag.

notag

Process packet normally by Kernun and do not tag it.

proxy-ng

Process packet with proxy-ng transparent listen socket.

ITEMS AND SECTIONS

Configuration of packet-filter library component consists of following prototypes:

* peer-list ... ;

pf-processing ... ;

* pf-raw-acl name { ... }

* pf-acl name { ... }

packet-filter { ... }

Description:

peer-list [addr [port port]];

Packet Filter peer list definition.

693

APPENDIX B. KERNUN UTM REFERENCE (5)

addr (type: host-set, optional, default: *)

Set of peer addresses/names.

port port (type: port-set, optional, default: *)

Set of ports (valid with TCP/UDP only).

Constraints:

Host list must not be empty.

Regexps and discontiguous masks not allowed in PF lists.

pf-processing [direct];

pf-processing application;

pf-processing tag tag ;

pf-processing notag;

pf-processing proxy-ng listen-socket-id listen-socket-id ;

Packet processing mode definition.

<branching element> (type: pf-proc-mode, optional, default: di-

rect)

tag (type: str)

listen-socket-id listen-socket-id (type: str)

ID of the PROXY-NG transparent listening socket.

pf-raw-acl name {

* descr ... ;

* raw ... ;

}

Packet Filter raw rule set definition.

Items & subsections:

descr text ;

Rule set comment.

text (type: str)

raw line;

Raw line to be put into pf.conf.

line (type: str)

[End of section pf-raw-acl description.]

694

pf-acl name {

* descr ... ;

* raw ... ;

* from ... ;

* to ... ;

* iface ... ;

ip ... ;

* protocol ... ;

tagged ... ;

time-period-set { ... }

deny ... ;

accept ... ;

anchor ... ;

symmetric ... ;

}

Packet Filter general rule set definition.

The pf-acl section is derived from pf-raw-acl section prototype.

For detail description of it, see above.

Changes to the pf-acl section:

Exactly one of DENY, ACCEPT, ANCHOR and RAW must be specified.

Cannot specify entry condition if RAW used.

Valid transport protocol required if PORT used.

Added items & subsections:

from [addr [port port]];

Entry condition - source addresses.

addr (type: host-set, optional, default: *)

Set of peer addresses/names.

port port (type: port-set, optional, default: *)

Set of ports (valid with TCP/UDP only).

Constraints:

Host list must not be empty.

Regexps and discontiguous masks not allowed in PF lists.

to [addr [port port]];

Entry condition - destination addresses.

addr (type: host-set, optional, default: *)

Set of peer addresses/names.

695

APPENDIX B. KERNUN UTM REFERENCE (5)

port port (type: port-set, optional, default: *)

Set of ports (valid with TCP/UDP only).

Constraints:

Host list must not be empty.

Regexps and discontiguous masks not allowed in PF lists.

iface any [dir];

iface [name] name [dir];

Entry condition - incoming interface.

<branching element> (type: name-selection, optional, default:

name)

name (type: name of interface, see interface(5))

dir (type: in-out, optional, default: both)

ip version;

IP protocol version (IPv4 and IPv6 if not specified).

version (type: ip-version)

protocol any;

protocol icmp [icmp-type icmp-type];

protocol ipv6-icmp;

protocol ipencap;

protocol tcp [flags flags];

protocol udp;

protocol tcp-udp [flags flags];

protocol gre;

protocol ipv6;

protocol ipv6-frag;

protocol ipv6-nonxt;

protocol ipv6-opts;

protocol ipv6-route;

protocol esp;

protocol ah;

protocol esp-ah;

protocol carp;

protocol pfsync;

protocol l2tp;

protocol ospf;

protocol egp;

696

protocol igp;

protocol eigrp;

Entry condition - OSI layer 4 protocol.

<branching element> (type: pf-osi4-proto)

flags flags (type: str, optional, default: <NULL>)

icmp-type icmp-type (type: icmp-type-list, optional, default:

<NULL>)

tagged tag ;

Entry condition - packet tag.

tag (type: str)

time-period-set {

exclude ... ;

* time-spec name { ... }

}

The time-period-set section is derived from time-period-set sec-

tion prototype. For detail description of it, see time(5).

deny;

Global decision mode: operation will not be served.

accept;

Global decision mode: operation will be served.

anchor path;

Apply anchor rules.

path (type: str)

symmetric;

Use rules for symmetric routing, too.

If used, rules for opposite direction are generated, too, e.g. besides "pass in on ep0

from <A> to ", also "pass out on ep0 from to <A>" is generated.

[End of section pf-acl description.]

packet-filter {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

stats-daily { ... }

697

APPENDIX B. KERNUN UTM REFERENCE (5)

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

pflog ... ;

pfsync ... ;

comm-dir ... ;

ignore-iface ... ;

pcap-timeout ... ;

buffer-size ... ;

* set-option ... ;

timeouts { ... }

limits { ... }

logging-frequence ... ;

* altq name { ... }

* scrub-acl name { ... }

* rdr-acl name { ... }

* nat-acl name { ... }

* binat-acl name { ... }

* filter-acl name { ... }

* load-anchor ... ;

}

Packet filter configuration.

This section allows to define almost all common features for the /etc/pf.conf configuration

file with one important exception. The PF tables are used by the KGB for internal purposes

to achieve maximal effectiveness and user cannot define them by own.

If this section is not used, the /etc/pf.conf file will be left untought.

For configuration attributes details, see pf.conf(5).

The packet-filter section is derived from alone-application sec-

tion prototype. For detail description of it, see application(5).

Changes to the packet-filter section:

Section monitoring is not valid.

698

Item phase (see common(5))

Element number is optional, default: 30.

Added items & subsections:

pflog [dev];

Device for pflog monitoring.

dev (type: str, optional, default: "pflog0")

pfsync [dev];

Device for pfsync monitoring.

dev (type: str, optional, default: "pfsync0")

comm-dir [path];

Directory for communication with pfctl.

path (type: str, optional, default: "/tmp")

ignore-iface ifaces;

Set of interfaces not monitored by pflogger.

ifaces (type: str-set)

pcap-timeout [sec];

Timeout for pcap reader.

sec (type: uint32, optional, default: 500)

buffer-size [bytes];

Buffer size for pcap reader.

bytes (type: uint32, optional, default: 20Mi)

set-option line;

Setting PF options by SET directive.

line (type: str)

Option setting (w/o SET keyword).

timeouts {

tcp-closing ... ;

tcp-finwait ... ;

tcp-closed ... ;

udp-first ... ;

udp-single ... ;

udp-multiple ... ;

}

Setting various PF timeouts.

Items & subsections:

699

APPENDIX B. KERNUN UTM REFERENCE (5)

tcp-closing seconds;

Time limit for the state after the first FIN has been sent.

seconds (type: uint32)

tcp-finwait seconds;

Time limit for the state after both FINs have been exchanged and the connection

is closed.

seconds (type: uint32)

tcp-closed seconds;

Time limit for the state after one endpoint sends an RST.

seconds (type: uint32)

udp-first seconds;

Time limit for the state after the first packet.

seconds (type: uint32)

udp-single seconds;

Time limit for the state if the source host sends more than one packet but the

destination host has never sent one back.

seconds (type: uint32)

udp-multiple seconds;

Time limit for the state if both hosts have sent packets.

seconds (type: uint32)

[End of section packet-filter.timeouts description.]

limits {

states ... ;

frags ... ;

table-entries ... ;

}

Setting various PF limits.

Items & subsections:

states [size];

Maximum number of entries in the memory pool used for state table entries

size (type: uint32, optional, default: 100000)

frags [size];

Maximum number of entries in the memory pool used for packet reassembly (scrub

rules).

size (type: uint32, optional, default: 50000)

table-entries [size];

Maximum number of addresses stored in the packet filter tables.

The adaptive-firewall tables have a separate limit.

size (type: uint32, optional, default: 200000)

700

[End of section packet-filter.limits description.]

logging-frequence [sec];

Frequence of logging stateless events counter.

sec (type: uint32, optional, default: 60)

altq name {

on ... ;

scheduler ... ;

bandwidth ... ;

qlimit ... ;

tbrsize ... ;

* queue ... ;

}

ALTQ per interface definition.

Constraints:

Interface name must be defined.

Bandwidth must be defined.

At least one queue must be defined.

Items & subsections:

on name;

name (type: name of interface, see interface(5))

scheduler [name];

name (type: pf-scheduler, optional, default: cbq)

bandwidth bits;

bits (type: uint64)

qlimit packets;

packets (type: uint32)

tbrsize bytes;

bytes (type: uint64)

queue name;

name (type: name of pf-queue, see pf-queue(5))

[End of section packet-filter.altq description.]

scrub-acl name {

* descr ... ;

* raw ... ;

* from ... ;

* to ... ;

* iface ... ;

701

APPENDIX B. KERNUN UTM REFERENCE (5)

ip ... ;

* protocol ... ;

time-period-set { ... }

deny ... ;

accept ... ;

symmetric ... ;

no-df ... ;

max-mss ... ;

log ... ;

}

Traffic normalization definition.

If not used, the SCRUB IN ALL directive will be generated.

The scrub-acl section is derived from pf-acl section prototype.

For detail description of it, see above.

Changes to the scrub-acl section:

Item tagged is not valid.

Item anchor is not valid.

Added items & subsections:

no-df;

Clear the dont-fragment bit from IP packets.

max-mss number ;

Enforce a maximum MSS for matching TCP packets.

number (type: uint32)

log [mode];

Log packets.

mode (type: on-off, optional, default: on=1)

[End of section packet-filter.scrub-acl description.]

rdr-acl name {

* descr ... ;

* raw ... ;

* from ... ;

* to ... ;

* iface ... ;

ip ... ;

* protocol ... ;

tagged ... ;

time-period-set { ... }

deny ... ;

accept ... ;

702

anchor ... ;

rdr-to ... ;

process ... ;

}

NAT redirection definition.

The rdr-acl section is derived from pf-acl section prototype. For

detail description of it, see above.

Changes to the rdr-acl section:

Item symmetric is not valid.

RDR-TO must be specified if ACCEPT used.

Valid transport protocol required if PORT used.

Item iface (see above)

Interface direction not allowed.

Item protocol (see above)

ICMP type constraint not allowed.

Added items & subsections:

rdr-to addr [port port];

addr (type: host)

New target address

port port (type: port, optional, default: 0)

New target port (valid with TCP/UDP only)

process [direct];

process application;

process tag tag ;

process notag;

process proxy-ng listen-socket-id listen-socket-id ;

Packet processing mode definition.

<branching element> (type: pf-proc-mode, optional, default: di-

rect)

tag (type: str)

listen-socket-id listen-socket-id (type: str)

ID of the PROXY-NG transparent listening socket.

[End of section packet-filter.rdr-acl description.]

nat-acl name {

* descr ... ;

* raw ... ;

* from ... ;

* to ... ;

* iface ... ;

ip ... ;

703

APPENDIX B. KERNUN UTM REFERENCE (5)

* protocol ... ;

tagged ... ;

time-period-set { ... }

deny ... ;

accept ... ;

anchor ... ;

map-to ... ;

process ... ;

static-port ... ;

}

NAT mapping definition.

The nat-acl section is derived from pf-acl section prototype. For

detail description of it, see above.

Changes to the nat-acl section:

Item symmetric is not valid.

MAP-TO must be specified if ACCEPT used.

Valid transport protocol required if PORT used.

Item iface (see above)

Interface direction not allowed.

Item protocol (see above)

ICMP type constraint not allowed.

Added items & subsections:

map-to addr [port port];

addr (type: host-list)

New source addresses list

port port (type: port, optional, default: 0)

New source port (valid with TCP/UDP only)

process [direct];

process application;

process tag tag ;

process notag;

process proxy-ng listen-socket-id listen-socket-id ;

Packet processing mode definition.

<branching element> (type: pf-proc-mode, optional, default: di-

rect)

tag (type: str)

listen-socket-id listen-socket-id (type: str)

ID of the PROXY-NG transparent listening socket.

static-port;

STATIC-PORT option of NAT rule.

[End of section packet-filter.nat-acl description.]

704

binat-acl name {

* descr ... ;

* raw ... ;

}

BINAT mapping definition.

The binat-acl section is derived from pf-raw-acl section proto-

type. For detail description of it, see above.

filter-acl name {

* descr ... ;

* raw ... ;

* from ... ;

* to ... ;

* iface ... ;

ip ... ;

* protocol ... ;

tagged ... ;

time-period-set { ... }

deny ... ;

accept ... ;

anchor ... ;

symmetric ... ;

antispoof ... ;

log ... ;

continue ... ;

return ... ;

fastroute ... ;

route-to ... ;

queue ... ;

process ... ;

no-state ... ;

* option ... ;

}

Filter rule set definition.

The filter-acl section is derived from pf-acl section prototype.

For detail description of it, see above.

Changes to the filter-acl section:

RETURN/ANTISPOOF can be used only with DENY.

QUEUE, PROCESS and OPTION can be used only with ACCEPT.

FASTROUTE and ROUTE-TO are mutually exclusive.

ANCHOR and LOG are mutually exclusive.

705

APPENDIX B. KERNUN UTM REFERENCE (5)

Cannot specify other entry conditions if ANTISPOOF used.

FASTROUTE should be used together with an IFACE.NAME.

Added items & subsections:

antispoof [loop] [routes];

Special entry condition - blocking of faked source addresses on particular interfaces.

If this ACL has a particular interface defined by the IFACE item, antispoof rules

are valid for this interface. Otherwise, the rules are applied to all interfaces.

By default, an ACL with ANTISPOOF guarantees filtering of all packets with

source addresses from given interface address set coming from other interfaces.

Packets sent either locally, or to the local end of a CARP interface are allowed.

This ACL must have DENY policy.

loop (type: key, optional)

Include blocking for loopback interface, too.

With this keyword option, packets with source address from given interface

address set, sent either locally, or to the local end of a CARP interface are

denied, too.

routes (type: key, optional)

Include blocking for routes, too.

With this keyword option, addresses of all networks routes via given interface

are added to the list of denied source addresses.

log [mode];

Log packets.

mode (type: on-off, optional, default: on=1)

continue;

Last-match applied for all rules in this ACL.

By default, first-match (i.e. QUICK) mode is used.

return [icmp] [code];

Return mode definition.

If not used, denial will be done by DROPping packets.

icmp (type: key, optional)

code (type: uint8, optional, default: 0)

ICMP message code, ICMP UNREACHABLE by default.

fastroute;

route-to iface [addr];

iface (type: name of interface, see interface(5))

addr (type: host, optional, default: [0.0.0.0])

queue name;

name (type: name of pf-queue, see pf-queue(5))

process [direct];

process application;

706

process tag tag ;

process notag;

process proxy-ng listen-socket-id listen-socket-id ;

Packet processing mode definition.

<branching element> (type: pf-proc-mode, optional, default: di-

rect)

tag (type: str)

listen-socket-id listen-socket-id (type: str)

ID of the PROXY-NG transparent listening socket.

no-state;

Disable PF state establishment.

For denial ACLs this item has no meaning since this behavior is default one in this

case.

option text ;

Free-form rule option.

text (type: str)

[End of section packet-filter.filter-acl description.]

load-anchor path from from;

Loading rules from file into anchor.

path (type: str)

Anchor name.

from from (type: str)

File name.

[End of section packet-filter description.]

SEE ALSO

configuration(7), altq(4), application(5), common(5), interface(5), log(5), pf-queue(5), pf.conf(5),

time(5)

707

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

pf-control.cfg — format of pf-control program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the pf-control.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in pf-control.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

on-off (see common(5))

name-selection (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

in-out (see common(5))

report-mode (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

inline-file-format (see common(5))

task-frequency (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

708

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ids-agent-log-level (see adaptive-firewall(5))

ids-agent-detection-direction (see adaptive-firewall(5))

ids-agent-protocol (see adaptive-firewall(5))

ids-agent-rule-action (see adaptive-firewall(5))

ids-agent-threshold-type (see adaptive-firewall(5))

ids-agent-threshold-track-by (see adaptive-firewall(5))

ids-agent-rate-filter-track-by (see adaptive-firewall(5))

ids-agent-suppress-direction (see adaptive-firewall(5))

policy-level (see adaptive-firewall(5))

pf-osi4-proto (see packet-filter(5))

icmp-type (see packet-filter(5))

pf-scheduler (see packet-filter(5))

pf-proc-mode (see packet-filter(5))

membertype (name-usage obligatory)

host

any

ITEMS AND SECTIONS

Program pf-control recognizes following items and sections:

adaptive-firewall { ... }

* shared-file name { ... }

* interface name { ... }

* pf-queue name { ... }

* resolver name { ... }

709

APPENDIX B. KERNUN UTM REFERENCE (5)

sysctl { ... }

use-resolver ... ;

pf { ... }

ipv6-mode ... ;

Description:

adaptive-firewall {

ids-agent { ... }

* watchdog name { ... }

honeypot { ... }

auto-blocking { ... }

adaptive-database { ... }

address-groups { ... }

port-groups { ... }

whitelist ... ;

blacklist ... ;

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

}

The adaptive-firewall section is derived from

adaptive-firewall section prototype. For detail description

of it, see adaptive-firewall(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

710

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

711

APPENDIX B. KERNUN UTM REFERENCE (5)

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

pf {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

712

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

pflog ... ;

pfsync ... ;

comm-dir ... ;

ignore-iface ... ;

pcap-timeout ... ;

buffer-size ... ;

* set-option ... ;

timeouts { ... }

limits { ... }

logging-frequence ... ;

* altq name { ... }

* scrub-acl name { ... }

* rdr-acl name { ... }

* nat-acl name { ... }

* binat-acl name { ... }

* filter-acl name { ... }

* load-anchor ... ;

pf-conf ... ;

* table name { ... }

}

The pf section is derived from pf section prototype. For detail

description of it, see above.

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), pf-control(8), adaptive-firewall(5), common(5), interface(5), listen-on(5), log(5),

packet-filter(5), pf-queue(5), resolver(5), source-address(5), sysctl(5), time(5)

713

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

pf-queue — format of pf-queue component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the pf-queue component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in pf-queue configuration directives:

bandwidth-mode (name-usage obligatory)

PF bandwidth config modes.

abs

Absolute bandwidth

ratio

Bandwidth relative to parent

pf-sc-setting (name-usage obligatory)

PF Service Curve setting.

total

initial

ITEMS AND SECTIONS

Configuration of pf-queue library component consists of following prototypes:

pf-sc ... ;

pf-sched-options { ... }

* pf-queue name { ... }

Description:

pf-sc [total] total-bw ;

714

pf-sc initial init-bw milliseconds total-bw ;

PF - HFSC Service Curve.

<branching element> (type: pf-sc-setting, optional, default: to-

tal)

init-bw (type: uint64)

milliseconds (type: uint32)

total-bw (type: uint64)

pf-sched-options {

default ... ;

red ... ;

rio ... ;

ecn ... ;

borrow ... ;

realtime ... ;

upperlimit ... ;

linkshare ... ;

}

Items & subsections:

default;

red;

rio;

ecn;

borrow;

realtime [total] total-bw ;

realtime initial init-bw milliseconds total-bw ;

PF - HFSC Service Curve.

<branching element> (type: pf-sc-setting, optional, default: to-

tal)

init-bw (type: uint64)

milliseconds (type: uint32)

total-bw (type: uint64)

upperlimit [total] total-bw ;

upperlimit initial init-bw milliseconds total-bw ;

PF - HFSC Service Curve.

715

APPENDIX B. KERNUN UTM REFERENCE (5)

<branching element> (type: pf-sc-setting, optional, default: to-

tal)

init-bw (type: uint64)

milliseconds (type: uint32)

total-bw (type: uint64)

linkshare [total] total-bw ;

linkshare initial init-bw milliseconds total-bw ;

PF - HFSC Service Curve.

<branching element> (type: pf-sc-setting, optional, default: to-

tal)

init-bw (type: uint64)

milliseconds (type: uint32)

total-bw (type: uint64)

[End of section pf-sched-options description.]

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

Packet filter QUEUE definition.

For configuration attributes details, see pf.conf(5).

Constraints:

CBQ, PRIQ and HFSC are mutually exclusive.

Items & subsections:

parent name;

Parent queue definition (child queue only).

name (type: name of pf-queue, see above)

bandwidth [abs] bits;

bandwidth ratio percent ;

Queue bandwidth limit.

If omitted, 100% of parent bandwidth assumed.

<branching element> (type: bandwidth-mode, optional, default:

abs)

716

bits (type: uint64)

Required bandwidth in bps.

percent (type: uint8)

Required part of parent bandwidth.

Constraints:

Percent value must be less 100.

priority [prty];

prty (type: uint8, optional, default: 1)

qlimit packets;

packets (type: uint32)

cbq {

default ... ;

red ... ;

rio ... ;

ecn ... ;

borrow ... ;

}

The cbq section is derived from pf-sched-options section proto-

type. For detail description of it, see above.

Changes to the cbq section:

Item realtime is not valid.

Item upperlimit is not valid.

Item linkshare is not valid.

priq {

default ... ;

red ... ;

rio ... ;

ecn ... ;

}

The priq section is derived from pf-sched-options section proto-

type. For detail description of it, see above.

Changes to the priq section:

Item borrow is not valid.

Item realtime is not valid.

Item upperlimit is not valid.

Item linkshare is not valid.

hfsc {

default ... ;

717

APPENDIX B. KERNUN UTM REFERENCE (5)

red ... ;

rio ... ;

ecn ... ;

realtime ... ;

upperlimit ... ;

linkshare ... ;

}

The hfsc section is derived from pf-sched-options section proto-

type. For detail description of it, see above.

Changes to the hfsc section:

Item borrow is not valid.

[End of section pf-queue description.]

SEE ALSO

configuration(7), altq(4), pf.conf(5)

718

NAME

pike — format of pike component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the pike component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in pike configuration directives:

yes-no (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

listen-on-sock (see listen-on(5))

proc-priority (see application(5))

pike-control-type (name-usage obligatory)

tag

cmd

ITEMS AND SECTIONS

Configuration of pike library component consists of following prototypes:

pikemon { ... }

719

APPENDIX B. KERNUN UTM REFERENCE (5)

Description:

pikemon {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

priority ... ;

status-file ... ;

hmac ... ;

devd-socket ... ;

garp-keepalive ... ;

* virtual-cluster name { ... }

}

PIKE Monitoring Daemon configuration.

The pikemon section is derived from alone-application section

prototype. For detail description of it, see application(5).

Changes to the pikemon section:

At least one VIRTUAL-CLUSTER must be defined.

HMAC has to be configured.

Added items & subsections:

720

listen-on {

* socket ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

Item non-transparent used as socket.

Item transparent is not valid.

Exactly one address to listen on must be specified.

Item socket (see listen-on(5))

Element proto is optional, default: tcp.

udpserver {

max-sessions ... ;

}

The udpserver section is derived from udpserver section prototype.

For detail description of it, see udpserver(5).

priority normal;

priority [realtime] [realtime];

Process priority setting.

<branching element> (type: proc-priority, optional, default: re-

altime)

realtime (type: uint8, optional, default: 16)

Realtime priority (parameter of rtprio() call).

Accepted values between 0 and 31; 0 is the highest priority.

Constraints:

Priority value must be between 0 and 31.

status-file [name];

File with current cluster status.

name (type: str, optional, default: "/var/run/pikemon.status")

hmac [optional] shared-secret ;

Protocol Verification by HMAC.

The purpose of the OPTIONAL flag is just to eliminate potential problems when chang-

ing the shared secret. The first step is to set OPTIONAL on both systems, so that they

will temporarily omit the HMAC checking. Then, the shared secret can be changed

without the risc of ignoring PIKE protocol packets on either system. When the new

configuration is propagated onto both cluster members, the OPTIONAL flag should be

cleared.

optional (type: key, optional)

Flag to eliminate HMAC checking.

721

APPENDIX B. KERNUN UTM REFERENCE (5)

shared-secret (type: str)

Shared secret for HMAC SHA256.

devd-socket [path];

Socket of devd(8).

path (type: str, optional, default: "/var/run/devd.pipe")

garp-keepalive [period];

Periodic sending of GARP by master.

period (type: uint32, optional, default: 60)

Setting to zero disables the feature.

virtual-cluster name {

id ... ;

* interface ... ;

hello-period ... ;

hello-timeout ... ;

* ping-group name { ... }

* iface-monitor ... ;

down-timeout ... ;

up-timeout ... ;

preemptive ... ;

primary ... ;

* control ... ;

}

Single set of virtual addresses with redundancy monitoring.

Items & subsections:

id [id];

Virtual cluster ID.

id (type: uint8, optional, default: 0)

interface virt ;

Interface belonging to virtual cluster.

virt (type: name of interface, see interface(5))

Virtual interface name.

hello-period [sec];

Period of PIKE HELLO subprotocol.

sec (type: uint8, optional, default: 1)

hello-timeout [sec];

Timeout of PIKE HELLO subprotocol.

When a node does not get a PIKE HELLO packet within this period, it assumes

the partner to be dead.

722

When a node does not get a PIKE HELLO packet with UP state from the partner

within this period, it assumes the partner to be down.

This timeout should be longer than the longest PING timeout.

sec (type: uint8, optional, default: 10)

ping-group name {

timeout ... ;

* host ... ;

}

Group of hosts being pinged.

Every defined group within a VIRTUAL-CLUSTER section must be alive to bring

monitored interfaces "up".

The ping-group section is derived from ping-group section proto-

type. For detail description of it, see ping(5).

iface-monitor name;

Interface being monitored.

name (type: name of interface, see interface(5))

down-timeout [sec];

Cluster down timeout.

At least one tested IP group must be inaccessible for this time in order to switch

the cluster interfaces "down".

sec (type: uint32, optional, default: 0)

Timeout in seconds, zero means immediate action.

up-timeout [sec];

Cluster up timeout.

All tested IP groups must be accessible for this time in order to switch the cluster

interfaces "up".

sec (type: uint32, optional, default: 0)

Timeout in seconds, zero means immediate action.

preemptive [status];

Preemptive mode.

In this mode, the primary firewall takes the master role whenever is ready.

status (type: yes-no, optional, default: yes)

primary [status];

Primary router flag.

In preemptive mode, the node marked as primary acts as the primary, dedicated

node.

status (type: yes-no, optional, default: no)

control [tag] tag ;

control cmd up down;

Cluster control.

This item allows to specify which components depend on master/backup state of

a virtual cluster, or what commands should be run when the state change occurs.

723

APPENDIX B. KERNUN UTM REFERENCE (5)

<branching element> (type: pike-control-type, optional, default:

tag)

tag (type: str)

Control tag - components with this tag run only in master state.

up (type: str)

Control command - executed when taking the master role.

down (type: str)

Control command - executed when taking the backup role.

[End of section pikemon.virtual-cluster description.]

[End of section pikemon description.]

SEE ALSO

configuration(7), application(5), common(5), interface(5), listen-on(5), log(5), ping(5),

udpserver(5), devd(8)

724

NAME

pikemon.cfg — format of pikemon program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the pikemon.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in pikemon.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

proc-priority (see application(5))

pike-control-type (see pike(5))

725

APPENDIX B. KERNUN UTM REFERENCE (5)

ITEMS AND SECTIONS

Program pikemon recognizes following items and sections:

* interface name { ... }

* resolver name { ... }

sysctl { ... }

use-resolver ... ;

pikemon { ... }

ipv6-mode ... ;

Description:

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

726

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

pikemon {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

727

APPENDIX B. KERNUN UTM REFERENCE (5)

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

priority ... ;

status-file ... ;

hmac ... ;

devd-socket ... ;

garp-keepalive ... ;

* virtual-cluster name { ... }

}

The pikemon section is derived from pikemon section prototype. For

detail description of it, see pike(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), pikemon(8), application(5), common(5), interface(5), listen-on(5), log(5),

pike(5), resolver(5), sysctl(5)

728

NAME

ping — format of ping component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ping component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Configuration of ping library component consists of following prototypes:

* ping-group name { ... }

Description:

ping-group name {

timeout ... ;

* host ... ;

}

Group of hosts being pinged.

Constraints:

At least one HOST must be specified.

Ping timeout must be specified.

Items & subsections:

timeout seconds;

Timeout for ping responses.

seconds (type: uint16)

host target [source-address source-address];

Ping group member description.

At least one of hosts within a group must respond within given timeout, this group to

be recognized as "alive".

729

APPENDIX B. KERNUN UTM REFERENCE (5)

target (type: host)

Host IP address

source-address source-address (type: host, optional, default:

[0.0.0.0])

Source IP address

[End of section ping-group description.]

SEE ALSO

configuration(7)

730

NAME

pop3-proxy — format of pop3-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the pop3-proxy component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in pop3-proxy configuration directives:

enabling (see common(5))

yes-no (see common(5))

nls (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

731

APPENDIX B. KERNUN UTM REFERENCE (5)

virus-status (see antivirus(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

listen-on-sock (see listen-on(5))

mime-header-check-type (see mod-mail-doc(5))

pop3-cmd (name-usage obligatory)

POP3 commands

UNKNOWN

command unknown to the proxy

APOP

AUTH

CAPA

DELE

LIST

NOOP

PASS

QUIT

RETR

RSET

STAT

STLS

TOP

UIDL

USER

pop3-capa (name-usage obligatory)

POP3 capabilities

UNKNOWN

capability unknown to the proxy

EXPIRE

732

IMPLEMENTATION

LOGIN-DELAY

PIPELINING

RESP-CODES

SASL

STLS

TOP

UIDL

USER

ITEMS AND SECTIONS

Configuration of pop3-proxy library component consists of following prototypes:

* pop3-proxy name { ... }

Description:

pop3-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

733

APPENDIX B. KERNUN UTM REFERENCE (5)

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

ssl-session-cache { ... }

mail-pool ... ;

* session-acl name { ... }

* command-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

POP3 proxy configuration.

The pop3-proxy section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the pop3-proxy section:

Section udpserver is not valid.

MAIL-POOL must be specified.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one COMMAND-ACL must be specified.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as uri.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 110.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 110.

Element proto is optional, default: tcp.

Item doctype-identification.order (see acl(5))

Only DOWNLOAD direction can be used.

Added items & subsections:

client-conn {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to client options.

734

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-conn section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

server-conn {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to server options.

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the server-conn section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

The ssl-session-cache section is derived from

ssl-session-cache section prototype. For detail description

of it, see ssl(5).

mail-pool name;

Mail pool directory.

name (type: str)

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

735

APPENDIX B. KERNUN UTM REFERENCE (5)

auth ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

client-ssl ... ;

* client-cert-match ... ;

language ... ;

}

The first level ACL decides how to handle incoming connections.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

SSL/TLS required on in order to match client certificates.

IDLE-TIMEOUT has no use without SSL/TLS.

Item doctype-ident-order (see acl(5))

Only DOWNLOAD direction can be used.

Item auth (see auth(5))

Element mode is optional, default: allowed.

Only out-of-band authentication is supported in this proxy.

Added items & subsections:

client-ssl params;

Use SSL/TLS on the connection from a client.

params (type: name of ssl-params, see ssl(5))

client-cert-match [subject subject] [issuer issuer];

Requirements for client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

language [code];

Language and charset of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

code (type: nls, optional, default: EN)

[End of section pop3-proxy.session-acl description.]

command-acl name {

* from ... ;

* server ... ;

736

* user ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

source-address ... ;

plug-to ... ;

* client-cert-match ... ;

server-ssl ... ;

* server-cert-match ... ;

language ... ;

max-bytes-in ... ;

max-bytes-out ... ;

max-mail-in ... ;

max-time ... ;

idle-timeout ... ;

commands ... ;

capabilities ... ;

cmd-line-len ... ;

resp-line-len ... ;

mail-filter ... ;

use-antispam ... ;

use-antivirus ... ;

no-mail-scanning ... ;

client-altq ... ;

server-altq ... ;

}

The second level ACL sets parameters of the connection to the server and

decides about handling individual commands.

The command-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the command-acl section:

Item parent-acl used as session-acl.

SSL/TLS required on in order to match server certificates.

MAIL-FILTER, USE-ANTISPAM, and USE-ANTIVIRUS cannot be used together

with NO-MAIL-SCANNING.

737

APPENDIX B. KERNUN UTM REFERENCE (5)

Item doctype-ident-order (see acl(5))

Only DOWNLOAD direction can be used.

Added items & subsections:

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;
Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of

them is applicable:

- The CLIENT keyword means the original client IP address is used. This mode

will be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used

for a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By

default, the main address of the bridge is used, however, any preferred alias address

can be listed in the cluster list.- The PHYSICAL option means that the address of

the physical interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical

address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

plug-to addr ;

Final destination server.

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

client-cert-match [subject subject] [issuer issuer];

Entry condition - select an ACL according to a client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

738

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

server-ssl params;

Use SSL/TLS on the connection to a server.

params (type: name of ssl-params, see ssl(5))

server-cert-match [subject subject] [issuer issuer];

Requirements for server certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

language code;

Language and charset of responses generated by Kernun.

If omitted in SESSION-ACL, English is used.If omitted in higer layer ACLs, settings

from lower layer is used.

code (type: nls)

max-bytes-in bytes;

Maximum number of bytes from server to client in a session.

bytes (type: uint64)

max-bytes-out bytes;

Maximum number of bytes from client to server in a session.

bytes (type: uint64)

max-mail-in bytes;

Maximum size of any single mail transferred from client to server.

bytes (type: uint64)

max-time seconds;

Maximum time of session

seconds (type: uint32)

idle-timeout [seconds];

If no data transmitted for this session in the period of idle-timeout seconds, con-

nection is closed.

If omitted, value of proxy session-acl.idle-timeout is used.

seconds (type: uint32, optional, default: 0)

commands [cmd];

Set of allowed POP3 commands.

cmd (type: pop3-cmd-set, optional, default: *)

capabilities [cap];

Set of allowed POP3 capabilities (sent in response to command.

cap (type: pop3-capa-set, optional, default: *)

739

APPENDIX B. KERNUN UTM REFERENCE (5)

cmd-line-len [bytes];

Maximum length of a command line (including CRLF).

bytes (type: uint32, optional, default: 255)

resp-line-len [bytes];

Maximum length of a response line (including CRLF).

bytes (type: uint32, optional, default: 512)

mail-filter name;

Filter for mails

name (type: name of mail-filter, see mod-mail-doc(5))

use-antispam disable;

use-antispam enable channel [limit];

Antispam usage.

This section defines type of antispam daemon used and mode of antispam checking

operation.

<branching element> (type: enabling)

channel (type: name of antispam, see mod-antispam(5))

Name of antispam global section used.

Referred section defines the way how to communicate with the antispam dae-

mon (see above).

limit (type: uint64, optional, default: 0)

Size limit (in bytes) for antispam check.

Antispam checking used to be very exhausting operation, and typical spam

mails used to be not very large (both for passing by size limit filters and for

being able to send a lot of copies). That’s why it can be desired to avoid

checking of very large mails.

Setting of this limit says antispam module not to check mails larger than given

limit and declare their spam score to zero.

Setting this limit to zero disables this feature and enables using of antispam to

all mails. Be prepared for high machine load and noticeable delay in delivery

if used so.

use-antivirus disable;

use-antivirus enable channel ;

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any AN-

TIVIRUS global section can be present nor any MAIL-ACL and DOC-ACL can

have VIRUS item specified.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see antivirus(5))

no-mail-scanning;

Pass mail to the client without checking.

740

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section pop3-proxy.command-acl description.]

mail-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* command-acl ... ;

deny ... ;

accept ... ;

rule ... ;

* content-type ... ;

virus-status ... ;

* modify-header ... ;

replace ... ;

* spam-score ... ;

* header ... ;

prefix-subject ... ;

}

The first ACL on the third level decides how to handle the whole mail.

The mail-acl section is derived from mail-acl section prototype.

For detail description of it, see mod-mail-doc(5).

Changes to the mail-acl section:

Item parent-acl used as command-acl.

Item direction is not valid.

Item size is not valid.

Item sender is not valid.

Item recipient is not valid.

Item recipients is not valid.

Item from-quarantine is not valid.

741

APPENDIX B. KERNUN UTM REFERENCE (5)

doc-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* command-acl ... ;

deny ... ;

accept ... ;

rule ... ;

* size ... ;

* content-type ... ;

* mime-type ... ;

virus-status ... ;

* modify-header ... ;

force-doctype-ident ... ;

replace ... ;

html-filter ... ;

* spam-score ... ;

* header ... ;

* filename ... ;

add-virus-names ... ;

}

The doc-acl section is derived from mail-doc-acl section proto-

type. For detail description of it, see mod-mail-doc(5).

Changes to the doc-acl section:

Item parent-acl used as command-acl.

Item direction is not valid.

Item sender is not valid.

Item recipient is not valid.

Item from-quarantine is not valid.

[End of section pop3-proxy description.]

SEE ALSO

configuration(7), acl(5), antivirus(5), application(5), auth(5), common(5), ipc(5), listen-on(5),

log(5), mod-antispam(5), mod-mail-doc(5), monitoring(5), netio(5), pf-queue(5),

source-address(5), ssl(5), time(5)

742

NAME

pop3-proxy.cfg — format of pop3-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the pop3-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in pop3-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

nls (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

743

APPENDIX B. KERNUN UTM REFERENCE (5)

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

mail-reaction (see mod-mail-doc(5))

mail-fallback (see mod-mail-doc(5))

mime-header-check-type (see mod-mail-doc(5))

pop3-cmd (see pop3-proxy(5))

pop3-capa (see pop3-proxy(5))

744

ITEMS AND SECTIONS

Program pop3-proxy recognizes following items and sections:

* antispam name { ... }

* antivirus name { ... }

* fake-cert name { ... }

* html-filter name { ... }

* interface name { ... }

* ldap-client-auth name { ... }

* mail-filter name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

* ssl-params name { ... }

sysctl { ... }

use-resolver ... ;

* pop3-proxy name { ... }

ipv6-mode ... ;

Description:

antispam name {

connection ... ;

sock-opt { ... }

altq ... ;

}

The antispam section is derived from antispam section prototype.

For detail description of it, see mod-antispam(5).

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

745

APPENDIX B. KERNUN UTM REFERENCE (5)

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

746

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

747

APPENDIX B. KERNUN UTM REFERENCE (5)

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

mail-filter name {

stamp-limit ... ;

stamp-filter ... ;

* unflagged-8bit ... ;

* bad-end-of-line ... ;

* invalid-header ... ;

* long-header-lines ... ;

* invalid-chars ... ;

* header-8bit-chars ... ;

* bad-boundary-chars ... ;

* bad-boundary-length ... ;

* long-body-lines ... ;

* long-encoded-lines ... ;

enc-line-len ... ;

* bad-mime-struct ... ;

* invalid-encoding ... ;

treat-rfc822-as-text ... ;

}

The mail-filter section is derived from mail-filter section pro-

totype. For detail description of it, see mod-mail-doc(5).

748

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

749

APPENDIX B. KERNUN UTM REFERENCE (5)

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

750

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

pop3-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

751

APPENDIX B. KERNUN UTM REFERENCE (5)

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

ssl-session-cache { ... }

mail-pool ... ;

* session-acl name { ... }

* command-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

The pop3-proxy section is derived from pop3-proxy section proto-

type. For detail description of it, see pop3-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), pop3-proxy(8), acl(5), antivirus(5), auth(5), common(5), interface(5),

ipc(5), ldap(5), listen-on(5), log(5), mod-antispam(5), mod-html-filter(5), mod-mail-doc(5),

pf-queue(5), pop3-proxy(5), radius(5), resolver(5), source-address(5), ssl(5), sysctl(5), time(5),

host-matching(7)

752

NAME

proxy-ng — format of proxy-ng component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the proxy-ng component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in proxy-ng configuration directives:

yes-no (see common(5))

ip-version (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

source-address-mode (see source-address(5))

session-protocol (name-usage optional)

Protocol for handling a TCP session.

tcp-proxy (0)

TCP proxy mode, no application protocol handling.

tcp-proxy-transparent (1)

TCP proxy mode, no application protocol handling, connects to the destination address

of the connection from the client unless overriden by PLUG-TO.

http-proxy (2)

HTTP proxy mode.

json-type (name-usage obligatory)

Types of JSON values

753

APPENDIX B. KERNUN UTM REFERENCE (5)

raw

Raw JSON value of any type (scalar, array, or object)

null

Null value

false

Boolean false value

true

Boolean true value

uint

Unsigned integer

fract

Fractional value with 3 decimal places

str

String value

http-version (name-usage obligatory)

Version of HTTP.

HTTP-1-0

HTTP-1-1

ITEMS AND SECTIONS

Configuration of proxy-ng library component consists of following prototypes:

* json-value ... ;

log-ng { ... }

* acl-ng name { ... }

* session-acl-ng name { ... }

* http-request-acl-ng name { ... }

* http-doc-acl-ng name { ... }

* proxy-ng name { ... }

Description:

json-value raw raw ;

json-value null path;

json-value false path;

json-value true path;

json-value uint path num_ui ;

754

json-value fract path num_f ;

json-value str path string ;

A generic JSON value.

<branching element> (type: json-type)

Type of the value.

raw (type: str)

A raw string that will be parsed as an arbitrarily complex JSON.

path (type: str-list)

A path to an object element. It is the list of names of nested active level configuration

JSON objects containing the value. The last is the name of the element name in the

innermost object.

num_ui (type: uint64)

A value of the object element.

num_f (type: fract)

A value of the object element.

string (type: str)

A value of the object element.

Constraints:

Invalid JSON in RAW..

PATH must not be empty..

log-ng {

level ... ;

facility ... ;

file ... ;

rotate ... ;

enabled ... ;

}

The log-ng section is derived from log section prototype. For detail

description of it, see log(5).

Changes to the log-ng section:

Item mem-level is not valid.

Item mem-file is not valid.

Item syslog-failure is not valid.

Item data-limit is not valid.

Item dump-hold-time is not valid.

755

APPENDIX B. KERNUN UTM REFERENCE (5)

Item file (see log(5))

Section usec is not valid.

Added items & subsections:

enabled [val];

Whether the log is enabled.

val (type: yes-no, optional, default: yes)

[End of section log-ng description.]

acl-ng name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

unset-flag ... ;

set-rule ... ;

}

Access Control List.

Constraints:

Only one of ACCEPT, DENY is allowed..

Items & subsections:

is-flagged names;

Entry condition: Tests that all flags (or rule names) in the list are set.

names (type: str-list)

not-flagged names;

Entry condition: Tests that no flags (or rule names) from the list are set.

names (type: str-list)

jval raw raw ;

jval null path;

jval false path;

jval true path;

jval uint path num_ui ;

jval fract path num_f ;

756

jval str path string ;

An arbitrary JSON value set if this ACL matches.

<branching element> (type: json-type)

Type of the value.

raw (type: str)

A raw string that will be parsed as an arbitrarily complex JSON.

path (type: str-list)

A path to an object element. It is the list of names of nested active level config-

uration JSON objects containing the value. The last is the name of the element

name in the innermost object.

num_ui (type: uint64)

A value of the object element.

num_f (type: fract)

A value of the object element.

string (type: str)

A value of the object element.

Constraints:

Invalid JSON in RAW..

PATH must not be empty..

deny;

Deny communication. This is the default if no ACL containing ACCEPT is applied.

accept;

Permit communication.

continue;

Do not stop checking ACLs if this ACL matches.

set-flag names;

Sets flags or rule names. See also SET-RULE.

names (type: str-list)

unset-flag names;

Unset flags or rule names. See also SET-RULE.

names (type: str-list)

set-rule names;

Sets rule names. A name used in a SET-RULE will be included in log messages if

it is activated by a SET-FLAG or SET-RULE. All other names used in SET-FLAG,

UNSET-FLAG, IS-FLAGGED, or NOT-FLAGGED, can be set, unset, or tested, but

are not logged.

names (type: str-list)

[End of section acl-ng description.]

757

APPENDIX B. KERNUN UTM REFERENCE (5)

session-acl-ng name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

unset-flag ... ;

set-rule ... ;

* listen-socket-id ... ;

* from ... ;

* to ... ;

protocol ... ;

source-address ... ;

plug-to ... ;

http-error { ... }

hand-off ... ;

}

Access Control List evaluated when a new TCP connection is accepted.

The session-acl-ng section is derived from acl-ng section proto-

type. For detail description of it, see above.

Added items & subsections:

listen-socket-id val ;

Entry condition: LISTEN-SOCKET-ID of the listening socket.

val (type: str)

from addr ;

Entry condition: Matches source IP address of a TCP connection from a client.

addr (type: host-set)

Set of client IP addresses or host names.

Constraints:

Regular expressions are not allowed in host set.

to addr [port port];

Entry condition: Matches destination IP address of a TCP connection from a client

addr (type: host-set)

Set of IP addresses or host names.

758

port port (type: port-set, optional, default: *)

Set of destination service names/port numbers.

Constraints:

Regular expressions are not allowed in host set.

protocol val ;

Selects a protocol for handling the session.

val (type: session-protocol)

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;

Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of them

is applicable:

- The CLIENT keyword means the original client IP address is used. This mode will

be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used for

a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By default,

the main address of the bridge is used, however, any preferred alias address can be

listed in the cluster list.- The PHYSICAL option means that the address of the physical

interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

plug-to addr ;

Final destination server.

759

APPENDIX B. KERNUN UTM REFERENCE (5)

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

http-error {

error-document ... ;

* subst ... ;

}

Controls error responses to HTTP requests.

Items & subsections:

error-document filename;

Template of the HTTP error document.

filename (type: name of shared-file, see common(5))

subst name value;

Name/value pairs substituted to ERROR-DOCUMENT.

name (type: str)

value (type: str)

[End of section session-acl-ng.http-error description.]

hand-off val ;

If YES, the proxy assumes that it connects to another proxy, not to the destination

server.

val (type: yes-no)

[End of section session-acl-ng description.]

http-request-acl-ng name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

unset-flag ... ;

set-rule ... ;

* listen-socket-id ... ;

* from ... ;

* to ... ;

source-address ... ;

760

plug-to ... ;

http-error { ... }

hand-off ... ;

* req-method ... ;

* req-uri ... ;

* req-host ... ;

* req-path ... ;

* req-query ... ;

* req-version ... ;

}

Access Control List evaluated when request headers of an HTTP request are received

from a client.

The http-request-acl-ng section is derived from session-acl-ng

section prototype. For detail description of it, see above.

Changes to the http-request-acl-ng section:

Item protocol is not valid.

Added items & subsections:

req-method val ;

The method of an HTTP request.

val (type: str-set)

req-uri val ;

The request URI of an HTTP request.

val (type: str-set)

req-host addr [port port];

The host address from an HTTP request.

addr (type: host-set)

Set of IP addresses or host names.

port port (type: port-set, optional, default: *)

Set of destination service names/port numbers.

req-path val ;

The path from an HTTP request URI.

val (type: str-set)

req-query val ;

The query from an HTTP request URI.

val (type: str-set)

761

APPENDIX B. KERNUN UTM REFERENCE (5)

req-version val ;

The HTTP version of an HTTP request.

val (type: http-version-set)

[End of section http-request-acl-ng description.]

http-doc-acl-ng name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

unset-flag ... ;

set-rule ... ;

* listen-socket-id ... ;

* from ... ;

* to ... ;

http-error { ... }

* req-method ... ;

* req-uri ... ;

* req-host ... ;

* req-path ... ;

* req-query ... ;

* req-version ... ;

* resp-status ... ;

* resp-version ... ;

}

Access Control List evaluated when response headers of an HTTP response are received

from a server.

The http-doc-acl-ng section is derived from

http-request-acl-ng section prototype. For detail descrip-

tion of it, see above.

Changes to the http-doc-acl-ng section:

Item source-address is not valid.

Item plug-to is not valid.

Item hand-off is not valid.

762

Added items & subsections:

resp-status val ;

The status code of an HTTP response.

val (type: uint16-set)

resp-version val ;

The HTTP version of an HTTP response.

val (type: http-version-set)

[End of section http-doc-acl-ng description.]

proxy-ng name {

phase ... ;

* tag ... ;

use-resolver ... ;

nodaemon ... ;

app-user ... ;

log-debug { ... }

log-stats { ... }

resolver-ng { ... }

listen-on { ... }

tcpserver { ... }

* cfg-begin ... ;

* cfg-end ... ;

* jval ... ;

log-audit { ... }

* session-acl name { ... }

http-proxy { ... }

}

New unified multi-protocol proxy

The proxy-ng section is derived from proxy section prototype. For

detail description of it, see application(5).

Changes to the proxy-ng section:

Section exclude-log-debug is not valid.

Section log-debug used as exclude-log-debug.

Section exclude-log-stats is not valid.

Section log-stats used as exclude-log-stats.

Item cfg-resolution is not valid.

763

APPENDIX B. KERNUN UTM REFERENCE (5)

Section monitoring is not valid.

Section stats-daily is not valid.

Section stats-weekly is not valid.

Section stats-monthly is not valid.

Item singleproc is not valid.

Item idle-timeout is not valid.

Item run-block-sigalrm is not valid.

Section exclude-listen-on is not valid.

Section listen-on used as exclude-listen-on.

Section exclude-tcpserver is not valid.

Section tcpserver used as exclude-tcpserver.

Section udpserver is not valid.

Item source-address is not valid.

Section doctype-identification is not valid.

Added items & subsections:

log-debug {

level ... ;

facility ... ;

file ... ;

rotate ... ;

enabled ... ;

}

The log-debug section is derived from log-ng section prototype.

For detail description of it, see above.

Item facility (see log(5))

Element value is optional, default: 5.

log-stats {

level ... ;

facility ... ;

file ... ;

rotate ... ;

enabled ... ;

}

The log-stats section is derived from log-ng section prototype.

For detail description of it, see above.

Changes to the log-stats section:

Only values NORMAL (log top-level protocol only) and DEBUG (log all protocols)

are allowed..

764

Item facility (see log(5))

Element value is optional, default: 6.

resolver-ng {

cache-size ... ;

refresh-time ... ;

threads ... ;

}

Attributes for configuration of domain names resolution.

Items & subsections:

cache-size [val];

Number of cached resolved host names or IP addresses

val (type: uint32, optional, default: 10000)

refresh-time [val];

Time (seconds) after which cached DNS results are refreshed if they are used or

deleted if they are unused.

val (type: fract, optional, default: 300)

threads [val];

Number of threads (parallel queries) used by DNS resolver.

val (type: uint8, optional, default: 20)

[End of section proxy-ng.resolver-ng description.]

listen-on {

* non-transparent ... ;

* transparent ... ;

}

Items & subsections:

non-transparent addr [version version] port port

listen-socket-id listen-socket-id ;

Sockets to bind for non-transparent connections.

addr (type: host)

Address to be bound

version version (type: ip-version, optional, default: undefined)

IP version selection

port port (type: port)

Port to be bound (lowest)

listen-socket-id listen-socket-id (type: str)

ID of the listening socket.

transparent listen-socket-id listen-socket-id ;

Sockets to handle transparent connections.

765

APPENDIX B. KERNUN UTM REFERENCE (5)

listen-socket-id listen-socket-id (type: str)

ID of the listening socket.

[End of section proxy-ng.listen-on description.]

tcpserver {

max-sessions ... ;

queue-size ... ;

worker-threads ... ;

}

General TCP server parameters.

Items & subsections:

max-sessions [value];

Maximum number of concurrent sessions from clients.

value (type: uint16, optional, default: 1500)

queue-size [value];

Queue length for listen(2) syscall, 0 for system default.

value (type: uint16, optional, default: 0)

worker-threads val ;

Number of threads for handling network communication. If not set, a default value

is determined according to the number of CPUs.

val (type: uint8)

[End of section proxy-ng.tcpserver description.]

cfg-begin filename;

Configuration files that will be read before the file generated from the CML configura-

tion.

filename (type: name of shared-file, see common(5))

cfg-end filename;

Configuration files that will be read after the file generated from the CML configuration.

filename (type: name of shared-file, see common(5))

jval raw raw ;

jval null path;

jval false path;

jval true path;

jval uint path num_ui ;

jval fract path num_f ;

jval str path string ;

An arbitrary JSON value which is set unconditionally upon proxy startup.

766

<branching element> (type: json-type)

Type of the value.

raw (type: str)

A raw string that will be parsed as an arbitrarily complex JSON.

path (type: str-list)

A path to an object element. It is the list of names of nested active level config-

uration JSON objects containing the value. The last is the name of the element

name in the innermost object.

num_ui (type: uint64)

A value of the object element.

num_f (type: fract)

A value of the object element.

string (type: str)

A value of the object element.

Constraints:

Invalid JSON in RAW..

PATH must not be empty..

log-audit {

level ... ;

facility ... ;

file ... ;

rotate ... ;

enabled ... ;

}

The log-audit section is derived from log-ng section prototype.

For detail description of it, see above.

Changes to the log-audit section:

Only values NORMAL (all audit messages) and ERROR (security violations at-

tempts only) are allowed..

Item facility (see log(5))

Element value is optional, default: 5.

session-acl name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

767

APPENDIX B. KERNUN UTM REFERENCE (5)

unset-flag ... ;

set-rule ... ;

* listen-socket-id ... ;

* from ... ;

* to ... ;

protocol ... ;

source-address ... ;

plug-to ... ;

http-error { ... }

hand-off ... ;

}

The session-acl section is derived from session-acl-ng section

prototype. For detail description of it, see above.

http-proxy {

* request-acl name { ... }

* doc-acl name { ... }

}

Control of sessions handled as HTTP.

Items & subsections:

request-acl name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

unset-flag ... ;

set-rule ... ;

* listen-socket-id ... ;

* from ... ;

* to ... ;

source-address ... ;

plug-to ... ;

http-error { ... }

hand-off ... ;

* req-method ... ;

* req-uri ... ;

* req-host ... ;

* req-path ... ;

768

* req-query ... ;

* req-version ... ;

}

The request-acl section is derived from http-request-acl-ng sec-

tion prototype. For detail description of it, see above.

doc-acl name {

* is-flagged ... ;

* not-flagged ... ;

* jval ... ;

deny ... ;

accept ... ;

continue ... ;

set-flag ... ;

unset-flag ... ;

set-rule ... ;

* listen-socket-id ... ;

* from ... ;

* to ... ;

http-error { ... }

* req-method ... ;

* req-uri ... ;

* req-host ... ;

* req-path ... ;

* req-query ... ;

* req-version ... ;

* resp-status ... ;

* resp-version ... ;

}

The doc-acl section is derived from http-doc-acl-ng section pro-

totype. For detail description of it, see above.

[End of section proxy-ng.http-proxy description.]

[End of section proxy-ng description.]

SEE ALSO

configuration(7), listen(2), application(5), common(5), log(5), source-address(5)

769

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

radius — format of radius component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the radius component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in radius configuration directives:

radius-attr (name-usage optional)

RADIUS attribute names

reply-message (18)

state (24)

class (25)

vendor-specific (26)

ITEMS AND SECTIONS

Configuration of radius library component consists of following prototypes:

* radius-client name { ... }

Description:

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

RADIUS Client Attributes.

Client identification and list of servers used for authentication.

770

Constraints:

Item NAS required.

Item SERVER required.

Items & subsections:

nas id ;

RADIUS NAS identification (identification of the RADIUS client)

id (type: str)

groups [attr];

Attribute containing list of groups in RAD_ACCESS_ACCEPT (default is Reply-

Message)

attr (type: radius-attr, optional, default: reply-message=18)

server host [port port] secret [timeout [tries]];

Definition of RADIUS server

host (type: host)

Server host name

port port (type: port, optional, default: 0)

Server port (0 means take from /etc/services)

secret (type: str)

Shared secret

timeout (type: uint16, optional, default: 5)

Timeout for receiving replies (seconds)

tries (type: uint16, optional, default: 5)

Maximum number of repeated requests before giving up

[End of section radius-client description.]

SEE ALSO

configuration(7)

771

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

resolver — format of resolver component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the resolver component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in resolver configuration directives:

enabling (see common(5))

ip-version (see common(5))

dns-type (name-usage optional)

none (0)

A (1)

NS (2)

MD (3)

MF (4)

CNAME (5)

SOA (6)

MB (7)

MG (8)

MR (9)

NULL (10)

WKS (11)

PTR (12)

HINFO (13)

MINFO (14)

MX (15)

772

TXT (16)

RP (17)

AFSDB (18)

X25 (19)

ISDN (20)

RT (21)

NSAP (22)

NSAP-PTR (23)

SIG (24)

KEY (25)

PX (26)

GPOS (27)

AAAA (28)

LOC (29)

NXT (30)

EID (31)

NIMLOC (32)

SRV (33)

ATMA (34)

NAPTR (35)

KX (36)

CERT (37)

A6 (38)

DNAME (39)

SINK (40)

OPT (41)

APL (42)

DS (43)

SSHFP (44)

IPSECKEY (45)

RRSIG (46)

NSEC (47)

DNSKEY (48)

NSEC3 (50)

NSEC3PARAM (51)

773

APPENDIX B. KERNUN UTM REFERENCE (5)

TLSA (52)

SPF (99)

TKEY (249)

TSIG (250)

IXFR (251)

AXFR (252)

MAILB (253)

MAILA (254)

ANY (255)

CAA (257)

dns-class (name-usage optional)

NONE (0)

IN (1)

CH (3)

HS (4)

ANY (255)

dns-opcode (name-usage optional)

QUERY (0)

IQUERY (1)

STATUS (2)

NOTIFY (4)

UPDATE (5)

dns-response (name-usage optional)

NoError (0)

FormErr (1)

ServFail (2)

NXDomain (3)

NotImp (4)

Refused (5)

YXDomain (6)

YXRRSet (7)

NXRRSet (8)

NotAuth (9)

774

NotZone (10)

BADVERS (16)

BADSIG (17)

BADKEY (18)

BADTIME (19)

BADMODE (20)

BADNAME (21)

BADALG (22)

dns-qaction (name-usage obligatory)

Action used for particular query received.

abort

Query is aborted, no answer.

deny

Query is denied, reply by given code.

resolve

Query is resolved from root accepting trusted answers only.

forward

Query is forwarded to DNS server.

fake

Query is replied according to configuration setting.

dns-raction (name-usage obligatory)

Action used for particular resource record received in reply.

abort

Query is aborted, no answer.

deny

Query is denied, reply by given code.

permit

Record is added to reply.

remove

Record is removed from reply.

dns-fake (name-usage obligatory)

RR types with faking implemented.

A

NS

775

APPENDIX B. KERNUN UTM REFERENCE (5)

CNAME

PTR

MX

AAAA

xfr-mode (name-usage obligatory)

Zone transfer modes.

keep

Use the same format as originator.

separated

Use more messages, one RR per message.

aggregated

Use one message with all RRs.

ITEMS AND SECTIONS

Configuration of resolver library component consists of following prototypes:

* ns-list name { ... }

* resolver name { ... }

use-resolver ... ;

cfg-resolution ... ;

Description:

ns-list name {

* server ... ;

}

This section defines set of nameservers used by dns-proxy for forwarding.

No "default server set" exist. Typical set of public internet root servers can be found in

file samples/root-servers.cml that you can include into your configuration and use here. See

instructions in the file.

Constraints:

At least one server must be specified.

Items & subsections:

server name addr [port port];

Single server description.

name (type: str)

Domain name of server

776

addr (type: host-list)

List of server IP addresses

port port (type: port, optional, default: 53)

[End of section ns-list description.]

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

Domain Names Resolver Configuration.

This prototype defines Kernun resolver parameters. It can be used generally, for any Kernun

application, or redefined for particular proxy.

The resolver section is derived from ns-list section prototype.

For detail description of it, see above.

Added items & subsections:

search names;

Domain search list.

If omitted, system domain name is used.

names (type: str-list)

Constraints:

Search list must not be empty.

preference versions;

IP address versions preference.

This item controls selection of IPv4 and IPv6 addresses obtained by resolving a name.

If not set, the default value depends on global Kernun configuration: if no interface has

IPv6 address, only IPv4 addresses are used, otherwise the default behavior according

to the RFC 3484 is used.

versions (type: ip-version-list)

Ordered list of versions.

Constraints:

Version list must contain one or two items of ipv4/ipv6.

777

APPENDIX B. KERNUN UTM REFERENCE (5)

edns [support];

EDNS support.

support (type: enabling, optional, default: enable)

conf-timeout [seconds];

Timeout for resolution of each domain name in configuration.

seconds (type: fract, optional, default: 15)

initial-timeout [seconds];

Timeout for initial attempt to deresolve client address.

If this deresolution fails, client address will be logged without name till the SESSION-

END message.

seconds (type: fract, optional, default: 0.200)

final-timeout [seconds];

Timeout used for deresolving client address immediately before logging the

SESSION-END message (if the first attempt of client deresolution failed due to

INITIAL-TIMEOUT).

seconds (type: fract, optional, default: 5)

conn-timeout [seconds];

Timeout to resolve connection critical addresses.

This timeout will be used for any resolution necessary for successful progress of con-

nection, e.g. server address.

seconds (type: fract, optional, default: 30)

disable-deresolution;

Flag to switch off IP addresses deresolution.

[End of section resolver description.]

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see above)

cfg-resolution [max-addrs [min-ttl [def-ttl [max-ttl [hosts-ttl

[pool-dir]]]]]];

Attributes for resolution of domain names in configuration.

max-addrs (type: uint8, optional, default: 10)

Maximum of addresses per a single domain name.

778

min-ttl (type: uint32, optional, default: 10)

Minimum TTL accepted, used instead of too small TTL values (e.g. 0).

def-ttl (type: uint32, optional, default: 1m)

Default TTL used in case of unsuccessful DNS resolution.

max-ttl (type: uint32, optional, default: 1d)

Maximum TTL accepted, used instead of large TTL values.

hosts-ttl (type: uint32, optional, default: 1d)

TTL used for names in /etc/hosts.

pool-dir (type: str, optional, default: "/tmp")

Directory for temporary files used to share results.

SEE ALSO

configuration(7), common(5)

779

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

router — format of router component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the router component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in router configuration directives:

yes-no (see common(5))

name-selection (see common(5))

export-import-mode (name-usage obligatory)

none

filter

all

ospf-authentication (name-usage obligatory)

none

simple

cryptographic

ospf-area-id-mode (name-usage obligatory)

number

dotted

780

ITEMS AND SECTIONS

Configuration of router library component consists of following prototypes:

export-import-routes ... ;

router-protocol { ... }

router { ... }

bird4 { ... }

bird6 { ... }

Description:

export-import-routes none;

export-import-routes filter filter ;

export-import-routes [all];

Interchange of routes between protocol and engine.

<branching element> (type: export-import-mode, optional, de-

fault: all)

Interchange mode.

filter (type: str)

Filter rules.

router-protocol {

import ... ;

export ... ;

scan ... ;

* area name { ... }

* raw ... ;

}

Protocol configuration.

Items & subsections:

import none;

import filter filter ;

import [all];

Import routes from protocol module to routing engine.

<branching element> (type: export-import-mode, optional, de-

fault: all)

Interchange mode.

filter (type: str)

Filter rules.

781

APPENDIX B. KERNUN UTM REFERENCE (5)

export none;

export filter filter ;

export [all];

Export routes from routing engine to protocol module.

<branching element> (type: export-import-mode, optional, de-

fault: all)

Interchange mode.

filter (type: str)

Filter rules.

scan [time time];

Period of scanning protocol route sources.

time time (type: uint16, optional, default: 10)

area name {

id ... ;

* interface name { ... }

stub ... ;

* raw ... ;

}

OSPF area definition.

Constraints:

Backbone area cannot be stub.

Items & subsections:

id [number] [id];

id dotted [addr];

Area identification

<branching element> (type: ospf-area-id-mode, optional, default:

number)

id (type: uint32, optional, default: 0)

addr (type: str, optional, default: "")

Constraints:

Dotted area ID must comply with IPv4 address format.

interface name {

* iface ... ;

cost ... ;

hello ... ;

retransmit ... ;

priority ... ;

wait ... ;

dead ... ;

authentication ... ;

782

stub ... ;

* raw ... ;

}

Interface parameters definition.

Constraints:

At least one IFACE item required..

Items & subsections:

iface any;

iface [name] name;

Interface name.

<branching element> (type: name-selection, optional, default:

name)

name (type: name of interface, see interface(5))

cost [metric];

Interface metric.

metric (type: uint32, optional, default: 10)

hello [seconds];

Hello interval.

Routers on the same network need to have the same value.

seconds (type: uint16, optional, default: 10)

retransmit [seconds];

Retransmition of unacknowledged updates interval.

seconds (type: uint16, optional, default: 5)

priority [prty];

Designated router selection priority.

prty (type: uint16, optional, default: 1)

wait [seconds];

Startup wait time.

seconds (type: uint16, optional, default: 40)

dead [seconds];

Neighbor death timeout.

seconds (type: uint16, optional, default: 40)

authentication [none];

783

APPENDIX B. KERNUN UTM REFERENCE (5)

authentication simple password ;

authentication cryptographic password ;

Authentication mode.

<branching element> (type: ospf-authentication, optional, de-

fault: none)

password (type: str)

Constraints:

Password can be max. 8 (simple) or 16 (cryptographic) charaters long.

stub;

Stub interface mode.

raw line;

Raw interface line.

line (type: str)

[End of section router-protocol.area.interface description.]

stub;

Stub area mode.

raw line;

Raw area line.

line (type: str)

[End of section router-protocol.area description.]

raw line;

Raw protocol line.

line (type: str)

[End of section router-protocol description.]

router {

phase ... ;

* tag ... ;

use-id ... ;

direct { ... }

kernel { ... }

device { ... }

static { ... }

ospf { ... }

* raw ... ;

784

}

Routing daemon configuration.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

use-id iface;

Router identification.

iface (type: name of interface, see interface(5))

Interface name, its IPv4 address will be used as router ID.

direct {

* interface ... ;

}

Interfaces under direct control of BIRD.

Items & subsections:

interface name;

Interface definition.

name (type: name of interface, see interface(5))

[End of section router.direct description.]

kernel {

import ... ;

export ... ;

scan ... ;

* raw ... ;

persist ... ;

}

Kernel routing table interaction description.

785

APPENDIX B. KERNUN UTM REFERENCE (5)

The kernel section is derived from router-protocol section pro-

totype. For detail description of it, see above.

Changes to the kernel section:

Section area is not valid.

Added items & subsections:

persist enabled ;

Keeping BIRD routes at exit.

enabled (type: yes-no)

[End of section router.kernel description.]

device {

import ... ;

scan ... ;

* raw ... ;

}

Network interfaces supervising description.

The device section is derived from router-protocol section pro-

totype. For detail description of it, see above.

Changes to the device section:

Item export is not valid.

Section area is not valid.

static {

import ... ;

export ... ;

* raw ... ;

}

The static section is derived from router-protocol section pro-

totype. For detail description of it, see above.

Changes to the static section:

Item scan is not valid.

Section area is not valid.

ospf {

import ... ;

export ... ;

* area name { ... }

* raw ... ;

rfc1583compat ... ;

}

The ospf section is derived from router-protocol section proto-

type. For detail description of it, see above.

786

Changes to the ospf section:

Item scan is not valid.

Added items & subsections:

rfc1583compat;

Routing table calculation according RFC 1583.

[End of section router.ospf description.]

raw line;

Raw router line.

line (type: str)

[End of section router description.]

bird4 {

phase ... ;

* tag ... ;

use-id ... ;

direct { ... }

kernel { ... }

device { ... }

static { ... }

ospf { ... }

* raw ... ;

}

The bird4 section is derived from router section prototype. For

detail description of it, see above.

bird6 {

phase ... ;

* tag ... ;

use-id ... ;

direct { ... }

kernel { ... }

device { ... }

static { ... }

ospf { ... }

* raw ... ;

}

787

APPENDIX B. KERNUN UTM REFERENCE (5)

The bird6 section is derived from router section prototype. For

detail description of it, see above.

Changes to the bird6 section:

USE-ID is mandatory in IPv6.

Section ospf.area.interface (see above)

Item authentication is not valid.

SEE ALSO

configuration(7), common(5), interface(5)

788

NAME

rtadvd — format of rtadvd component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the rtadvd component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in rtadvd configuration directives:

yes-no (see common(5))

ITEMS AND SECTIONS

Configuration of rtadvd library component consists of following prototypes:

rtadvd { ... }

Description:

rtadvd {

phase ... ;

* tag ... ;

default-params { ... }

}

IPv6 router advertisements daemon parameters.

The /etc/rtadvd.conf file consists of parameters specified here and in particular

INTERFACE.IPV6-RTADV sections.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 30)

Phase number; the lower one, the earlier start.

789

APPENDIX B. KERNUN UTM REFERENCE (5)

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

default-params {

managed-address ... ;

other-stateful ... ;

* raw ... ;

}

Common settings for all interfaces.

The default-params section is derived from ipv6-rtadv section

prototype. For detail description of it, see interface(5).

Changes to the default-params section:

Item enable is not valid.

[End of section rtadvd description.]

SEE ALSO

configuration(7), common(5), interface(5), rtadvd.conf(5), rtadvd(8)

790

NAME

sip-proxy — format of sip-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the sip-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in sip-proxy configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

791

APPENDIX B. KERNUN UTM REFERENCE (5)

listen-on-sock (see listen-on(5))

sip-cmd (name-usage obligatory)

none

ACK

BYE

CANCEL

INFO

INVITE

MESSAGE

NOTIFY

OPTIONS

PRACK

PUBLISH

REFER

REGISTER

SUBSCRIBE

UPDATE

peer (name-usage obligatory)

none

client

server

both

message (name-usage obligatory)

request

response

ITEMS AND SECTIONS

Configuration of sip-proxy library component consists of following prototypes:

* sip-proxy name { ... }

Description:

792

sip-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

source-address ... ;

doctype-identification { ... }

queue-size ... ;

hash-salt ... ;

ctrl-conn { ... }

data-conn { ... }

map-file ... ;

timeouts { ... }

sessions-table-size ... ;

sockets-table-size ... ;

* keepalive ... ;

* session-acl name { ... }

* request-acl name { ... }

}

This section defines SIP-proxy attributes.

The sip-proxy section is derived from proxy section prototype. For

detail description of it, see application(5).

793

APPENDIX B. KERNUN UTM REFERENCE (5)

Changes to the sip-proxy section:

Section tcpserver is not valid.

Section udpserver is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one REQUEST-ACL must be specified.

SIP Registration Yellow Pages File name must be specified.

Sessions table size must be specified.

Sockets table size must be specified.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as uri.

Item idle-timeout (see application(5))

Element seconds is optional, default: 60.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 5060.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 5060.

Added items & subsections:

queue-size [value];

Queue length for listen(2) syscall.

value (type: uint8, optional, default: 4)

hash-salt [text];

Private URI hashing salt.

When publishing data with private addresses (like our clients’ Connect URI), the SIP

proxy hashes it for security reasons. This hashing can be easily broken by trying all

possible private addresses. Therefore, the admin can define a site-specific string that

will be added to hashed address to disable this attack.

text (type: str, optional, default: "")

ctrl-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Control connection options.

794

The ctrl-conn section is derived from sock-opt section prototype.

For detail description of it, see netio(5).

data-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Data connection options.

The data-conn section is derived from sock-opt section prototype.

For detail description of it, see netio(5).

map-file name;

SIP Registration (Yellow Pages) File.

name (type: str)

timeouts {

timer-c ... ;

timer-dj ... ;

}

Timeout set.

Items & subsections:

timer-c [seconds];

Proxy transaction timeout (RFC 3261 Timer C).

This timer is used to prevent situations when a request never generates a final

response. When this timer fires, the session is cancelled.

seconds (type: uint32, optional, default: 3m)

timer-dj [seconds];

Wait time for message retransmits (RFC 3261 Timer D,J).

This timer is used to control removing of sessions from the table after carrying the

last message (ACK or final response to non_INVITE request).

seconds (type: uint32, optional, default: 32)

[End of section sip-proxy.timeouts description.]

sessions-table-size number ;

Maximal number of active SIP sessions.

The necessary number can be estimated as number of phones times 3 (client’s REGIS-

TER, registrar’s OPTIONS and call).

number (type: uint16)

795

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Number of sessions must not be zero.

sockets-table-size number ;

Maximal number of active SIP and SDP sockets.

This number must cover two sockets for every simultaneous TCP session plus two

sockets for every active media channel of every simultaneous call.

number (type: uint16)

Constraints:

Number of sockets must not be zero.

keepalive peer [period [content]];

Sending keepalive packets to peer.

These items enable sending of short packets used for keeping various state tables along

the path to the server alive.

peer (type: host-set)

Set of hosts interested in receiving such packets.

period (type: uint16, optional, default: 20)

content (type: str, optional, default: <NULL>)

Packet content, four zero bytes is used by default.

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

hide ... ;

reject-gracefully ... ;

}

The first level ACL decides only between acceptation and denial of the

incoming datagram/connection.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item auth is not valid.

Item idle-timeout-peer is not valid.

796

Added items & subsections:

hide [peer];

Peer real address replacing by proxy one.

peer (type: peer, optional, default: none)

reject-gracefully;

Graceful rejecting session according to the RFC.

By default, the proxy ignores packets that are not correct session-initiating ones,

i.e. invalid requests, correct requests for unknown servers, etc. This behavior can

prevent against DoS attacks.

Sometimes, it may be useful to handle such requests gracefully, i.e. to send an

answer and wait for the time specified in the RFC. This item will switch this

function on. However, it is highly recommended to enable this feature solely for

clients from secure (local) network.

[End of section sip-proxy.session-acl description.]

request-acl name {

* from ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

rule ... ;

plug-to ... ;

* request-method ... ;

* request-uri ... ;

}

The second level ACL decides about details or processing based on request

URI.

The request-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the request-acl section:

Item server is not valid.

Item parent-acl used as session-acl.

Item doctype-ident-order is not valid.

Added items & subsections:

plug-to addr ;

Final destination server.

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

797

APPENDIX B. KERNUN UTM REFERENCE (5)

request-method val ;

Entry condition - matching request methods.

val (type: str-set)

request-uri val ;

Entry condition - matching the whole request URI.

Proxy URIs have form sip:[<USER>@]<HOST>[:PORT], e.g., sip:sip.tns.cz:5061.

val (type: str-set)

[End of section sip-proxy.request-acl description.]

[End of section sip-proxy description.]

SEE ALSO

configuration(7), listen(2), acl(5), application(5), auth(5), common(5), listen-on(5), log(5),

monitoring(5), netio(5), source-address(5), time(5)

798

NAME

sip-proxy.cfg — format of sip-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the sip-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in sip-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

799

APPENDIX B. KERNUN UTM REFERENCE (5)

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

peer (see sip-proxy(5))

ITEMS AND SECTIONS

Program sip-proxy recognizes following items and sections:

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* sip-proxy name { ... }

ipv6-mode ... ;

Description:

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

800

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

801

APPENDIX B. KERNUN UTM REFERENCE (5)

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

802

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

sip-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

803

APPENDIX B. KERNUN UTM REFERENCE (5)

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

source-address ... ;

doctype-identification { ... }

queue-size ... ;

hash-salt ... ;

ctrl-conn { ... }

data-conn { ... }

map-file ... ;

timeouts { ... }

sessions-table-size ... ;

sockets-table-size ... ;

* keepalive ... ;

* session-acl name { ... }

* request-acl name { ... }

}

The sip-proxy section is derived from sip-proxy section prototype.

For detail description of it, see sip-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), sip-proxy(8), acl(5), auth(5), common(5), interface(5), ipc(5), ldap(5),

listen-on(5), log(5), radius(5), resolver(5), sip-proxy(5), source-address(5), sysctl(5), time(5)

804

NAME

smtp-proxy — format of smtp-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the smtp-proxy component configura-

tion.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in smtp-proxy configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

virus-status (see antivirus(5))

805

APPENDIX B. KERNUN UTM REFERENCE (5)

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

listen-on-sock (see listen-on(5))

smtp-error (see mod-mail-doc(5))

mime-header-check-type (see mod-mail-doc(5))

smtp-cmd (name-usage obligatory)

SMTP commands

NONE

HELO

EHLO

MAIL

RCPT

DATA

RSET

ETRN

TURN

VRFY

EXPN

HELP

NOOP

SEND

SAML

SOML

VERB

AUTH

STARTTLS

QUIT

smtp-size-usage (name-usage obligatory)

disable

806

input

ssl-startup-mode (name-usage obligatory)

Modes of SSL startup

session

SSL started immediately

command

SSL started after STARTTLS command

postfix-security-level (name-usage obligatory)

Postfix SMTP agent security levels.

none

No TLS.

may

Opportunistic TLS.

encrypt

Mandatory TLS encryption.

dane

Opportunistic DANE TLS.

dane-only

Mandatory DANE TLS.

fingerprint

Certificate fingerprint verification.

verify

Mandatory server certificate verification.

secure

Secure-channel TLS.

postfix-transport-map-mode (name-usage obligatory)

Postfix SMTP agent TRANSPORT-MAP modes.

none

No transport maps used.

relay

All forwarder domains mapped to the relay host.

fallback

All forwarder domains mapped to the relay host, rest of the world to the fallback socket.

extern

External (unhashed) map.

807

APPENDIX B. KERNUN UTM REFERENCE (5)

smtp-err-switch (name-usage obligatory)

ok

error

ignore-err

spf-result (name-usage obligatory)

White-listing (Sender Policy Framework) results.

None

Not enough information for checking available.

Neutral

Domain owner stated no decision about this client.

Pass

Client is authorized.

Fail

Client is not authorized.

SoftFail

Client is neither authorized nor strongly rejected.

TempError

Temporary error occured while checking client.

PermError

SPF record cannot be correctly interpreted.

spf-modes (name-usage obligatory)

SPF checking modes.

sender-only

Check only sender domain.

highest-mx

Try to check sender domain and in case of no SPF, check domain of the highest priority

sender MX.

check-all

Try to check sender domain and in case of no SPF, check all alternate domains from

the list.

matching-mx

Try to check sender domain and in case of no SPF, check domain of the highest priority

sender MX that matches any of the domains in the list.

808

ITEMS AND SECTIONS

Configuration of smtp-proxy library component consists of following prototypes:

smtp-limit { ... }

smtp-agent { ... }

* smtp-forwarder name { ... }

* smtp-arg-check ... ;

smtp-reply ... ;

* mailbox ... ;

grey-listing { ... }

* smtp-proxy name { ... }

Description:

smtp-limit {

soft ... ;

hard ... ;

}

This section defines two-level (soft/hard) SMTP limitation.

Items & subsections:

soft [val [text]];

Soft-limit.

Reaching this limit causes error state (response to client).

val (type: uint64, optional, default: 0)

Limitation value.

Value of zero disables soft-checking of particular limitation.

text (type: str, optional, default: <NULL>)

Error message.

If omitted, default reply is used.

hard [val [text]];

Hard-limit.

Reaching this limit causes immediate session termination.

val (type: uint64, optional, default: 0)

Limitation value.

Value of zero disables hard-checking of particular limitation.

text (type: str, optional, default: <NULL>)

Error message.

If omitted, default reply is used.

[End of section smtp-limit description.]

809

APPENDIX B. KERNUN UTM REFERENCE (5)

smtp-agent {

phase ... ;

* tag ... ;

relayhost ... ;

source-address ... ;

myhostname ... ;

smtp-helo-name ... ;

myorigin ... ;

inet-protocol ... ;

relay-domains ... ;

mydestinations ... ;

mynetworks ... ;

message-size-limit ... ;

bounce-size-limit ... ;

bounce-queue-lifetime ... ;

delay-warning-time ... ;

tls { ... }

* set-var ... ;

master-cf ... ;

smtpd-option ... ;

transport-map ... ;

}

Local MTA definition.

Constraints:

Relayhost must be defined for automatic transport maps.

MASTER-CF must be specified.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

810

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

relayhost next-hop;

MTA next-hop relay.

If omitted, MTA will deliver mail according to RCPTs DNS resolution.

next-hop (type: sock)

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;

Source address of connections outgoing from forwarder to next MTA.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

Using of client source address is not possible.

Using of cluster source address is not possible.

myhostname hostname;

Official hostname.

This value is copied to the main.cf ’myhostname’ variable. If omitted, the regular

hostname is used.

hostname (type: str)

smtp-helo-name hostname;

Name used in HELO/EHLO command.

This value is copied to the main.cf ’smtp_helo_name’ variable. If omitted, the regular

hostname is used instead.

hostname (type: str)

myorigin hostname;

Host name used for locally posted mails.

This value is copied to the main.cf ’myorigin’ variable. If omitted, the regular hostname

is used.

811

APPENDIX B. KERNUN UTM REFERENCE (5)

hostname (type: str)

inet-protocol version;

Internet protocol version support.

If omitted, IPv4 is enabled and IPv6 too, if supported.

version (type: ip-version)

relay-domains domains;

Destinations for which this agent relays mails to.

domains (type: str)

mydestinations domains;

Destinations for which this agent accepts mails.

domains (type: str)

mynetworks networks;

List of trusted remote SMTP clients.

If omitted, the 127.0.0.0/8 network is used.

networks (type: net-list)

message-size-limit [bytes];

MTA mail size limit.

bytes (type: uint64, optional, default: 10000000)

bounce-size-limit [bytes];

MTA DSN message size limit.

bytes (type: uint64, optional, default: 50000)

bounce-queue-lifetime [seconds];

MTA queue lifetime.

seconds (type: uint32, optional, default: 5d)

delay-warning-time [seconds];

MTA delay warning time.

seconds (type: uint32, optional, default: 3h)

tls {

security-level ... ;

log-level ... ;

}

Client TLS parameters.

Items & subsections:

security-level [level];

Security level.

level (type: postfix-security-level, optional, default: may)

812

log-level [level];

Log level (0..4).

level (type: uint8, optional, default: 1)

[End of section smtp-agent.tls description.]

set-var name value;

Postfix main.cf variables setting.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars only.

master-cf file;

Postfix master.cf configuration file.

This file serves as the source for the master.cf files copied into etc/postfix.NAME di-

rectories. The referenced file can be the master.cf file from the Postfix distribution,

because the CML modifies this file according to its purpose, i.e.

- for the LOCAL-MAILER, CML comments off all listening modules

- for SMTP-FORWARDERs, CML comments off local delivery module (if LOCAL-

MAILER is used).

file (type: name of shared-file, see common(5))

smtpd-option option;

Additional option to smtpd call from master.cf file.

option (type: str)

transport-map [none];

transport-map relay;

transport-map fallback fallback port ;

transport-map extern file;

Transport map definition.

<branching element> (type: postfix-transport-map-mode, op-

tional, default: none)

fallback (type: host)

Fallback address.

port (type: port)

Fallback port.

file (type: name of shared-file, see common(5))

Constraints:

Fallback port must differ from smtp port.

813

APPENDIX B. KERNUN UTM REFERENCE (5)

[End of section smtp-agent description.]

smtp-forwarder name {

* server ... ;

agent { ... }

timeouts { ... }

hostname ... ;

size ... ;

source-address ... ;

* domain ... ;

server-ssl ... ;

* server-cert-match ... ;

altq ... ;

}

This section defines SMTP forwarding channel.

Constraints:

At least one server must be specified.

At most 31 servers can be used.

SSL/TLS required on connection in order to match server certificates.

Items & subsections:

server addr ;

Forwarding MTA description.

addr (type: sock)

Server IP address/port

agent {

phase ... ;

* tag ... ;

relayhost ... ;

source-address ... ;

myhostname ... ;

smtp-helo-name ... ;

myorigin ... ;

inet-protocol ... ;

relay-domains ... ;

mydestinations ... ;

mynetworks ... ;

message-size-limit ... ;

814

bounce-size-limit ... ;

bounce-queue-lifetime ... ;

delay-warning-time ... ;

tls { ... }

* set-var ... ;

master-cf ... ;

smtpd-option ... ;

transport-map ... ;

}

Relaying by local MTA.

If used, this section defines parameters of a local agent listening on ’server’ addresses

and delivering mails sent by smtp-proxy.

The agent section is derived from smtp-agent section prototype.

For detail description of it, see above.

timeouts {

welcome ... ;

mail-cmd ... ;

rcpt-cmd ... ;

data-cmd ... ;

data-blk ... ;

data-end ... ;

terminate ... ;

default ... ;

}

This section defines several timeouts for server reply.

Items & subsections:

welcome [seconds];

Timeout for intial 220 reply.

seconds (type: uint16, optional, default: 300)

Default value set by RFC2821.

mail-cmd [seconds];

Timeout for reply to MAIL command.

seconds (type: uint16, optional, default: 300)

Default value set by RFC2821.

rcpt-cmd [seconds];

Timeout for reply to RCPT command.

seconds (type: uint16, optional, default: 300)

Default value set by RFC2821.

data-cmd [seconds];

Timeout for reply to DATA command.

815

APPENDIX B. KERNUN UTM REFERENCE (5)

seconds (type: uint16, optional, default: 120)

Default value set by RFC2821.

data-blk [seconds];

Timeout for reply to DATA block send completion.

seconds (type: uint16, optional, default: 180)

Default value set by RFC2821.

In fact, RFC says client should have timeout for "awaiting the completion of

each TCP SEND call". Instead, smtp-proxy does not start this timeout unless

output buffer is full.

data-end [seconds];

Timeout for reply to CRLF.CRLF marker.

seconds (type: uint16, optional, default: 600)

Default value set by RFC2821.

terminate [seconds];

Timeout for enforced session termination.

seconds (type: uint16, optional, default: 10)

default [seconds];

Timeout for all other situations.

seconds (type: uint16, optional, default: 300)

[End of section smtp-forwarder.timeouts description.]

hostname name;

Hostname to introduce myself to server.

If omitted, global smtp-proxy.hostname is used.

name (type: str)

size [usage];

Usage of SIZE ESMTP extension to the server.

This item defines, whether smtp-proxy uses SIZE extension to MAIL command. Possi-

ble values are:

• DISABLE ... do not use SIZE.

• INPUT ... use SIZE (if supported by server) with received mail size instead of

computing correct one.

usage (type: smtp-size-usage, optional, default: disable)

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;

Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

816

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of them

is applicable:

- The CLIENT keyword means the original client IP address is used. This mode will

be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used for

a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By default,

the main address of the bridge is used, however, any preferred alias address can be

listed in the cluster list.- The PHYSICAL option means that the address of the physical

interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

domain names;

List of mail server domain names handled by this forwarder.

These items are used when smtp-proxy needs to send either a copy of a mail, or a DSN

message, for choosing the right forwarder. The first forwarder section with matching

DOMAIN item(s) is used. More occurences of item are treated as a disjunction (OR-

mode).

names (type: str-list)

server-ssl params [session];

server-ssl params command [obligation];

Use SSL/TLS on the connection to a server.

params (type: name of ssl-params, see ssl(5))

<branching element> (type: ssl-startup-mode, optional, default:

session)

obligation (type: obligation, optional, default: allowed)

server-cert-match [subject subject] [issuer issuer];

Requirements for server certificate.

817

APPENDIX B. KERNUN UTM REFERENCE (5)

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

altq altq [paltq paltq];

ALTQ queues for data sent to forwarder.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section smtp-forwarder description.]

smtp-arg-check [local-part-len local-part-len] ok [addrs];

smtp-arg-check [local-part-len local-part-len] error [errors [ad-

drs]];

smtp-arg-check [local-part-len local-part-len] ignore-err [ad-

drs];

This item defines SMTP envelope arguments check conditions.

local-part-len local-part-len (type: uint8, optional, default: 64)

Maximum length of local part (default set by RFC2821).

<branching element> (type: smtp-err-switch)

This element controls which parsing results match this item:

• OK: only correct arguments match

• ERROR: arguments with further specified error match

• IGNORE-ERR: all arguments (correct and errorneous) match

errors (type: smtp-error-set, optional, default: *)

Set of errors matching this configuration item.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses matching:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-part in

any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address within

given domain and any its subdomain.

818

Warning: in case of ARG-INVALID error, an empty string (instead of the errorneous

address) is being matched against the list.

smtp-reply [code [subject [detail [text]]]];

This item defines SMTP reply code and text.

The default code & text is used if values are omitted.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class) of ESC

(Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

mailbox email ;

Mail recipient address.

email (type: str)

Deliver mail to this address, using SMTP-FORWARDER chosen by comparing the

address domain name with forwarder DOMAIN(s).

Constraints:

E-mail must comply with RFC.

grey-listing {

reply ... ;

block-time ... ;

retry-time ... ;

guard-time ... ;

client-mask ... ;

file ... ;

}

819

APPENDIX B. KERNUN UTM REFERENCE (5)

Grey-listing verification parameters.

If the grey-listing method is used, mails for a newly seen triplet <client, sender, recipient>

are temporarily rejected for the BLOCK-TIME period and it is expected their delivery to be

successfully retried within the RETRY-TIME period. The triplets are stored into a database

file.

For more details, see triplicator(1) manual page.

The particular attributes are normally set at smtp-proxy level (for the default values, see

the description at that point) and redefined at delivery-acl level, if needed.

Items & subsections:

reply [code [subject [detail [text]]]];

Default refusal response code and text.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class) of

ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

Refusing must be temporary (4xx).

block-time seconds;

Timeout for blocking of newly seen triplets.

seconds (type: uint32)

retry-time seconds;

Total time of waiting for triplet delivery retrying.

Within this time (after the initial BLOCK-TIME period), the triplet is normally pro-

cessed.

After this time, the triplet is set into initial state.

seconds (type: uint32)

guard-time seconds;

Time of guarded delivery for a triplet.

If the triplet was retried to deliver by the client (and the triplet is thereby enabled), all

mails for the triplet are normally processed for the GUARD-TIME period. Every new

mail resets this period.

820

seconds (type: uint32)

client-mask [bits];

Database wide client netmask.

Clients are stored into the database using this mask. This feature allows correct func-

tion of grey-listing even for MTAs using a cluster of several machines with several IP

addresses.

bits (type: uint8, optional, default: 24)

file name;

Triplet database file name.

This file must be set at smtp-proxy level because it is common for the whole proxy.

name (type: str)

[End of section grey-listing description.]

smtp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

mail-pool ... ;

quarantine ... ;

821

APPENDIX B. KERNUN UTM REFERENCE (5)

postmaster ... ;

hostname ... ;

init-timeout ... ;

bad-commands ... ;

bad-recipients ... ;

dsn-mail-copy ... ;

use-antivirus ... ;

use-antispam ... ;

ssl-session-cache { ... }

grey-listing { ... }

* session-acl name { ... }

* delivery-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

This section defines SMTP-proxy attributes.

The smtp-proxy section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the smtp-proxy section:

Section udpserver is not valid.

Item source-address is not valid.

MAIL-POOL must be specified.

POSTMASTER must be specified.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one DELIVERY-ACL must be specified.

At least one MAIL-ACL must be specified.

At least one DOC-ACL must be specified.

USE-ANTIVIRUS must be configured if VIRUS-STATUS used.

QUARANTINE must be configured at proxy level if used in ACLs.

Proxy must listen on QUARANTINE.PORT if used.

GREY-LISTING must be configured if used in DELIVERY-ACL.

WHITE-LISTING must be configured if SPF used in DELIVERY-ACL.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as rcpts.

822

Item idle-timeout (see application(5))

Element seconds is optional, default: 300.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 25.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 25.

Element proto is optional, default: tcp.

Item doctype-identification.order (see acl(5))

Only UPLOAD direction can be used.

Added items & subsections:

client-conn {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client connection options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-conn section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

Item recv-bufsize (see netio(5))

Buffer must be at least 1002 bytes long.

Item send-bufsize (see netio(5))

Buffer must be at least 1002 bytes long.

server-conn {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Server connection options.

In particular, output buffer size must be large enough to hold all lines of maximal

allowed SMTP document header.

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

823

APPENDIX B. KERNUN UTM REFERENCE (5)

Changes to the server-conn section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

Item recv-bufsize (see netio(5))

Buffer must be at least 1002 bytes long.

Item send-bufsize (see netio(5))

Buffer must be at least 1002 bytes long.

mail-pool name;

Mail pool directory.

The directory is used for temporary storing of incoming mails.

name (type: str)

Directory path name (relative to the CHROOT-DIR if any).

quarantine dir [port];

Quarantine directory and resend-port.

dir (type: str)

Directory path name (relative to the CHROOT-DIR if any).

port (type: port, optional, default: 0)

Port for receiving mails sent by admin from quarantine.

This must be one of LISTEN-ON.NON-TRANSPARENT addresses with IP ad-

dress [127.0.0.1]. Can be omitted if this proxy won’t resend quarantine mails.

postmaster email ;

Postmaster address.

Mails for <postmaster> are forwarded to this address.

email (type: str)

Postmaster email; local-part with quotting is not valid.

Constraints:

E-mail must comply with RFC.

hostname name;

Hostname used instead of regular host name.

name (type: str)

init-timeout [seconds];

Timeout for initial command reception.

seconds (type: uint16, optional, default: 30)

bad-commands [limit];

Maximum of rejected SMTP commands per session.

limit (type: uint16, optional, default: 100)

bad-recipients [limit];

Maximum of rejected RCPT commands per mail.

824

limit (type: uint16, optional, default: 100)

dsn-mail-copy disable;

dsn-mail-copy [enable] [bytes];

Sending of original mail copy in DSN messages.

Delivery Status Notification (DSN) messages (RFC1894, RFC1982) optionally contain

portion of the original mail, delivery status of which is being reported. By default,

smtp-proxy sends original mail headers and portion of mail body.

This item allows to disable this behavior, or declare the size limit of mail body portion

being sent. When enabled, mail headers are sent always complete.

<branching element> (type: enabling, optional, default: enable)

bytes (type: uint32, optional, default: 16K)

use-antivirus disable;

use-antivirus enable channel ;

Antivirus usage mode.

If omitted, or disabled, no antivirus is enabled. In this case, neither any ANTIVIRUS

global section can be present nor any MAIL-ACL and DOC-ACL can have VIRUS item

specified.

<branching element> (type: enabling)

channel (type: name-list of antivirus, see antivirus(5))

use-antispam disable;

use-antispam enable channel [limit];

Antispam usage.

This section defines type of antispam daemon used and mode of antispam checking

operation.

<branching element> (type: enabling)

channel (type: name of antispam, see mod-antispam(5))

Name of antispam global section used.

Referred section defines the way how to communicate with the antispam daemon

(see above).

limit (type: uint64, optional, default: 0)

Size limit (in bytes) for antispam check.

Antispam checking used to be very exhausting operation, and typical spam mails

used to be not very large (both for passing by size limit filters and for being able to

send a lot of copies). That’s why it can be desired to avoid checking of very large

mails.

Setting of this limit says antispam module not to check mails larger than given

limit and declare their spam score to zero.

Setting this limit to zero disables this feature and enables using of antispam to all

mails. Be prepared for high machine load and noticeable delay in delivery if used

so.

825

APPENDIX B. KERNUN UTM REFERENCE (5)

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

The ssl-session-cache section is derived from

ssl-session-cache section prototype. For detail description

of it, see ssl(5).

grey-listing {

reply ... ;

block-time ... ;

retry-time ... ;

guard-time ... ;

client-mask ... ;

file ... ;

}

Grey-listing global default parameters.

Most of these parameters can be redefined in DELIVERY-ACL.

The grey-listing section is derived from grey-listing section

prototype. For detail description of it, see above.

Changes to the grey-listing section:

Triplet database file name must be defined.

Item block-time (see above)

Element seconds is optional, default: 1h.

Item retry-time (see above)

Element seconds is optional, default: 4h.

Item guard-time (see above)

Element seconds is optional, default: 36d.

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout ... ;

source-address ... ;

826

hostname ... ;

welcome-msg ... ;

client-ssl ... ;

* client-cert-match ... ;

unknown-client ... ;

unmatching-client ... ;

* blacklisted-client ... ;

white-listing ... ;

strict-rfc-arg ... ;

size-limit { ... }

size-tolerance ... ;

rcpt-limit { ... }

dsn-rcpt-limit { ... }

mail-filter ... ;

client-altq ... ;

}

The first level of ACL decides whether to accept incoming connection.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item auth is not valid.

Item idle-timeout-peer is not valid.

Item plug-to is not valid.

SSL/TLS required on connection in order to match client certificates.

Item doctype-ident-order (see acl(5))

Only UPLOAD direction can be used.

Added items & subsections:

hostname name;

Hostname to introduce myself to client.

If omitted, global smtp-proxy.hostname is used.

name (type: str)

welcome-msg text ;

Welcome greeting message text.

Hostname and date/time are added automatically.

If omitted, Kernun proxy name and version is used.

text (type: str)

client-ssl params [session];

client-ssl params command [obligation];

Use SSL/TLS on the connection from a client.

827

APPENDIX B. KERNUN UTM REFERENCE (5)

params (type: name of ssl-params, see ssl(5))

<branching element> (type: ssl-startup-mode, optional, default:

session)

obligation (type: obligation, optional, default: allowed)

client-cert-match [subject subject] [issuer issuer];

Requirements for client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

unknown-client [text];

Check client’s reverse DNS record.

If set, all clients are checked to have DNS reverse record and service is rejected for

such that do not.

text (type: str, optional, default: <NULL>)

If omitted, default text is used.

unmatching-client [text];

Check client’s IP against all client’s names’ addresses.

If set, all clients are checked to have DNS reverse record correct. It means that at

least one name got as reverse client name must have IP address equal to the one

of client connection.

text (type: str, optional, default: <NULL>)

If omitted, default text is used.

blacklisted-client database [text];

Check client’s IP against DNS black-list databases.

If set, all clients are checked to have a DNS A record in given domain and if so,

the session is rejected.

If used multiple times, a new resolution operation with full CONN-TIMEOUT is

started for every domain (until some query will succeed with an A RR response).

Thus, too many items can lead to mail delivery timing out.

database (type: str)

List of checked domains.

text (type: str, optional, default: <NULL>)

If omitted, default text is used.

Constraints:

Blacklist domain name too long.

white-listing [sender-only];

white-listing highest-mx;

white-listing check-all [alt-domains];

white-listing matching-mx [alt-domains];

Provide white-listing (Sender Policy Framework) checking.

The result can be matched in DELIVERY-ACL.

828

<branching element> (type: spf-modes, optional, default: sender-

only)

alt-domains (type: str-list, optional, default: {})

Alternate domains for SPF check.

strict-rfc-arg;

Check strict RFC2821 MAIL/RCPT argument format.

RFC 2821 defines correct command argument format, but allows for some obsolete

formats to be accepted. This item controls (rejects) usage of these old formats.

size-limit {

soft ... ;

hard ... ;

}

Maximum mail size.

Soft-limit is also used as SIZE parameter in EHLO response.

The size-limit section is derived from smtp-limit section proto-

type. For detail description of it, see above.

size-tolerance percent ;

Tolerance to clients’ SIZE declaration.

If used, client can send given number of percent more data than declared in MAIL

SIZE parameter.

If omitted, real size is not checked against declared one.

percent (type: uint32)

Constraints:

Size tolerance must be at most 100%.

rcpt-limit {

soft ... ;

hard ... ;

}

Maximum number of recipients per message.

Setting to less than 100 is RFC2821 violation.

The rcpt-limit section is derived from smtp-limit section proto-

type. For detail description of it, see above.

Item soft (see above)

Element val is optional, default: 100.

dsn-rcpt-limit {

soft ... ;

hard ... ;

}

Maximum number of recipients per DSN report.

There is no such limit in RFC2821, however, such mails SHOULD have only one

recipient (original sender) and null sender (MAIL FROM: <>) is often used by

spammers.

This limitation is additional one to the RCPT-LIMIT.

829

APPENDIX B. KERNUN UTM REFERENCE (5)

The dsn-rcpt-limit section is derived from smtp-limit section

prototype. For detail description of it, see above.

Item soft (see above)

Element val is optional, default: 5.

mail-filter name;

SMTP/MIME document filtering/checking rules.

name (type: name of mail-filter, see mod-mail-doc(5))

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section smtp-proxy.session-acl description.]

delivery-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

* helo ... ;

* sender ... ;

* recipient ... ;

spf ... ;

* client-cert-match ... ;

abort ... ;

reject ... ;

refuse ... ;

discard ... ;

deliver ... ;

grey-listing { ... }

* copy-to ... ;

quarantine ... ;

}

The second level of ACL decides about reply to particular RCPT command

and way how to deliver mail.

830

The delivery-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the delivery-acl section:

Item server is not valid.

Item user is not valid.

Item parent-acl used as session-acl.

ABORT, REJECT or REFUSE must be specified if DENY is on.

ABORT, REJECT and REFUSE cannot be specified if ACCEPT is on.

DISCARD, DELIVER, QUARANTINE and COPY-TO cannot be specified if

DENY is on.

ABORT, REJECT and REFUSE are mutually exclusive.

DISCARD and DELIVER are mutually exclusive.

At least one SENDER must be specified.

At least one RECIPIENT must be specified.

Item doctype-ident-order (see acl(5))

Only UPLOAD direction can be used.

Added items & subsections:

helo [local-part-len local-part-len] ok [addrs];

helo [local-part-len local-part-len] error [errors [addrs]];

helo [local-part-len local-part-len] ignore-err [addrs];

Entry condition - matching HELO/EHLO command parameter.

local-part-len local-part-len (type: uint8, optional, default: 64)

Maximum length of local part (default set by RFC2821).

<branching element> (type: smtp-err-switch)

This element controls which parsing results match this item:

• OK: only correct arguments match

• ERROR: arguments with further specified error match

• IGNORE-ERR: all arguments (correct and errorneous) match

errors (type: smtp-error-set, optional, default: *)

Set of errors matching this configuration item.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses

matching:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-

part in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

831

APPENDIX B. KERNUN UTM REFERENCE (5)

Warning: in case of ARG-INVALID error, an empty string (instead of the

errorneous address) is being matched against the list.

sender [local-part-len local-part-len] ok [addrs];

sender [local-part-len local-part-len] error [errors [addrs]];

sender [local-part-len local-part-len] ignore-err [addrs];

Entry condition - matching MAIL command parameter.

local-part-len local-part-len (type: uint8, optional, default: 64)

Maximum length of local part (default set by RFC2821).

<branching element> (type: smtp-err-switch)

This element controls which parsing results match this item:

• OK: only correct arguments match

• ERROR: arguments with further specified error match

• IGNORE-ERR: all arguments (correct and errorneous) match

errors (type: smtp-error-set, optional, default: *)

Set of errors matching this configuration item.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses

matching:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-

part in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

Warning: in case of ARG-INVALID error, an empty string (instead of the

errorneous address) is being matched against the list.

recipient [local-part-len local-part-len] ok [addrs];

recipient [local-part-len local-part-len] error [errors [addrs]];

recipient [local-part-len local-part-len] ignore-err [addrs];

Entry condition - matching RCPT command parameter.

local-part-len local-part-len (type: uint8, optional, default: 64)

Maximum length of local part (default set by RFC2821).

<branching element> (type: smtp-err-switch)

This element controls which parsing results match this item:

• OK: only correct arguments match

• ERROR: arguments with further specified error match

• IGNORE-ERR: all arguments (correct and errorneous) match

832

errors (type: smtp-error-set, optional, default: *)

Set of errors matching this configuration item.

addrs (type: str-set, optional, default: *)

Set of addresses matching this configuration item.

The matching rules are slightly modified for the purpose of email addresses

matching:

• Regular expressions are matched as usual.

• Addresses defined by string ended with the ’@’ character match given local-

part in any domain.

• Addresses defined by string beginning by the ’@’ character match any address

within given domain.

• Other addresses containing the ’@’ character match exactly given address.

• Addresses defined by string containing no ’@’ character match any address

within given domain and any its subdomain.

Warning: in case of ARG-INVALID error, an empty string (instead of the

errorneous address) is being matched against the list.

spf [results];

Entry condition - white-listing (SPF) result.

results (type: spf-result-set, optional, default: *)

client-cert-match [subject subject] [issuer issuer];

Entry condition - matching SSL client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

abort [code [subject [detail [text]]]];

SMTP session is to be immediately closed.

In fact, the operation consists of three steps on client channel: specified reply is

sent, reply 421 is sent and connection is closed.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

833

APPENDIX B. KERNUN UTM REFERENCE (5)

Constraints:

Reply-code must be 4xx or 5xx.

reject [code [subject [detail [text]]]];

Mail is rejected.

If such an action is taken for at least one recipient, the mail will not be accepted

and specified reply is sent to the client as a response to both RCPT and DATA

commands.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

refuse [code [subject [detail [text]]]];

Mail sending to particular recipient is refused.

RCPT command is answered by specified reply code with no impact to other re-

cipients.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

discard;

Mail is accepted, but discarded.

834

The mail will not be sent to this recipient but client is informed as if it was (by

reply code 250). No impact to sending to other recipients.

deliver [via via] [to to];

Mail is normally delivered.

via via (type: name of smtp-forwarder, see above, optional, de-

fault: NULL)

Name of FORWARDER used for delivery.

If omitted, forwarder is selected according to their DOMAIN attributes.

to to (type: str, optional, default: <NULL>)

New addressee (for forwarding to alias).

grey-listing {

reply ... ;

block-time ... ;

retry-time ... ;

guard-time ... ;

}

Grey-listing method setting.

Using of this section enables grey-listing mode.

Omitted parameters take value from proxy-global section.

The grey-listing section is derived from grey-listing section

prototype. For detail description of it, see above.

Changes to the grey-listing section:

Item client-mask is not valid.

Item file is not valid.

copy-to email ;

Blind-copy of mail will be sent to given address.

email (type: str)

Deliver mail to this address, using SMTP-FORWARDER chosen by comparing

the address domain name with forwarder DOMAIN(s).

Constraints:

E-mail must comply with RFC.

quarantine;

Store mail into quarantine.

[End of section smtp-proxy.delivery-acl description.]

mail-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* delivery-acl ... ;

deny ... ;

accept ... ;

rule ... ;

835

APPENDIX B. KERNUN UTM REFERENCE (5)

* size ... ;

* content-type ... ;

virus-status ... ;

* modify-header ... ;

replace ... ;

* sender ... ;

* recipient ... ;

* recipients ... ;

* spam-score ... ;

* header ... ;

from-quarantine ... ;

prefix-subject ... ;

abort ... ;

reject ... ;

discard ... ;

cancel ... ;

* copy-to ... ;

* redirect-to ... ;

quarantine ... ;

omit-dsn ... ;

}

The first ACL on the third level decides how to handle the mail as whole.

In fact, one more decision for the whole mail can be made - in DOC-ACL corresponding

to the root of MIME tree.For particular recipient, all denial actions from the third level

ACL are collected, the one with highest severity (abort > reject > discard > cancel)

from all DOC-ACLs is chosen. Some actions (discard, cancel) have per-recipient impact

and no influence to sending mail to other recipients. However, other actions (abort,

reject) have per-mail impact and the one with highest severity from all recipients is

executed.

If no ACL is found, ABORT action is preformed.

The mail-acl section is derived from mail-acl section prototype.

For detail description of it, see mod-mail-doc(5).

Changes to the mail-acl section:

Item parent-acl used as delivery-acl.

Item direction is not valid.

ABORT, REJECT, DISCARD or CANCEL must be specified if DENY is on.

ABORT, REJECT, DISCARD and CANCEL cannot be specified if ACCEPT is

on.

ABORT, REJECT, DISCARD and CANCEL are mutually exclusive.

Items QUARANTINE/COPY-TO and ABORT are mutually exclusive.

Items REDIRECT-TO/OMIT-DSN and DENY are mutually exclusive.

836

Item REDIRECT-TO must be used only once.

Added items & subsections:

abort [code [subject [detail [text]]]];

SMTP session is to be immediately closed.

In fact, the operation consists of three steps on client channel: specified reply is

sent, reply 421 is sent and connection is closed.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

reject [code [subject [detail [text]]]];

Mail is rejected.

If such an action is taken for at least one recipient, the mail is not accepted and

specified reply is sent to the client as a response to DATA command.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

discard;

Mail sending to this recipient is denied but the client is informed as if it was sent

(recipient is not added to the DSN report).

837

APPENDIX B. KERNUN UTM REFERENCE (5)

cancel [code [subject [detail [text]]]];

Mail will not be sent to particular recipient.

The mail still can be successfully sent to other recipients, given response code is

used in DSN report that will be sent to the original sender address.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

copy-to email ;

Blind-copy of mail will be sent to given address.

email (type: str)

Deliver mail to this address, using SMTP-FORWARDER chosen by comparing

the address domain name with forwarder DOMAIN(s).

Constraints:

E-mail must comply with RFC.

redirect-to email ;

Change final mail recipient.

email (type: str)

Deliver mail to this address, using SMTP-FORWARDER chosen by comparing

the address domain name with forwarder DOMAIN(s).

Constraints:

E-mail must comply with RFC.

quarantine;

Store mail into quarantine.

omit-dsn;

Discard in case of delivery failure.

This item defines proxy behavior in case when a delivery process fails for particular

recipient. If it is used, the recipient is dealt like if the delivery succeeds. Thus, this

delivery failure does not cause sending of the Delivery Status Notification (DSN)

message.

[End of section smtp-proxy.mail-acl description.]

838

doc-acl name {

* from ... ;

* time ... ;

time-period-set { ... }

* delivery-acl ... ;

deny ... ;

accept ... ;

rule ... ;

* size ... ;

* content-type ... ;

* mime-type ... ;

virus-status ... ;

* modify-header ... ;

force-doctype-ident ... ;

replace ... ;

html-filter ... ;

* sender ... ;

* recipient ... ;

* spam-score ... ;

* header ... ;

* filename ... ;

from-quarantine ... ;

add-virus-names ... ;

abort ... ;

reject ... ;

discard ... ;

cancel ... ;

* copy-to ... ;

quarantine ... ;

}

The second ACL on the third level decides how to process particular documents

(or precisely: MIME tree nodes) contained in the mail.

Denial actions (if any) concern whole mail-copy for particular recipient, not only a

single document. The one with highest severity (abort > reject > discard > cancel)

from all DOC-ACLs is executed.

If no ACL is found, ABORT action is preformed.

The doc-acl section is derived from mail-doc-acl section proto-

type. For detail description of it, see mod-mail-doc(5).

839

APPENDIX B. KERNUN UTM REFERENCE (5)

Changes to the doc-acl section:

Item parent-acl used as delivery-acl.

Item direction is not valid.

ABORT, REJECT, DISCARD or CANCEL must be specified if DENY is on.

ABORT, REJECT, DISCARD and CANCEL cannot be specified if ACCEPT is

on.

ABORT, REJECT, DISCARD and CANCEL are mutually exclusive.

Items QUARANTINE/COPY-TO and ABORT are mutually exclusive.

Added items & subsections:

abort [code [subject [detail [text]]]];

SMTP session is to be immediately closed.

In fact, the operation consists of three steps on client channel: specified reply is

sent, reply 421 is sent and connection is closed.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

reject [code [subject [detail [text]]]];

Mail is rejected.

If such an action is taken for at least one recipient, the mail is not accepted and

specified reply is sent to the client as a response to final dot.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

840

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

discard;

Mail sending to this recipient is denied but the client is informed as if it was sent

(recipient is not added to the DSN report).

cancel [code [subject [detail [text]]]];

Mail will not be sent to particular recipient.

The mail still can be successfully sent to other recipients, given response code is

used in DSN report that will be sent to the original sender address.

code (type: uint16, optional, default: 0)

The 3-digit response code; the first digit is also used as the first sub-code (class)

of ESC (Enhanced Status Code).

If omitted, the default response code is used.

subject (type: uint8, optional, default: 255)

The second sub-code (subject) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

detail (type: uint8, optional, default: 255)

The third sub-code (detail) of ESC (Enhanced Status Code).

If omitted, the default sub-code is used.

text (type: str, optional, default: <NULL>)

Response message text.

Constraints:

Reply-code must be 4xx or 5xx.

copy-to email ;

Blind-copy of mail will be sent to given address.

email (type: str)

Deliver mail to this address, using SMTP-FORWARDER chosen by comparing

the address domain name with forwarder DOMAIN(s).

Constraints:

E-mail must comply with RFC.

quarantine;

Store mail into quarantine.

[End of section smtp-proxy.doc-acl description.]

[End of section smtp-proxy description.]

SEE ALSO

configuration(7), triplicator(1), acl(5), antivirus(5), application(5), auth(5), common(5), ipc(5),

listen-on(5), log(5), mod-antispam(5), mod-mail-doc(5), monitoring(5), netio(5), pf-queue(5),

source-address(5), ssl(5), time(5)

841

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

smtp-proxy.cfg — format of smtp-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the smtp-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in smtp-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

range-op (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

842

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

smtp-error (see mod-mail-doc(5))

mail-reaction (see mod-mail-doc(5))

mail-fallback (see mod-mail-doc(5))

mime-header-check-type (see mod-mail-doc(5))

843

APPENDIX B. KERNUN UTM REFERENCE (5)

smtp-size-usage (see smtp-proxy(5))

ssl-startup-mode (see smtp-proxy(5))

postfix-security-level (see smtp-proxy(5))

postfix-transport-map-mode (see smtp-proxy(5))

smtp-err-switch (see smtp-proxy(5))

spf-result (see smtp-proxy(5))

spf-modes (see smtp-proxy(5))

ITEMS AND SECTIONS

Program smtp-proxy recognizes following items and sections:

* antispam name { ... }

* antivirus name { ... }

* fake-cert name { ... }

* html-filter name { ... }

* interface name { ... }

* ldap-client-auth name { ... }

* mail-filter name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

* smtp-forwarder name { ... }

* ssl-params name { ... }

sysctl { ... }

use-resolver ... ;

* smtp-proxy name { ... }

ipv6-mode ... ;

Constraints:

All configured email domains must be handled by some SMTP-FORWARDER.

Description:

antispam name {

connection ... ;

sock-opt { ... }

844

altq ... ;

}

The antispam section is derived from antispam section prototype.

For detail description of it, see mod-antispam(5).

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

845

APPENDIX B. KERNUN UTM REFERENCE (5)

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

846

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

mail-filter name {

stamp-limit ... ;

stamp-filter ... ;

* unflagged-8bit ... ;

* bad-end-of-line ... ;

* invalid-header ... ;

* long-header-lines ... ;

* invalid-chars ... ;

* header-8bit-chars ... ;

* bad-boundary-chars ... ;

* bad-boundary-length ... ;

* long-body-lines ... ;

847

APPENDIX B. KERNUN UTM REFERENCE (5)

* long-encoded-lines ... ;

enc-line-len ... ;

* bad-mime-struct ... ;

* invalid-encoding ... ;

treat-rfc822-as-text ... ;

}

The mail-filter section is derived from mail-filter section pro-

totype. For detail description of it, see mod-mail-doc(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

848

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

849

APPENDIX B. KERNUN UTM REFERENCE (5)

smtp-forwarder name {

* server ... ;

agent { ... }

timeouts { ... }

hostname ... ;

size ... ;

source-address ... ;

* domain ... ;

server-ssl ... ;

* server-cert-match ... ;

altq ... ;

}

The smtp-forwarder section is derived from smtp-forwarder sec-

tion prototype. For detail description of it, see smtp-proxy(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

850

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

smtp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

851

APPENDIX B. KERNUN UTM REFERENCE (5)

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

mail-pool ... ;

quarantine ... ;

postmaster ... ;

hostname ... ;

init-timeout ... ;

bad-commands ... ;

bad-recipients ... ;

dsn-mail-copy ... ;

use-antivirus ... ;

use-antispam ... ;

ssl-session-cache { ... }

grey-listing { ... }

* session-acl name { ... }

* delivery-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

The smtp-proxy section is derived from smtp-proxy section proto-

type. For detail description of it, see smtp-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), smtp-proxy(8), acl(5), antivirus(5), auth(5), common(5), interface(5),

ipc(5), ldap(5), listen-on(5), log(5), mod-antispam(5), mod-html-filter(5), mod-mail-doc(5),

pf-queue(5), radius(5), resolver(5), smtp-proxy(5), source-address(5), ssl(5), sysctl(5), time(5),

host-matching(7)

852

NAME

snmpd — format of snmpd component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the snmpd component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in snmpd configuration directives:

ip-version (see common(5))

osi4-proto (see common(5))

listen-on-sock (see listen-on(5))

snmpd-disk-mode (name-usage obligatory)

SNMP disk monitoring setting type.

space

percent

snmpd-source-mode (name-usage obligatory)

SNMP source definition type.

default

host

net

snmpd-view-type (name-usage obligatory)

SNMP view type.

none

all

snmpd-security-level (name-usage obligatory)

SNMP security level.

853

APPENDIX B. KERNUN UTM REFERENCE (5)

noauth

auth

priv

snmpd-auth-hash (name-usage obligatory)

SNMP authentication hash function.

md5

sha

snmpd-encr-alg (name-usage obligatory)

SNMP encryption algorithm.

des

aes

ITEMS AND SECTIONS

Configuration of snmpd library component consists of following prototypes:

snmpd { ... }

Description:

snmpd {

phase ... ;

* tag ... ;

listen-on { ... }

* user ... ;

location ... ;

* group name { ... }

* proc ... ;

* exec ... ;

* disk ... ;

load ... ;

swap ... ;

* raw ... ;

}

SNMP Daemon configuration.

854

Constraints:

Addresses to listen on must be specified.

SNMP group name must be at most 32 characters long.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 40)

Phase number; the lower one, the earlier start.

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

listen-on {

* socket ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

Item non-transparent used as socket.

Item transparent is not valid.

At least one address to listen on must be specified.

Item socket (see listen-on(5))

Element port is optional, default: 161.

Element proto is optional, default: tcp-udp.

user name [hash hash] passwd [alg alg] [privacy-passwd privacy-

passwd] [readonly];

SNMPv3 user.

name (type: str)

hash hash (type: snmpd-auth-hash, optional, default: sha)

passwd (type: str)

alg alg (type: snmpd-encr-alg, optional, default: aes)

privacy-passwd privacy-passwd (type: str, optional, default:

<NULL>)

Data encryption password; if omitted, data is sent in cleartext.

855

APPENDIX B. KERNUN UTM REFERENCE (5)

readonly (type: key, optional)

Constraints:

SNMP user password must be at least 8 characters long.

SNMP privacy password must be at least 8 characters long.

location [text];

System location.

text (type: str, optional, default: "MyLocation")

group name {

community ... ;

access ... ;

}

SNMP group definition.

Items & subsections:

community name [default];

community name host host ;

community name net net ;

Group members by source address and community.

name (type: str)

Community name

<branching element> (type: snmpd-source-mode, optional, default:

default)

host (type: host)

Client address or hostname

net (type: net)

Client address with mask/prefix

access level [prefix] [context [read [write [notify]]]];

SNMP views accessibility definition.

level (type: snmpd-security-level)

prefix (type: key, optional)

context (type: str, optional, default: "")

read (type: snmpd-view-type, optional, default: none)

write (type: snmpd-view-type, optional, default: none)

notify (type: snmpd-view-type, optional, default: none)

[End of section snmpd.group description.]

proc name min min [max max];

Process monitoring.

name (type: str)

Process name

856

min min (type: uint16)

Minimum number of processes

max max (type: uint16, optional, default: 0)

Maximum number of processes; 0 means infinity

Constraints:

Either min or max must be nonzero.

exec name text ;

Arbitrary command extension.

name (type: str)

Command name

text (type: str)

Command text

disk path space [space];

disk path percent percent ;

Disk usage monitoring.

path (type: str)

Disk pathname

<branching element> (type: snmpd-disk-mode)

percent (type: uint8)

Minimum percentage value

space (type: uint64, optional, default: 102400)

Minimum space value

load max1 max5 max15 ;

System load monitoring.

max1 (type: uint8)

max5 (type: uint8)

max15 (type: uint8)

swap min;

Swap space monitoring.

min (type: uint64)

raw line;

Raw line to configuration file.

line (type: str)

[End of section snmpd description.]

SEE ALSO

configuration(7), common(5), listen-on(5), snmpd.conf(5)

857

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

source-address — format of source-address component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the source-address component config-

uration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in source-address configuration directives:

source-address-mode (name-usage obligatory)

Source address (for server connection) mode specification.

cluster

Cluster virtual address is used.

physical

Physical interface address is used.

no-fallback

If no source address is acceptable, reject connection.

default

Default address selection.

source-port-mode (name-usage obligatory)

Source port (for server connection) mode specification.

client

Source port of the client is used.

force

Source port is forced by configuration.

858

ITEMS AND SECTIONS

Configuration of source-address library component consists of following prototypes:

source-address ... ;

source-port ... ;

Description:

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;

Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster, the

cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of them is

applicable:

- The CLIENT keyword means the original client IP address is used. This mode will be

succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used for a

connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By default, the

main address of the bridge is used, however, any preferred alias address can be listed in the

cluster list.- The PHYSICAL option means that the address of the physical interface is used

instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical address.

- The NO-FALLBACK option means that if no other way of setting the address is acceptable,

the session is rejected. Without this option, the system tries to find a suitable source IP

address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

859

APPENDIX B. KERNUN UTM REFERENCE (5)

source-port client;

source-port [force] port ;

Source port for outgoing connections to server.

Can be used only with SOURCE-ADDRESS CLIENT.

If omitted, generic port will be used.

<branching element> (type: source-port-mode, optional, default:

force)

port (type: port)

Use specified port.

SEE ALSO

configuration(7)

860

NAME

sqlnet-proxy — format of sqlnet-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the sqlnet-proxy component configu-

ration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in sqlnet-proxy configuration directives:

yes-no (see common(5))

on-off (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

861

APPENDIX B. KERNUN UTM REFERENCE (5)

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

listen-on-sock (see listen-on(5))

redirection-mode (name-usage obligatory)

follow

ignore

ITEMS AND SECTIONS

Configuration of sqlnet-proxy library component consists of following prototypes:

* sqlnet-proxy name { ... }

Description:

sqlnet-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

862

init-timeout ... ;

protocol-version ... ;

max-service-name-len ... ;

check-reserved-bits ... ;

connect-string-charset ... ;

connect-packet-sizelimit ... ;

* session-acl name { ... }

* service-acl name { ... }

}

This section defines SQL*Net-proxy attributes.

The sqlnet-proxy section is derived from proxy section prototype.

For detail description of it, see application(5).

Changes to the sqlnet-proxy section:

Section udpserver is not valid.

Item source-address is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

At least one SERVICE-ACL must be specified.

Cannot use DB-USER for unknown protocol versions.

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data used as uri.

Item listen-on.non-transparent (see listen-on(5))

Element port is optional, default: 1521.

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element port is optional, default: 1521.

Element proto is optional, default: tcp.

Added items & subsections:

client-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Client connection options.

863

APPENDIX B. KERNUN UTM REFERENCE (5)

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

server-conn {

conn-timeout ... ;

recv-timeout ... ;

recv-bufsize ... ;

send-timeout ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Server connection options.

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

init-timeout [seconds];

Initialization timeout.

seconds (type: uint16, optional, default: 10)

protocol-version [list];

Permitted versions of TNS protocol.

By default, SQL*Net proxy permits communication only for known protocol versions

(3.07 and 3.10 through 3.13). This item defines permission for other versions. However,

unknown versions have some restrictions, e.g. disabled user-checking. If a version

different from above and not specified here is detected, proxy tries to continue operation,

but warn admin by alert level log message

list (type: uint16-set, optional, default: {})

Versions (307 for 3.07 etc.)

max-service-name-len [chars];

Limit to SERVICE_NAME length.

Setting this parameter to nonzero value can avoid buffer overrun errors in many

SQL*Net listenners. Setting it to zero switches the check off.

chars (type: uint16, optional, default: 40)

check-reserved-bits [val];

Enforce checking of reserved bits.

Some TNS listenners crash when receive packet with non-zero reserved bits.

val (type: on-off, optional, default: on=1)

connect-string-charset [chars];

Character set for CN string values.

Some clients use nonstandard characters in parameter values of CONNECT string. This

item allows administrators to pass character set checks. The default value is reasonable

for typical clients.

864

chars (type: str, optional, default: ".@:-/\\")

Allowed character set (will be completed by adding of all alphanumeric characters).

Constraints:

CN string charset must be at most 256 chars long.

connect-packet-sizelimit [bytes];

Maximal length of CN packet.

Some servers have limitation to size of CN packet. This item allows to control which

CN packets will be sent to server splitted.

bytes (type: uint16, optional, default: 288)

session-acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

auth ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

redirections ... ;

}

The first level ACL decides only between acceptation and denial of the

incoming connection.

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

Only out-of-band authentication is supported in this proxy.

Added items & subsections:

redirections [follow] [hops];

redirections ignore [hops];

Redirection (RD) packets handling.

The current version of SQL*Net proxy handles RD packets by itself. It means that

it checks the packet and tries to connect to the new server. For each client session,

the maximal number of RD answers from servers is defined here. If more (than

865

APPENDIX B. KERNUN UTM REFERENCE (5)

maximum) servers send RD packet, this is assumed to be an infinite loop and the

session is terminated.

By default, the proxy follows the RD string information. Sometimes, another mode

may be desired when proxy ignores RD and respects its own configuration. Spe-

cially, this is important for the SESSION-ACL.PLUG-TO directive. However, use

this IGNORE mode with care because it can simply lead to the infinite redirection

loop. The SERVICE-ACL.PLUG-TO directive (if any) is respected in either mode.

<branching element> (type: redirection-mode, optional, default:

follow)

hops (type: uint16, optional, default: 10)

Maximum of redirections allowed.

[End of section sqlnet-proxy.session-acl description.]

service-acl name {

* from ... ;

* server ... ;

* user ... ;

* time ... ;

time-period-set { ... }

* session-acl ... ;

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

plug-to ... ;

source-address ... ;

service-name ... ;

default-port ... ;

db-user ... ;

client-altq ... ;

server-altq ... ;

}

The second level ACL decides how to handle particular connection according

to data contained in the connect (CN) string.

The service-acl section is derived from acl-2 section prototype.

For detail description of it, see acl(5).

Changes to the service-acl section:

Item parent-acl used as session-acl.

Added items & subsections:

plug-to addr ;

Final destination server.

866

addr (type: sock)

Address/port of final destination server.

If port is zero, then original port is used.

source-address [client] [addr4 addr4] [addr6 addr6] cluster

[cluster];

source-address [client] [addr4 addr4] [addr6 addr6] [physical];

source-address [client] [addr4 addr4] [addr6 addr6]

no-fallback;
Source address for outgoing connections to servers.

If omitted, the proper address of the proxy will be used, i.e. in the case of a cluster,

the cluster address will be used.

If not specified by the SOURCE-PORT item, a generic port will be used.

The elements entered within this item will be used by the proxy until the first of

them is applicable:

- The CLIENT keyword means the original client IP address is used. This mode

will be succesful in all cases except mismatch of IP address families.

- The ADDR4/ADDR6 keyword-value pairs mean that the specified address is used

for a connection of corresponding address family.

- The CLUSTER keyword means that one of cluster addresses will be used. By

default, the main address of the bridge is used, however, any preferred alias address

can be listed in the cluster list.- The PHYSICAL option means that the address of

the physical interface is used instead of the cluster one.

- The DEFAULT option means the default behavior - i.e. using of the physical

address.

- The NO-FALLBACK option means that if no other way of setting the address is

acceptable, the session is rejected. Without this option, the system tries to find a

suitable source IP address automatically.

client (type: key, optional)

addr4 addr4 (type: host, optional, default: [0.0.0.0])

addr6 addr6 (type: host, optional, default: [::])

<branching element> (type: source-address-mode, optional, de-

fault: physical)

cluster (type: host-list, optional, default: {})

Constraints:

Address family must respect the element’s address family..

service-name [set];

Additional criteria for session-acl: SID/SERVICE_NAME value.

set (type: str-set, optional, default: *)

default-port [value];

Default port when (PORT=?) attribute is missing in CN string or servername is

present in SID w/o port specification.

value (type: port, optional, default: 1521)

db-user names;

867

APPENDIX B. KERNUN UTM REFERENCE (5)

This item switches database-user checking on and defines set of allowed user names.

Checking is allowed only for known TNS protocol versions.

names (type: str-set)

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

[End of section sqlnet-proxy.service-acl description.]

[End of section sqlnet-proxy description.]

SEE ALSO

configuration(7), acl(5), application(5), auth(5), common(5), ipc(5), listen-on(5), log(5),

monitoring(5), netio(5), pf-queue(5), source-address(5), time(5)

868

NAME

sqlnet-proxy.cfg — format of sqlnet-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the sqlnet-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in sqlnet-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

on-off (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

869

APPENDIX B. KERNUN UTM REFERENCE (5)

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

redirection-mode (see sqlnet-proxy(5))

ITEMS AND SECTIONS

Program sqlnet-proxy recognizes following items and sections:

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* sqlnet-proxy name { ... }

ipv6-mode ... ;

Description:

870

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

871

APPENDIX B. KERNUN UTM REFERENCE (5)

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

872

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

873

APPENDIX B. KERNUN UTM REFERENCE (5)

name (type: name of resolver, see resolver(5))

sqlnet-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

init-timeout ... ;

protocol-version ... ;

max-service-name-len ... ;

check-reserved-bits ... ;

connect-string-charset ... ;

connect-packet-sizelimit ... ;

* session-acl name { ... }

* service-acl name { ... }

}

The sqlnet-proxy section is derived from sqlnet-proxy section

prototype. For detail description of it, see sqlnet-proxy(5).

874

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), sqlnet-proxy(8), acl(5), auth(5), common(5), interface(5), ipc(5), ldap(5),

listen-on(5), log(5), pf-queue(5), radius(5), resolver(5), source-address(5), sqlnet-proxy(5),

sysctl(5), time(5), host-matching(7)

875

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

ssh — format of ssh component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ssh component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ssh configuration directives:

ip-version (see common(5))

osi4-proto (see common(5))

listen-on-sock (see listen-on(5))

ssh-key-type (name-usage obligatory)

SSH key types.

ssh-rsa

ssh-ed25519

ssh-proto (name-usage optional)

SSH protocol numbers.

ssh-2 (2)

ITEMS AND SECTIONS

Configuration of ssh library component consists of following prototypes:

* ssh-key2 ... ;

* ssh-server name { ... }

Description:

ssh-key2 email type key [ignored];

SSH Version 2 key.

876

email (type: str)

Owner email address.

type (type: ssh-key-type)

key (type: str)

ignored (type: str, optional, default: <NULL>)

Elem ignored, retained due to backward compatibility.

ssh-server name {

phase ... ;

* tag ... ;

listen-on { ... }

protocol ... ;

passwd-auth ... ;

ciphers ... ;

kex-algorithms ... ;

macs ... ;

* option ... ;

* subsystem ... ;

}

SSH server definition.

Each configured ssh server is started via standard Kernun startup mechanism (e.g. has its

own rc-script) and as such will be handled by KAT program like regular proxy.

The ssh server configuration created by CML is based on values of this section configuration

items. Additionally, following options are hardcoded as changes of default values:

• PermitRootLogin without-password

• ChallengeResponseAuthentication no

Constraints:

Addresses to listen on must be specified.

Items & subsections:

phase [number];

Application Startup Phase.

number (type: uint8, optional, default: 30)

Phase number; the lower one, the earlier start.

877

APPENDIX B. KERNUN UTM REFERENCE (5)

tag value;

Configuration factorization tag.

This feature allows admin to create groups of Kernun applications (specially proxies

and servers) according to various aspects (belonging to one customer, applications of

particular network traffic etc.).

Each application can have several tag attributes and the KAT tool can run some com-

mands (like ’ps’, ’start’ atc.) for applications with or without given tag.

value (type: str)

Constraints:

Tag must contain letters, digits, hyphens and dots, only.

listen-on {

* socket ... ;

}

The listen-on section is derived from listen-on section prototype.

For detail description of it, see listen-on(5).

Changes to the listen-on section:

Item non-transparent used as socket.

Item transparent is not valid.

At least one address to listen on must be specified.

Item socket (see listen-on(5))

Element port is optional, default: 22.

Element proto is optional, default: tcp.

protocol list ;

Protocol ordering.

If omitted, only SSHv2 is accepted.

list (type: ssh-proto-list)

List of protocol numbers.

Constraints:

Protocol list must contain just one item (ssh-2).

passwd-auth;

Enable password authentication for non-root users.

This item affects setting of PasswordAuthentication option to YES.

ciphers [list];

List of allowed ciphers.

list (type: str, optional, default: "chacha20-

poly1305@openssh.com,aes256-gcm@openssh.com,aes128-

gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr,aes256-

cbc,aes192-cbc,aes128-cbc")

kex-algorithms [list];

List of allowed key exchange algorithms.

878

list (type: str, optional, default: "diffie-hellman-group14-

sha256,diffie-hellman-group16-sha512,diffie-hellman-group18-

sha512,diffie-hellman-group-exchange-sha256,curve25519-

sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-

sha2-nistp384,ecdh-sha2-nistp521")

macs [list];

List of allowed MAC (message authentication code) algorithms.

list (type: str, optional, default: "umac-128-

etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-

512-etm@openssh.com,umac-128@openssh.com,hmac-sha2-256")

option name value;

Additional server configuration options.

name (type: str)

Option name.

value (type: str)

Option value.

subsystem name cmd ;

External subsystem definition.

name (type: str)

Subsystem name.

cmd (type: str)

Command to execute.

[End of section ssh-server description.]

SEE ALSO

configuration(7), common(5), listen-on(5), sshd_config(5)

879

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

ssl — format of ssl component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the ssl component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in ssl configuration directives:

enabling (see common(5))

yes-no (see common(5))

ssl-ver (name-usage obligatory)

SSL/TLS protocol versions.

SSLv3

SSL version 3

TLSv1

TLS version 1

TLSv1-1

TLS version 1.1

TLSv1-2

TLS version 1.2

extension-op (name-usage obligatory)

Certificate Extensions Operations.

keep

remove

veri-fail-action (name-usage obligatory)

Certificate verification failure actions.

880

ignore

Verification status is absolutely ignored. UNRECOMMENDED OPTION.

pass

Verification status is ignored, the certificate used on the client side is signed by a special,

untrusted CA, however. Thus, the final decision is passed to the client.

error

The client side connection is established with fully trusted certificate and then the proxy

sends a user readable error message.

fail

The connection establishing fails.

auth-cert-type (name-usage obligatory)

Authorized certificate store type.

kernun-dist

Certificate list from Kernun distribution

file

Own certificate list in PEM file

dir

Own directory with PEM certificate files

distrusted-cert-type (name-usage obligatory)

Distrusted (blacklist) certificate store type.

kernun-dist

Certificate list from Kernun distribution

file

Own certificate list in PEM file

none

No distrusted certificates are used

ITEMS AND SECTIONS

Configuration of ssl library component consists of following prototypes:

ssl-session-cache { ... }

* fake-cert name { ... }

* ssl-params name { ... }

* ssl-cert-match ... ;

Description:

881

APPENDIX B. KERNUN UTM REFERENCE (5)

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

Cache of active SSL/TLS sessions usable for session resumption.

Constraints:

Item DIR (session cache directory) must be set.

Items & subsections:

capacity [server [client]];

Maximum number of sessions in the cache.

server (type: uint16, optional, default: 0)

sessions in which proxy on server side

client (type: uint16, optional, default: 0)

sessions in which proxy on client side

dir val ;

Directory used to store files with session information.

val (type: str)

lock [path];

Lock for exclusive access to the cache.

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

[End of section ssl-session-cache description.]

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

Server certificate faking parameters.

882

This section defines parameters of certificates generated by proxies when SSL inspection is

turned on. The new certificate contains a copy of important attributes from the original

server certificate, it is signed by a trusted Kernun CA and stored into a certificate cache (file

with name /data/fake-cert/<SECTION>/<VER><FINGERPRINT>.<NUM> where:

- <SECTION> is the FAKE-CERT section name

- <FINGERPRINT> is the certificate fingerprint

- <VER> is certificate verification status

- <NUM> is certificate distinguishing number.

The verification status reflects result of the original certificate verification - for trusted ones,

the ’C’ is used, while otherwise the ’F’ is used.

Constraints:

Private key used in faked certificates (KEY) must be set.

Trusted certification authority (AUTH-CA) must be set.

Items & subsections:

key private-key ;

Private key used in faked certificates.

private-key (type: name of shared-file, see common(5))

auth-ca private-key certificate;

Private key and certificate of trusted CA.

This certificate and key are used as issuer identity for new certificates made from

properly verified server ones.

private-key (type: name of shared-file, see common(5))

certificate (type: name of shared-file, see common(5))

fail-ca private-key certificate;

Private key and certificate of untrusted CA.

This certificate and key are used as issuer identity for new certificates made from

untrusted server ones.

If this item is not used, faking attempts for untrusted certificates leads to the fatal

error.

private-key (type: name of shared-file, see common(5))

certificate (type: name of shared-file, see common(5))

extension op [names];

Faked certificate Extensions handling.

The new certificate contains all attributes of the original certificate, by default. Copying

of some X.509 Extensions could cause problem, so handling of them can be managed by

this item. Namely, following Extensions are removed by default, if not stated otherwise

in the configuration:

- X509v3 Authority Key Identifier

- Authority Information Access.

883

APPENDIX B. KERNUN UTM REFERENCE (5)

op (type: extension-op)

names (type: str-set, optional, default: *)

purge [days];

days (type: uint16, optional, default: 7)

Day limit - certificates unaccessed for this time are purged.

[End of section fake-cert description.]

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

SSL parameters.

Constraints:

ID and FAKE-CERT are mutually exclusive.

Items & subsections:

versions ver ;

SSL/TLS protocol versions supported.

If omitted, only TLSv1.2 protocol is supported.

ver (type: ssl-ver-set)

ciphers [val];

List of permitted ciphers, see ciphers(1).

val (type: str, optional, default:

"ALL:!MEDIUM:!LOW:!RC4:!DES:!3DES:!SEED:!IDEA:!NULL:!eNULL:!aNULL:!ADH")

884

tcp-eof [val];

Treat closing TCP connection without previous close notify as correct session termina-

tion and not a protocol violation.

val (type: yes-no, optional, default: yes)

id private-key certificate;

Private key and certificate.

The certificate should also contain certificates of intermediate certification authorities,

if there are any. It should not contain the certificate of the root certification authority

however.

private-key (type: name of shared-file, see common(5))

certificate (type: name of shared-file, see common(5))

auth-cert kernun-dist;

auth-cert file file;

auth-cert dir dir ;

Certificates of trusted certification authorities.

This item should usually contain only certificates of root certification authorities.

<branching element> (type: auth-cert-type)

Certificate source type.

file (type: name of shared-file, see common(5))

file with certificates

dir (type: name of shared-dir, see common(5))

directory with hashed certificate files

distrusted-certs kernun-dist;

distrusted-certs file file;

distrusted-certs none;

Distrusted certificates. Certificates listed in this item are considered as a "blacklist"

when verifying the certificate. If any of the certificates that build up the certificate

chain is listed in DISTRUSTED-CERTIFICATES, the verification is evaluated false.

<branching element> (type: distrusted-cert-type)

Certificate source type.

file (type: name of shared-file, see common(5))

file with distrusted certificates

dont-check-crl;

Do not check CRL validity when verifying certificates.

crl [missing] file;

Certification revocation list (loaded once during proxy startup).

missing (type: key, optional)

CRL may be missing

885

APPENDIX B. KERNUN UTM REFERENCE (5)

file (type: name of shared-file, see common(5))

verify-peer disable;

verify-peer [enable] [allow-no-cert];

Peer verification request.

SSL/TLS handshake fails if peer does not send a certificate or it sends a certificate that

cannot be verified. Client does not send a certificate until it is requested by VERIFY-

PEER. Omitting this item has the same meaning as using with the DISABLE keyword.

<branching element> (type: enabling, optional, default: enable)

allow-no-cert (type: key, optional)

Allow clients which do not present a certificate.

cache-timeout [sec];

Maximum time since a session creation when the session can be resumed. After this

time, no new connections may be established in the same session, although the existing

connection can continue. Setting this to zero disables session resumption.

sec (type: uint32, optional, default: 0)

use-ticket [val];

Normally clients and servers will, where possible, transparently make use of RFC4507bis

tickets for stateless session resumption. If this option is set to 0, this functionality is

disabled and tickets will not be used by client or server.

val (type: yes-no, optional, default: yes)

enable-renegotiation;

Permits session renegotiation. Do not enable this unless you understand all related

negative security consequences!

fake-cert faking action;

Server certificate faking parameters.

If this section is used, the proxy generates a faked certificate of each server for the client

connection, instead of using a fixed one.

faking (type: name of fake-cert, see above)

Faking parameters

action (type: veri-fail-action)

Reaction when server certificate verification fails.

prefer_server_ciphers [val];

Set on servers to choose the cipher according to the server’s preferences

val (type: yes-no, optional, default: yes)

enable-ecdh [val];

Enable or disable ephemeral ECDH

val (type: yes-no, optional, default: yes)

886

[End of section ssl-params description.]

ssl-cert-match [subject subject] [issuer issuer];

Matching values from SSL certificate. If not used, peer need not present a cerficate or the

client certificate need not be verified correctly. If used, peer must send a valid certificate

and its content must match.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

SEE ALSO

configuration(7), ciphers(1), common(5)

887

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

sysctl — format of sysctl component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the sysctl component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in sysctl configuration directives:

log-in-vain-proto (name-usage obligatory)

disable

Log in vain is disabled

tcp-udp

Log in vain is enabled for TCP and UDP

tcp

Log in vain is enabled for TCP

udp

Log in vain is enabled for UDP

blackhole-proto (name-usage obligatory)

disable

Blackhole is disabled

tcp-udp

Blackhole is enabled for TCP and UDP

tcp

Blackhole is enabled for TCP

udp

Blackhole is enabled for UDP

888

ITEMS AND SECTIONS

Configuration of sysctl library component consists of following prototypes:

portrange ... ;

sysctl { ... }

Description:

portrange lo hi ;

Port range specification.

lo (type: port)

hi (type: port)

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

System kernel variables definition.

Source for /etc/sysctl.conf file.

Items & subsections:

variable name value;

Kernel variable definition.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars and dots only.

portrange-default [lo [hi]];

Port range reserved by system.

lo (type: port, optional, default: 49152)

889

APPENDIX B. KERNUN UTM REFERENCE (5)

hi (type: port, optional, default: 65535)

portrange-high [lo [hi]];

Port range reserved by system.

lo (type: port, optional, default: 49152)

hi (type: port, optional, default: 65535)

portrange-low [lo [hi]];

Port range reserved by system.

lo (type: port, optional, default: 1023)

hi (type: port, optional, default: 600)

portrange-reserved [lo [hi]];

Port range that can only be bind-ed by user with UID 0 (root).

lo (type: port, optional, default: 0)

hi (type: port, optional, default: 1)

somaxconn [number];

Listen queue size.

System default for listen queue size for accepting new TCP connections. If the maximum

of MAX-CHILDREN values among all TCP based proxies is higher, the maximum is

used instead of this value.

number (type: uint32, optional, default: 16384)

log-in-vain [proto];

Log incomming packets to closed ports

proto (type: log-in-vain-proto, optional, default: disable)

blackhole [proto];

Do not send RST on segments to closed ports

proto (type: blackhole-proto, optional, default: disable)

[End of section sysctl description.]

SEE ALSO

configuration(7)

890

NAME

system — format of system component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the system component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in system configuration directives:

enabling (see common(5))

yes-no (see common(5))

language (see common(5))

nls (see common(5))

on-off (see common(5))

genesis (see common(5))

permission (see common(5))

direction (see common(5))

name-selection (see common(5))

destination (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

in-out (see common(5))

report-mode (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

891

APPENDIX B. KERNUN UTM REFERENCE (5)

obligation (see common(5))

range-op (see common(5))

yes-no-always (see common(5))

task-frequency (see common(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

user-match-mode (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

antivirus-protocol (see antivirus(5))

virus-status (see antivirus(5))

database-source (see antivirus(5))

source-address-mode (see source-address(5))

source-port-mode (see source-address(5))

accept-deny (see mod-html-filter(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

header-op (see acl(5))

product-type (see license(5))

component-group (see license(5))

component-type (see license(5))

892

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

user-type (name-usage obligatory)

Kernun user type.

admin

audit

route-flag (name-usage obligatory)

Route flags.

cloning

xresolve

iface

static

nostatic

usb-auto-setup-policy (name-usage obligatory)

Automatically apply configuration from attached USB devices.

auto_decide

enable

disable

dbglev (see log(5))

logfail-mode (see log(5))

dns-type (see resolver(5))

dns-opcode (see resolver(5))

dns-response (see resolver(5))

dns-qaction (see resolver(5))

dns-raction (see resolver(5))

dns-fake (see resolver(5))

xfr-mode (see resolver(5))

udp-session-type (see udpserver(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

893

APPENDIX B. KERNUN UTM REFERENCE (5)

proc-priority (see application(5))

pf-osi4-proto (see packet-filter(5))

icmp-type (see packet-filter(5))

pf-scheduler (see packet-filter(5))

pf-proc-mode (see packet-filter(5))

ids-agent-log-level (see adaptive-firewall(5))

ids-agent-detection-direction (see adaptive-firewall(5))

ids-agent-protocol (see adaptive-firewall(5))

ids-agent-rule-action (see adaptive-firewall(5))

ids-agent-threshold-type (see adaptive-firewall(5))

ids-agent-threshold-track-by (see adaptive-firewall(5))

ids-agent-rate-filter-track-by (see adaptive-firewall(5))

ids-agent-suppress-direction (see adaptive-firewall(5))

policy-level (see adaptive-firewall(5))

ids-agent-rules-download-type (see update(5))

forward (see nameserver(5))

atr-strategy (see atr(5))

atr-fallback (see atr(5))

pike-control-type (see pike(5))

ntp-rest-flag (see ntp(5))

ovpn-protocols (see openvpn(5))

ovpn-remote-proto (see openvpn(5))

ovpn-comp-lzo-mode (see openvpn(5))

ovpn-cert-types (see openvpn(5))

ovpn-cipher-algs (see openvpn(5))

ovpn-redirect-gateway-flags (see openvpn(5))

ovpn-dhcp-option (see openvpn(5))

ovpn-topology (see openvpn(5))

ovpn-local-scope (see openvpn(5))

894

tls-mat-variants (see openvpn(5))

ipsec-encryption1 (see ipsec(5))

ipsec-encryption2 (see ipsec(5))

ipsec-hash1 (see ipsec(5))

ipsec-auth2 (see ipsec(5))

ipsec-dh-group (see ipsec(5))

ipsec-tunnel-sa-mode (see ipsec(5))

ipsec-auth-method (see ipsec(5))

ipsec-protocol (see ipsec(5))

ipsec-remote-mode (see ipsec(5))

ipsec-rekey-mode (see ipsec(5))

snmpd-disk-mode (see snmpd(5))

snmpd-source-mode (see snmpd(5))

snmpd-view-type (see snmpd(5))

snmpd-security-level (see snmpd(5))

snmpd-auth-hash (see snmpd(5))

snmpd-encr-alg (see snmpd(5))

ssh-key-type (see ssh(5))

ssh-proto (see ssh(5))

export-import-mode (see router(5))

ospf-authentication (see router(5))

ospf-area-id-mode (see router(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

data-match-action (see mod-match(5))

dns-name-type (see dns-proxy(5))

895

APPENDIX B. KERNUN UTM REFERENCE (5)

pass-remove (see ftp-proxy(5))

data-type (see ftp-proxy(5))

ftp-cmd (see ftp-proxy(5))

clear-web-db-category (see clear-web-db(5))

clear-web-db-match-mode (see clear-web-db(5))

replace-authorization-mode (see http-proxy(5))

proxy-via (see http-proxy(5))

http-protocol (see http-proxy(5))

http-scheme (see http-proxy(5))

cookie-table-clean (see http-proxy(5))

accept-gzip (see http-proxy(5))

content-gzip (see http-proxy(5))

http-redirect (see http-proxy(5))

kerberos-user-match (see http-proxy(5))

ldap-select (see http-proxy(5))

auth-headers (see http-proxy(5))

sni-result (see http-proxy(5))

smtp-error (see mod-mail-doc(5))

mail-reaction (see mod-mail-doc(5))

mail-fallback (see mod-mail-doc(5))

mime-header-check-type (see mod-mail-doc(5))

imap4-cmd (see imap4-proxy(5))

imap4-capa (see imap4-proxy(5))

pop3-cmd (see pop3-proxy(5))

pop3-capa (see pop3-proxy(5))

peer (see sip-proxy(5))

smtp-size-usage (see smtp-proxy(5))

ssl-startup-mode (see smtp-proxy(5))

postfix-security-level (see smtp-proxy(5))

896

postfix-transport-map-mode (see smtp-proxy(5))

smtp-err-switch (see smtp-proxy(5))

spf-result (see smtp-proxy(5))

spf-modes (see smtp-proxy(5))

redirection-mode (see sqlnet-proxy(5))

session-protocol (see proxy-ng(5))

json-type (see proxy-ng(5))

http-version (see proxy-ng(5))

ITEMS AND SECTIONS

Configuration of system library component consists of following prototypes:

* system name { ... }

Description:

system name {

product ... ;

admin ... ;

hostname ... ;

domain ... ;

kernun-root ... ;

usb-auto-setup ... ;

apply-host ... ;

config-sync ... ;

users { ... }

sysctl { ... }

* interface name { ... }

ipv6-router ... ;

ipv6-addrctl { ... }

pikemon { ... }

routes { ... }

rc-conf { ... }

hosts-table { ... }

897

APPENDIX B. KERNUN UTM REFERENCE (5)

* rotate-log name { ... }

ntp { ... }

dhcp-server { ... }

dhcp6-server { ... }

crontab { ... }

periodic-conf { ... }

local-mailer { ... }

* ssh-server name { ... }

ssh-keys { ... }

ica-auto ... ;

icamd { ... }

icasd { ... }

watch { ... }

* acl name { ... }

use-services ... ;

use-resolver ... ;

* resolver name { ... }

* nameserver name { ... }

* ns-list name { ... }

* atrmon name { ... }

* pf-queue name { ... }

packet-filter { ... }

adaptive-firewall { ... }

alertd { ... }

bird4 { ... }

bird6 { ... }

rtadvd { ... }

* ssl-params name { ... }

* fake-cert name { ... }

* html-filter name { ... }

* mail-filter name { ... }

* aproxy name { ... }

* radius-client name { ... }

* ldap-client-auth name { ... }

898

* oob-auth name { ... }

* antivirus name { ... }

* antispam name { ... }

* smtp-forwarder name { ... }

* web-filter name { ... }

clear-web-db { ... }

* openvpn name { ... }

ipsec-global { ... }

* ipsec-remote name { ... }

* ipsec name { ... }

* data-match name { ... }

* ntlm-auth name { ... }

* kerberos-auth name { ... }

cwcatd { ... }

snmpd { ... }

http-cache { ... }

update { ... }

feedback { ... }

stats { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

* tcp-proxy name { ... }

* udp-proxy name { ... }

* dns-proxy name { ... }

* ftp-proxy name { ... }

* gk-proxy name { ... }

* h323-proxy name { ... }

* http-proxy name { ... }

* icap-server name { ... }

* imap4-proxy name { ... }

* pop3-proxy name { ... }

* sip-proxy name { ... }

* smtp-proxy name { ... }

899

APPENDIX B. KERNUN UTM REFERENCE (5)

* sqlnet-proxy name { ... }

* proxy-ng name { ... }

proxy-ng-transp-ports ... ;

}

Description of one firewall system.

Constraints:

PRODUCT should be specified.

Some configured components are not licensed.

Hostname must be specified.

Domainname must be specified.

Interfaces must be specified.

Source for /etc/services must be specified.

Name resolver configuration must be specified.

System name resolvers must use standard port.

DEFAULT router allowed only if DHCP-CLIENT not used.

Crontab content must be specified.

All interfaces must use unique device names.

All configured email domains must be handled by some SMTP-FORWARDER.

At most one interface with DHCP-CLIENT allowed.

Cannot non-transparently listen on dynamic interfaces.

Openvpn sections must refer interface of type TUN or TAP.

IPSEC sections can refer interface of type GIF or GRE only.

Addresses used in OPENVPN section must respect INTERFACE network range.

Address pushing in OPENVPN section must respect INTERFACE type.

Addresses pushing in OPENVPN section must not collide.

For every IPSEC section must exist IPSEC-REMOTE section with proper remote ad-

dress.

NTLM-AUTH and KERBEROS-AUTH are mutually exclusive.

At most one NTLM-AUTH section allowed.

At most one KERBEROS-AUTH section allowed.

Clear Web database updates should be configured if Clear Web category matching is

used.

Data MIME database required by DATA-MATCH with MATCH-DATA-MIME set.

Item ICA-AUTO is mutually exclusive with sections ICASD or ICAMD.

Item ICA-AUTO can be used with PIKEMON only.

LISTEN-SOCKET-ID must be consistent within PF and PROXY-NG.

Item ADAPTIVE-FIREWALL.IDS-AGENT.RULES.MODIFY-RULES requires item

UPDATE.ADAPTIVE-FIREWALL to be enabled.

900

Item ADAPTIVE-FIREWALL.IDS-AGENT.RULES.ENABLE-RULES requires item

UPDATE.ADAPTIVE-FIREWALL to be enabled.

Item ADAPTIVE-FIREWALL.IDS-AGENT.RULES.DISABLE-RULES requires item

UPDATE.ADAPTIVE-FIREWALL to be enabled.

Item ADAPTIVE-FIREWALL.IDS-AGENT.RULES.CHANGE-RULES-TO-BLOCK

requires item UPDATE.ADAPTIVE-FIREWALL to be enabled.

Section SYSTEM.ADAPTIVE-FIREWALL requires section

SYSTEM.PACKET-FILTER.

Section ADAPTIVE-FIREWALL.STATS-DAILY requires section

PACKET-FILTER.STATS-DAILY to be enabled because AF is technically part of

Packet Filter.

Section ADAPTIVE-FIREWALL.STATS-WEEKLY requires section

PACKET-FILTER.STATS-WEEKLY to be enabled because AF is technically part of

Packet Filter.

Section ADAPTIVE-FIREWALL.STATS-MONTHLY requires section

PACKET-FILTER.STATS-MONTHLY to be enabled because AF is technically part

of Packet Filter.

Items & subsections:

product product components [groups groups] [upgrade upgrade];

Specification of the product installed on this system.

product (type: product-type)

Type of the product.

components (type: component-type-list)

List of licensed components.

groups groups (type: component-group-list, optional, default:

{})

List of licensed component groups.

upgrade upgrade (type: str, optional, default: "unlimited")

Upgrade date from a license.

Constraints:

Upgrade must be "unlimited" or a date in format YYYY-MM-DD.

admin system [contact];

Firewall administrator and contact e-mail addresses.

system (type: str)

The technical administrator(s) of the system; an address or set of comma separated

adresses of persons responsible for system maintenance.

contact (type: str, optional, default: <NULL>)

The policy administator; an address of person responsible for system configuration.

If not defined, the technical administration is used instead.

Constraints:

Administrator contact must comply with RFC.

901

APPENDIX B. KERNUN UTM REFERENCE (5)

hostname name;

System name.

name (type: str)

Constraints:

Hostname should not contain domain part.

domain name;

Domain name.

name (type: str)

kernun-root [path];

Path to Kernun installation root directory.

path (type: str, optional, default: "/usr/local/kernun")

Constraints:

Path must be absolute and must not contain punctuation chars.

usb-auto-setup [value];

Policy for automatic configuration application from attached USB devices

value (type: usb-auto-setup-policy, optional, default:

auto_decide)

apply-host addr ;

Address to connect to by ssh when applying remotely.

If omitted, KAT /APPLY command will force local application.

If used, KAT /APPLY command will use local application only if the machine hostname

is exactly HOSTNAME.DOMAIN.

addr (type: sock)

config-sync systems;

Keep configuration synchronized among the listed systems

systems (type: str-list)

users {

* user name { ... }

}

Kernun users.

Items & subsections:

user name {

role ... ;

full-name ... ;

* ssh-key ... ;

}

902

Constraints:

User role must be specified.

Items & subsections:

role type;

User role.

There are two kinds of Kernun users:

- ADMINistrators are root-equivalent users

- AUDITors can only view system configuration and logs.

type (type: user-type)

full-name [gecos];

Full name of user.

gecos (type: str, optional, default: "&")

Constraints:

Full name must not contain colon (’:’).

ssh-key email type key [ignored];

SSH Version 2 key.

email (type: str)

Owner email address.

type (type: ssh-key-type)

key (type: str)

ignored (type: str, optional, default: <NULL>)

Elem ignored, retained due to backward compatibility.

[End of section system.users.user description.]

[End of section system.users description.]

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

903

APPENDIX B. KERNUN UTM REFERENCE (5)

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ipv6-router [enable];

Operate as an IPv6 router.

enable (type: yes-no, optional, default: yes)

ipv6-addrctl {

* rule ... ;

}

Defines the configuration table for the IPv4/6 address selection algorithm from

RFC 3484. The generated address selection table is stored in /etc/ip6addrctl.conf and

managed by command ip6addrctl. If this section does not exist, a default table will be

generated. Preference of IPv4 or IPv6 addresses in the default table is controlled by

item PROTO in the section RESOLVER referenced by SYSTEM.USE-RESOLVER.

Items & subsections:

rule prefix precedence label ;

A single policy table entry.

prefix (type: net)

precedence (type: uint16)

label (type: uint16)

[End of section system.ipv6-addrctl description.]

904

pikemon {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

priority ... ;

status-file ... ;

hmac ... ;

devd-socket ... ;

garp-keepalive ... ;

* virtual-cluster name { ... }

}

The pikemon section is derived from pikemon section prototype. For

detail description of it, see pike(5).

routes {

default ... ;

default6 ... ;

* static name { ... }

}

Routing table definition.

Items & subsections:

default gw ;

Default route.

gw (type: host)

Router IP address.

905

APPENDIX B. KERNUN UTM REFERENCE (5)

default6 gw ;

Default IPv6 route.

gw (type: host)

Router IP address.

static name {

dest ... ;

gw ... ;

flags ... ;

}

Static route.

Constraints:

Route destination must be specified.

Router address must be specified.

Dest and gateway must be of the same internet family.

Items & subsections:

dest dst ;

Route destination.

dst (type: net)

gw gw ;

Router (gateway).

gw (type: host)

Router IP address.

flags set ;

Route flags.

set (type: route-flag-list)

[End of section system.routes.static description.]

[End of section system.routes description.]

rc-conf {

no-kld-list ... ;

* set-env ... ;

* append-env ... ;

}

Additional settings to /etc/rc.conf.

By default, CML generates to rc.conf file following variables:

• kld_list (for network transparency modules used by proxy-ng)

• hostname (from HOSTNAME and DOMAIN items)

• network_interfaces (from INTERFACE sections)

906

• default_router (from ROUTES section)

• static_routes (from ROUTES.STATIC sections)

• syslogd_flags ("-ss" and sockets for CHROOT-DIRs)

• devfs_set_rulesets and devfs_system_ruleset

• local_startup (adds Kernun rc.d directory)

• pf_enable (YES)

• sendmail_enable (NONE)

• sendmail_msp_queue_enable (NO)

• postfix_enable (YES)

• fsck_y_enable (YES)

Additional variables can be specified in this section.

Even the predefined variables can be modified by adding variable redefinition like SET-

ENV var "$var ...";.

Items & subsections:

no-kld-list;

Do not generate kld_list variable.

After changing this, it is necessary to manually load or unload kernel modules

mac_bindany and pf_transp

set-env name value;

Set rc-conf variable.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars only.

append-env name value;

Modify rc-conf variable.

Variable value is just extended (appending the new value), not replaced.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars only.

[End of section system.rc-conf description.]

hosts-table {

* host ... ;

}

907

APPENDIX B. KERNUN UTM REFERENCE (5)

Host table.

This section defines known machines and their addresses. It servers primarily as a

source for the /etc/hosts file. If the DHCP-SERVER is enabled in particular SYS-

TEM, all hosts with an IPv4 address and a MAC address in this table are included into

dhcpd.conf. If the DHCP6-SERVER is enabled in particular SYSTEM, all hosts with

an IPv6 address and a DUID in this table are included into dhcpd6.conf. If a NAME-

SERVER with a ZONE is enabled in particular SYSTEM, all hosts with a proper name

are included into proper files.

Items & subsections:

host address names [mac [dhcp-opt]];

address (type: addr)

Host IP address.

names (type: str-list)

Host name and aliases.

mac (type: str, optional, default: <NULL>)

MAC address (for IPv4) or client’s DUID (for IPv6). The acceptable formats

are "xx:xx:xx:xx:xx:xx", "xx-xx-xx-xx-xx-xx" and "xxxx.xxxx.xxxx".

dhcp-opt (type: str, optional, default: <NULL>)

DHCP options.

Constraints:

Name list must not be empty.

Hostnames must comply RFC1034.

MAC address must be in colon, dash or dot separated format.

[End of section system.hosts-table description.]

rotate-log name {

rotate ... ;

* file ... ;

}

Standard system log files rotation description.

All files referenced in one ROTATE-LOG section use the same rotation policy defined

by the ROTATE item. The default policy (if ROTATE item omitted) is daily rotation.

Files not referenced in any ROTATE-LOG section (neither elsewhere in the CML) are

rotated according to the /etc/newsyslog.conf file.

Items & subsections:

rotate [user user] [group group] [mode mode] [count count] [size

size] [when [zip]];

Log file rotation description.

Use the SIZE elem if log file size criterion required. Use the WHEN elem if period-

ical rotation required. If used both SIZE and WHEN elems, the log file is rotated

at a proper time only if size limit is reached.

908

user user (type: str, optional, default: "root")

Log file owner - user.

group group (type: str, optional, default: "wheel")

Log file owner - group.

mode mode (type: uint16, optional, default: 640)

Log file permissions.

count count (type: uint16, optional, default: 31)

Number of days being archived.

size size (type: uint16, optional, default: 0)

Size limit for rotation in KB (ignore log file size if omitted).

when (type: time-cond, optional, default: anytime)

Rotation periodicity (use SIZE condition if omitted).

zip (type: zip-mode, optional, default: bzip2)

Zipping mode.

Constraints:

Use either size criterion or defined periodicity.

file name [pidfile [signo]];

Particular log file description.

For the PIDFILE and SIGNO elems description, see the newsyslog.conf(5) manual

page.

name (type: str)

pidfile (type: str, optional, default: <NULL>)

signo (type: uint8, optional, default: 0)

Constraints:

Log file name must be absolute and must not contain punctuation chars.

PID file name must be absolute and must not contain punctuation chars.

[End of section system.rotate-log description.]

ntp {

phase ... ;

* tag ... ;

cfg-resolution ... ;

drift-file ... ;

* peer ... ;

* server ... ;

* clock ... ;

* restrict ... ;

}

The ntp section is derived from ntp section prototype. For detail

description of it, see ntp(5).

909

APPENDIX B. KERNUN UTM REFERENCE (5)

dhcp-server {

phase ... ;

* tag ... ;

lease-file ... ;

default-lease-time ... ;

max-lease-time ... ;

* domain ... ;

* name-server ... ;

* time-server ... ;

* router ... ;

* raw ... ;

* subnet name { ... }

failover { ... }

}

The dhcp-server section is derived from dhcp-server section pro-

totype. For detail description of it, see dhcp-server(5).

dhcp6-server {

phase ... ;

* tag ... ;

lease-file ... ;

default-lease-time ... ;

max-lease-time ... ;

* domain ... ;

* name-server ... ;

* raw ... ;

* subnet name { ... }

}

The dhcp6-server section is derived from dhcp6-server section

prototype. For detail description of it, see dhcp-server(5).

crontab {

mailto ... ;

* set-env ... ;

* plan ... ;

* monthly ... ;

* weekly ... ;

* daily ... ;

* hourly ... ;

910

* every ... ;

}

Cron table definition.

No "default content" of crontab is preserved, all table items must be specified here.

Typical content of crontab can be found in file samples/crontab.cml that you can include

into your configuration and use here. See instructions in the file.

Items & subsections:

mailto addr ;

Set MAILTO crontab variable.

This address is used by cron to send skripts output. Setting via SET-ENV is

allowed, however, setting by this item should be prefererred. If undefined, the

SYSTEM.ADMIN value is used.

addr (type: str)

Email address(es).

set-env name value;

Set crontab variable.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars only.

plan line;

Crontab (raw) line.

line (type: str)

monthly at at [by by] cmd [report report];

Run task every month.

at at (type: time)

Starting time of task (hhmm).

by by (type: str, optional, default: "root")

cmd (type: str)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

weekly on on at at [by by] cmd [report report];

Run task every week.

on on (type: week-day)

Weekday of execution.

at at (type: time)

Starting time of task (hhmm).

by by (type: str, optional, default: "root")

911

APPENDIX B. KERNUN UTM REFERENCE (5)

cmd (type: str)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

daily at at [by by] cmd [report report];

Run task every day.

at at (type: time)

Starting time of task (hhmm).

by by (type: str, optional, default: "root")

cmd (type: str)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

hourly at at [by by] cmd [report report];

Run task every hour.

at at (type: time)

Starting time of task (mm, hours ignored).

by by (type: str, optional, default: "root")

cmd (type: str)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

every min at at [by by] cmd [report report];

Run task every time range given in minutes.

min (type: time)

Period (mm, hours ignored).

at at (type: time)

Starting time of task (mm, hours ignored).

by by (type: str, optional, default: "root")

cmd (type: str)

report report (type: report-mode, optional, default: nothing=0)

Task output (stdout and stderr) delivery.

[End of section system.crontab description.]

periodic-conf {

mailto ... ;

* set-env ... ;

}

Periodic job configuration information.

The /etc/periodic.conf file content (see periodic.conf(5)) is defined here. Typical con-

tent of the file can be found in file samples/crontab.cml that you can include into your

configuration and use here. See instructions in the file.

If undefined, the file remains untouched.

912

Items & subsections:

mailto addr ;

Set MAILTO crontab variable.

This address will be used as value of several variables ’daily_output’,

’weekly_output’, ’monthly_output’, ’daily_status_security_output’,

’weekly_status_security_output’ and ’monthly_status_security_output’.

If undefined, the SYSTEM.ADMIN value is used.

addr (type: str)

Email address(es).

set-env name value;

Set periodic.conf variable.

name (type: str)

Variable name.

value (type: str)

Variable value.

Constraints:

Variable name must contain alphanumeric chars only.

[End of section system.periodic-conf description.]

local-mailer {

phase ... ;

* tag ... ;

relayhost ... ;

source-address ... ;

myhostname ... ;

smtp-helo-name ... ;

myorigin ... ;

inet-protocol ... ;

relay-domains ... ;

mydestinations ... ;

mynetworks ... ;

message-size-limit ... ;

bounce-size-limit ... ;

bounce-queue-lifetime ... ;

delay-warning-time ... ;

tls { ... }

* set-var ... ;

master-cf ... ;

smtpd-option ... ;

transport-map ... ;

913

APPENDIX B. KERNUN UTM REFERENCE (5)

}

MTA used for sending mails originated at firewall.

The local-mailer section is derived from smtp-agent section pro-

totype. For detail description of it, see smtp-proxy(5).

Changes to the local-mailer section:

Cannost use automatic transport map for local-mailer.

ssh-server name {

phase ... ;

* tag ... ;

listen-on { ... }

protocol ... ;

passwd-auth ... ;

ciphers ... ;

kex-algorithms ... ;

macs ... ;

* option ... ;

* subsystem ... ;

}

The ssh-server section is derived from ssh-server section proto-

type. For detail description of it, see ssh(5).

ssh-keys {

* key2 ... ;

}

SSH keys definition.

Items & subsections:

key2 email type key [ignored];

SSH Version 2 key.

email (type: str)

Owner email address.

type (type: ssh-key-type)

key (type: str)

ignored (type: str, optional, default: <NULL>)

Elem ignored, retained due to backward compatibility.

[End of section system.ssh-keys description.]

ica-auto port priv-key pub-key ;

Configure the icamd/icasd automatically. Uses the addresses defined for pikemon

port (type: port)

The port that icamd listens on and icasd connects to.

914

priv-key (type: name of shared-file, see common(5))

The private ssh key used for authentication

pub-key (type: name of shared-file, see common(5))

The public ssh key used for authentication

icamd {

phase ... ;

* tag ... ;

listen-on { ... }

priv-key ... ;

* slave name { ... }

}

The icamd section is derived from icamd section prototype. For

detail description of it, see ica(5).

icasd {

phase ... ;

* tag ... ;

priv-key ... ;

* master name { ... }

}

The icasd section is derived from icasd section prototype. For

detail description of it, see ica(5).

watch {

disable ... ;

}

Watching system parameters by RRD.

Items & subsections:

disable;

Disable watching.

[End of section system.watch description.]

acl name {

* from ... ;

* to ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

915

APPENDIX B. KERNUN UTM REFERENCE (5)

rule ... ;

auth ... ;

idle-timeout ... ;

source-address ... ;

plug-to ... ;

service ... ;

}

General ACL definition.

The acl section is derived from acl-1 section prototype. For detail

description of it, see acl(5).

Changes to the acl section:

Item user is not valid.

Item idle-timeout-peer is not valid.

Item SERVICE must be specified.

Added items & subsections:

service list ;

List of proxies where this ACL is applicable.

list (type: str-set)

[End of section system.acl description.]

use-services file;

Source for /etc/services file.

file (type: name of shared-file, see common(5))

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configu-

ration environment. Namely, it is applicable within SYSTEM section and within any

section derived from PROXY prototype. The former usage defines system-wide values,

the latter one values valid for particular proxy.

name (type: name of resolver, see resolver(5))

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

916

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

nameserver name {

phase ... ;

* tag ... ;

use-ipv4-only ... ;

listen-on { ... }

forward ... ;

* forwarder ... ;

* from ... ;

dnssec { ... }

send-cookie ... ;

* option ... ;

* raw ... ;

* zone name { ... }

}

The nameserver section is derived from nameserver section proto-

type. For detail description of it, see nameserver(5).

ns-list name {

* server ... ;

}

The ns-list section is derived from ns-list section prototype. For

detail description of it, see resolver(5).

atrmon name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

run-block-sigalrm ... ;

listen-on { ... }

client-conn { ... }

* session-acl name { ... }

917

APPENDIX B. KERNUN UTM REFERENCE (5)

* request-acl name { ... }

}

The atrmon section is derived from atrmon section prototype. For

detail description of it, see atr(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

packet-filter {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

pflog ... ;

pfsync ... ;

comm-dir ... ;

ignore-iface ... ;

pcap-timeout ... ;

buffer-size ... ;

* set-option ... ;

918

timeouts { ... }

limits { ... }

logging-frequence ... ;

* altq name { ... }

* scrub-acl name { ... }

* rdr-acl name { ... }

* nat-acl name { ... }

* binat-acl name { ... }

* filter-acl name { ... }

* load-anchor ... ;

}

The packet-filter section is derived from packet-filter section

prototype. For detail description of it, see packet-filter(5).

adaptive-firewall {

ids-agent { ... }

* watchdog name { ... }

honeypot { ... }

auto-blocking { ... }

adaptive-database { ... }

address-groups { ... }

port-groups { ... }

whitelist ... ;

blacklist ... ;

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

}

The adaptive-firewall section is derived from

adaptive-firewall section prototype. For detail description

of it, see adaptive-firewall(5).

alertd {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

919

APPENDIX B. KERNUN UTM REFERENCE (5)

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

* snmp-manager name { ... }

}

The alertd section is derived from alertd section prototype. For

detail description of it, see alertd(5).

bird4 {

phase ... ;

* tag ... ;

use-id ... ;

direct { ... }

kernel { ... }

device { ... }

static { ... }

ospf { ... }

* raw ... ;

}

The bird4 section is derived from bird4 section prototype. For

detail description of it, see router(5).

bird6 {

phase ... ;

* tag ... ;

use-id ... ;

direct { ... }

kernel { ... }

device { ... }

static { ... }

ospf { ... }

* raw ... ;

}

920

The bird6 section is derived from bird6 section prototype. For

detail description of it, see router(5).

rtadvd {

phase ... ;

* tag ... ;

default-params { ... }

}

The rtadvd section is derived from rtadvd section prototype. For

detail description of it, see rtadvd(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

921

APPENDIX B. KERNUN UTM REFERENCE (5)

html-filter name {

* script-tag-language ... ;

replace-head-script-tags ... ;

replace-body-script-tags ... ;

* style-tag-type ... ;

replace-style-tags ... ;

* iframe-tag-src ... ;

replace-iframe-tags ... ;

* intrinsic-language ... ;

* intrinsic-hack ... ;

replace-intrinsic ... ;

* macro-language ... ;

* macro-hack ... ;

replace-macros ... ;

* uri ... ;

replace-uri ... ;

* embed-tag-type ... ;

* embed-src-hack ... ;

* embed-plugin-hack ... ;

replace-head-embed-tags ... ;

replace-body-embed-tags ... ;

* applet ... ;

replace-applets ... ;

* object ... ;

* object-classid-hack ... ;

* object-data-hack ... ;

replace-head-object-tags ... ;

replace-body-object-tags ... ;

* param-tags ... ;

replace-param ... ;

script-end-hack ... ;

}

The html-filter section is derived from html-filter section pro-

totype. For detail description of it, see mod-html-filter(5).

mail-filter name {

stamp-limit ... ;

stamp-filter ... ;

* unflagged-8bit ... ;

922

* bad-end-of-line ... ;

* invalid-header ... ;

* long-header-lines ... ;

* invalid-chars ... ;

* header-8bit-chars ... ;

* bad-boundary-chars ... ;

* bad-boundary-length ... ;

* long-body-lines ... ;

* long-encoded-lines ... ;

enc-line-len ... ;

* bad-mime-struct ... ;

* invalid-encoding ... ;

treat-rfc822-as-text ... ;

}

The mail-filter section is derived from mail-filter section pro-

totype. For detail description of it, see mod-mail-doc(5).

aproxy name {

auth ... ;

insecure-cookies ... ;

oob-auth ... ;

cookie-name ... ;

logout ... ;

timeout-idle ... ;

timeout-unauth ... ;

bufsz ... ;

}

The aproxy section is derived from aproxy section prototype. For

detail description of it, see http-proxy(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

ldap-client-auth name {

server ... ;

923

APPENDIX B. KERNUN UTM REFERENCE (5)

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

antivirus name {

connection ... ;

sock-opt { ... }

timeout ... ;

comm-dir ... ;

altq ... ;

max-checked-size ... ;

icap-pass-200-with-pure-body ... ;

persistent-stream ... ;

clamav-agent { ... }

}

The antivirus section is derived from antivirus section prototype.

For detail description of it, see antivirus(5).

antispam name {

connection ... ;

sock-opt { ... }

altq ... ;

}

924

The antispam section is derived from antispam section prototype.

For detail description of it, see mod-antispam(5).

smtp-forwarder name {

* server ... ;

agent { ... }

timeouts { ... }

hostname ... ;

size ... ;

source-address ... ;

* domain ... ;

server-ssl ... ;

* server-cert-match ... ;

altq ... ;

}

The smtp-forwarder section is derived from smtp-forwarder sec-

tion prototype. For detail description of it, see smtp-proxy(5).

web-filter name {

connection ... ;

fail-ok ... ;

sock-opt { ... }

}

The web-filter section is derived from web-filter section proto-

type. For detail description of it, see http-proxy(5).

clear-web-db {

internal-servers ... ;

db ... ;

lock ... ;

local-db { ... }

}

The clear-web-db section is derived from clear-web-db section

prototype. For detail description of it, see clear-web-db(5).

openvpn name {

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

interface ... ;

topology ... ;

925

APPENDIX B. KERNUN UTM REFERENCE (5)

local ... ;

nobind ... ;

user ... ;

group ... ;

persist-tun ... ;

persist-key ... ;

log-debug { ... }

log-stats { ... }

mute ... ;

ping-timer-rem ... ;

keepalive ... ;

proto ... ;

tls-mat ... ;

dh ... ;

secret ... ;

crl-verify ... ;

server ... ;

max-clients ... ;

duplicate-cn ... ;

client-to-client ... ;

ccd-exclusive ... ;

mlock ... ;

float ... ;

push { ... }

ifconfig-pool ... ;

ifconfig-ipv6-pool ... ;

tls-server ... ;

tls-client ... ;

tls-auth ... ;

* remote ... ;

remote-random ... ;

comp-lzo ... ;

verify-x509-name ... ;

remote-cert-ku ... ;

remote-cert-eku ... ;

remote-cert-tls ... ;

cipher ... ;

data-ciphers ... ;

926

data-ciphers-fallback ... ;

client ... ;

pull ... ;

route-nopull ... ;

no-ifconfig-noexec ... ;

ifconfig-pool-persist ... ;

client-connect ... ;

client-connect-socket ... ;

* ccd name { ... }

* raw ... ;

phase ... ;

* tag ... ;

socket-root ... ;

fast-io ... ;

}

The openvpn section is derived from openvpn section prototype. For

detail description of it, see openvpn(5).

ipsec-global {

phase ... ;

* tag ... ;

}

The ipsec-global section is derived from ipsec-global section

prototype. For detail description of it, see ipsec(5).

ipsec-remote name {

peer ... ;

lifetime ... ;

encryption ... ;

hash ... ;

dh-group ... ;

authentication ... ;

dpd ... ;

rekey ... ;

ike-frag ... ;

esp-frag ... ;

}

The ipsec-remote section is derived from ipsec-remote section

prototype. For detail description of it, see ipsec(5).

927

APPENDIX B. KERNUN UTM REFERENCE (5)

ipsec name {

phase ... ;

* tag ... ;

transport-mode ... ;

tunnel-mode { ... }

phase2 { ... }

}

The ipsec section is derived from ipsec section prototype. For

detail description of it, see ipsec(5).

data-match name {

max-size ... ;

init-match ... ;

max-match ... ;

step-size ... ;

step-match ... ;

* test ... ;

}

The data-match section is derived from data-match section proto-

type. For detail description of it, see mod-match(5).

ntlm-auth name {

domain ... ;

workgroup ... ;

* ad-controller ... ;

interfaces { ... }

ldap ... ;

timeout ... ;

timeout-idle ... ;

timeout-unauth ... ;

}

The ntlm-auth section is derived from ntlm-auth section prototype.

For detail description of it, see http-proxy(5).

kerberos-auth name {

domain ... ;

user-match ... ;

kinit ... ;

keytab ... ;

proxy-host ... ;

928

* ad-controller ... ;

ldap ... ;

timeout-idle ... ;

timeout-unauth ... ;

lock ... ;

lock-ldap ... ;

one-per-session ... ;

}

The kerberos-auth section is derived from kerberos-auth section

prototype. For detail description of it, see http-proxy(5).

cwcatd {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

wakeup ... ;

retry ... ;

}

Clear Web automatic categorization daemon.

The cwcatd section is derived from alone-application section pro-

totype. For detail description of it, see application(5).

Added items & subsections:

wakeup [sec];

Period (in seconds) of waking up of the categorization daemon and checking the

queue of categorization requests. In addition, the daemon is awaken by a signal

immediately after a new request is enqueued.

sec (type: uint16, optional, default: 60)

929

APPENDIX B. KERNUN UTM REFERENCE (5)

retry [sec];

Time (in seconds) after which a failed automatic categorization will be retried.

sec (type: uint32, optional, default: 3600)

[End of section system.cwcatd description.]

snmpd {

phase ... ;

* tag ... ;

listen-on { ... }

* user ... ;

location ... ;

* group name { ... }

* proc ... ;

* exec ... ;

* disk ... ;

load ... ;

swap ... ;

* raw ... ;

}

The snmpd section is derived from snmpd section prototype. For

detail description of it, see snmpd(5).

http-cache {

phase ... ;

* tag ... ;

listen-on { ... }

hand-off ... ;

cache-size ... ;

max-object-size ... ;

* raw ... ;

}

The http-cache section is derived from http-cache section proto-

type. For detail description of it, see http-cache(5).

update {

adaptive-firewall { ... }

clear-web { ... }

}

The update section is derived from update section prototype. For

detail description of it, see update(5).

930

feedback {

adaptive-firewall { ... }

clear-web { ... }

system-status ... ;

reporter ... ;

errors ... ;

}

The feedback section is derived from feedback section prototype.

For detail description of it, see feedback(5).

stats {

keep-days ... ;

disable ... ;

}

Parameters for generating statistics.

Items & subsections:

keep-days [val];

How many days of log data are kept in the Kernun Reporter database. Older

data will be deleted automatically. If set to zero, no data will be deleted from the

database.

val (type: uint16, optional, default: 31)

disable;

Do not generate the REPORTER component. This item is intended mainly for

testing purposes.

[End of section system.stats description.]

stats-daily {

top-clients ... ;

top-users ... ;

top-servers ... ;

}

The stats-daily section is derived from summary section prototype.

For detail description of it, see application(5).

Changes to the stats-daily section:

Item top-groups is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

931

APPENDIX B. KERNUN UTM REFERENCE (5)

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

stats-weekly {

top-clients ... ;

top-users ... ;

top-servers ... ;

}

The stats-weekly section is derived from summary section proto-

type. For detail description of it, see application(5).

Changes to the stats-weekly section:

Item top-groups is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

stats-monthly {

top-clients ... ;

top-users ... ;

top-servers ... ;

}

The stats-monthly section is derived from summary section proto-

type. For detail description of it, see application(5).

932

Changes to the stats-monthly section:

Item top-groups is not valid.

Item top-categories is not valid.

Item top-senders is not valid.

Item top-recipients is not valid.

Item top-mime-types is not valid.

Item top-qnames is not valid.

Item top-qtypes is not valid.

Item top-callers is not valid.

Item top-receivers is not valid.

Item top-sids is not valid.

Item top-server-ports is not valid.

Item spam-threshold is not valid.

Section activity-report is not valid.

Item top-src-ips is not valid.

Item top-dst-ips is not valid.

Item top-rules is not valid.

tcp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

err-reset ... ;

933

APPENDIX B. KERNUN UTM REFERENCE (5)

ssl-session-cache { ... }

client-ssl ... ;

client-ssl-timeout ... ;

data-mime-db ... ;

auth ... ;

* session-acl name { ... }

}

The tcp-proxy section is derived from tcp-proxy section prototype.

For detail description of it, see tcp-proxy(5).

udp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

source-address ... ;

doctype-identification { ... }

auth ... ;

* session-acl name { ... }

}

The udp-proxy section is derived from udp-proxy section prototype.

For detail description of it, see udp-proxy(5).

dns-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

934

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

doctype-identification { ... }

queue-size ... ;

edns ... ;

dnssec ... ;

cache { ... }

request-timeout ... ;

response-timeout ... ;

query-timeout ... ;

server-dead ... ;

server-retry ... ;

server-proto ... ;

requests-table-size ... ;

sockets-table-size ... ;

internal-request-depth ... ;

adr-reply-limit ... ;

ptr-reply-limit ... ;

client-conn { ... }

server-conn { ... }

* session-acl name { ... }

* request-acl name { ... }

}

The dns-proxy section is derived from dns-proxy section prototype.

For detail description of it, see dns-proxy(5).

ftp-proxy name {

phase ... ;

935

APPENDIX B. KERNUN UTM REFERENCE (5)

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-ctrl { ... }

server-ctrl { ... }

client-data { ... }

server-data { ... }

init-timeout ... ;

init-cmdlimit ... ;

* data-transfer ... ;

retry-data ... ;

* session-acl name { ... }

* command-acl name { ... }

* doc-acl name { ... }

}

The ftp-proxy section is derived from ftp-proxy section prototype.

For detail description of it, see ftp-proxy(5).

gk-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

936

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

source-address ... ;

doctype-identification { ... }

map-file ... ;

* session-acl name { ... }

}

The gk-proxy section is derived from gk-proxy section prototype.

For detail description of it, see gk-proxy(5).

h323-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

937

APPENDIX B. KERNUN UTM REFERENCE (5)

client-ctrl { ... }

server-ctrl { ... }

data-channel { ... }

map-file ... ;

* session-acl name { ... }

max-channel-ports ... ;

}

The h323-proxy section is derived from h323-proxy section proto-

type. For detail description of it, see h323-proxy(5).

http-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

document-root ... ;

hdr-line-len ... ;

blacklist-db ... ;

connect-data-mime-db ... ;

ftp-proxy ... ;

max-aproxy-sessions ... ;

max-bypass-sessions ... ;

938

oob-auth-srv ... ;

ssl-session-cache { ... }

aproxy-lock ... ;

cookie-table { ... }

extended-status ... ;

* session-acl name { ... }

* request-acl name { ... }

* doc-acl name { ... }

}

The http-proxy section is derived from http-proxy section proto-

type. For detail description of it, see http-proxy(5).

icap-server name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

document-root ... ;

hdr-line-len ... ;

preview ... ;

blacklist-db ... ;

max-bypass-sessions ... ;

ssl-session-cache { ... }

ldap-cache { ... }

939

APPENDIX B. KERNUN UTM REFERENCE (5)

* session-acl name { ... }

* service-acl name { ... }

* request-acl name { ... }

* doc-acl name { ... }

}

The icap-server section is derived from icap-server section pro-

totype. For detail description of it, see icap-server(5).

imap4-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

ssl-session-cache { ... }

mail-pool ... ;

* session-acl name { ... }

* command-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

The imap4-proxy section is derived from imap4-proxy section pro-

totype. For detail description of it, see imap4-proxy(5).

940

pop3-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

ssl-session-cache { ... }

mail-pool ... ;

* session-acl name { ... }

* command-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

The pop3-proxy section is derived from pop3-proxy section proto-

type. For detail description of it, see pop3-proxy(5).

sip-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

941

APPENDIX B. KERNUN UTM REFERENCE (5)

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

source-address ... ;

doctype-identification { ... }

queue-size ... ;

hash-salt ... ;

ctrl-conn { ... }

data-conn { ... }

map-file ... ;

timeouts { ... }

sessions-table-size ... ;

sockets-table-size ... ;

* keepalive ... ;

* session-acl name { ... }

* request-acl name { ... }

}

The sip-proxy section is derived from sip-proxy section prototype.

For detail description of it, see sip-proxy(5).

smtp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

942

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

mail-pool ... ;

quarantine ... ;

postmaster ... ;

hostname ... ;

init-timeout ... ;

bad-commands ... ;

bad-recipients ... ;

dsn-mail-copy ... ;

use-antivirus ... ;

use-antispam ... ;

ssl-session-cache { ... }

grey-listing { ... }

* session-acl name { ... }

* delivery-acl name { ... }

* mail-acl name { ... }

* doc-acl name { ... }

}

The smtp-proxy section is derived from smtp-proxy section proto-

type. For detail description of it, see smtp-proxy(5).

sqlnet-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

943

APPENDIX B. KERNUN UTM REFERENCE (5)

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

init-timeout ... ;

protocol-version ... ;

max-service-name-len ... ;

check-reserved-bits ... ;

connect-string-charset ... ;

connect-packet-sizelimit ... ;

* session-acl name { ... }

* service-acl name { ... }

}

The sqlnet-proxy section is derived from sqlnet-proxy section

prototype. For detail description of it, see sqlnet-proxy(5).

proxy-ng name {

phase ... ;

* tag ... ;

use-resolver ... ;

nodaemon ... ;

app-user ... ;

log-debug { ... }

log-stats { ... }

resolver-ng { ... }

listen-on { ... }

tcpserver { ... }

* cfg-begin ... ;

* cfg-end ... ;

* jval ... ;

log-audit { ... }

* session-acl name { ... }

944

http-proxy { ... }

}

The proxy-ng section is derived from proxy-ng section prototype.

For detail description of it, see proxy-ng(5).

proxy-ng-transp-ports ports;

ports (type: uint16-list)

TCP ports to be used for transparent listening sockets of the PROXY-NG. Defaults

to ports {2, 3, 4, 5, 6, 7}.

[End of section system description.]

SEE ALSO

configuration(7), acl(5), adaptive-firewall(5), alertd(5), antivirus(5), application(5), atr(5),

auth(5), clear-web-db(5), common(5), dhcp-server(5), dns-proxy(5), feedback(5), ftp-proxy(5),

gk-proxy(5), h323-proxy(5), http-cache(5), http-proxy(5), ica(5), icap-server(5), imap4-proxy(5),

interface(5), ipc(5), ipsec(5), ldap(5), license(5), listen-on(5), log(5), mod-antispam(5),

mod-html-filter(5), mod-mail-doc(5), mod-match(5), nameserver(5), newsyslog.conf(5),

ntp(5), openvpn(5), packet-filter(5), periodic.conf(5), pf-queue(5), pike(5), pop3-proxy(5),

proxy-ng(5), radius(5), resolver(5), router(5), rtadvd(5), sip-proxy(5), smtp-proxy(5), snmpd(5),

source-address(5), sqlnet-proxy(5), ssh(5), ssl(5), sysctl(5), tcp-proxy(5), time(5), udp-proxy(5),

udpserver(5), update(5), cml(8), kat(8)

945

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

tcp-proxy — format of tcp-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the tcp-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in tcp-proxy configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

listen-on-sock (see listen-on(5))

946

ITEMS AND SECTIONS

Configuration of tcp-proxy library component consists of following prototypes:

* tcp-proxy name { ... }

Description:

tcp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

err-reset ... ;

ssl-session-cache { ... }

client-ssl ... ;

client-ssl-timeout ... ;

data-mime-db ... ;

auth ... ;

* session-acl name { ... }

947

APPENDIX B. KERNUN UTM REFERENCE (5)

}

Generic TCP proxy configuration.

The tcp-proxy section is derived from proxy section prototype. For

detail description of it, see application(5).

Changes to the tcp-proxy section:

Section udpserver is not valid.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data is not valid.

Item idle-timeout (see application(5))

Element seconds is optional, default: 2d.

Item listen-on.non-transparent (see listen-on(5))

Element proto is optional, default: tcp.

Item listen-on.transparent (see listen-on(5))

Element proto is optional, default: tcp.

Added items & subsections:

client-conn {

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to client options.

The client-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the client-conn section:

Item conn-timeout is not valid.

Item recv-timeout is not valid.

Item send-timeout is not valid.

server-conn {

conn-timeout ... ;

recv-bufsize ... ;

close-timeout ... ;

send-bufsize ... ;

log-limit ... ;

}

Connection to server options.

948

The server-conn section is derived from sock-opt section proto-

type. For detail description of it, see netio(5).

Changes to the server-conn section:

Item recv-timeout is not valid.

Item send-timeout is not valid.

err-reset;

If set, reset connection on error (otherwise use normal TCP close).

ssl-session-cache {

capacity ... ;

dir ... ;

lock ... ;

}

The ssl-session-cache section is derived from

ssl-session-cache section prototype. For detail description

of it, see ssl(5).

client-ssl params;

Use SSL/TLS on the connection from a client.

params (type: name of ssl-params, see ssl(5))

client-ssl-timeout seconds;

Timeout for SSL/TLS handshake with client.

seconds (type: uint32)

data-mime-db filename;

Data MIME type mapping file.

filename (type: name of shared-file, see common(5))

auth none;

auth passwd file;

auth radius client ;

auth ldap ldap;

auth ext file;

auth oob oob [mode [loose]];

Authentication method and attributes specification.

For more details, see auth(7).

<branching element> (type: auth-method)

file (type: str)

Password/utility file name.

client (type: name of radius-client, see radius(5))

RADIUS client configuration name.

949

APPENDIX B. KERNUN UTM REFERENCE (5)

ldap (type: name of ldap-client-auth, see ldap(5))

LDAP client configuration parameters.

oob (type: name of oob-auth, see auth(5))

OOB authentication parameters.

mode (type: obligation, optional, default: allowed)

loose (type: key, optional)

Constraints:

Only out-of-band authentication is supported in this proxy.

session-acl name {

* from ... ;

* to ... ;

* user ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout ... ;

idle-timeout-peer ... ;

source-address ... ;

plug-to ... ;

* client-cert-match ... ;

* ip-tos-from-client ... ;

max-bytes-in ... ;

max-bytes-out ... ;

max-time ... ;

cl2srv-halfclosed-time ... ;

srv2cl-halfclosed-time ... ;

server-ssl ... ;

data-filter-client ... ;

data-filter-server ... ;

* server-cert-match ... ;

client-altq ... ;

server-altq ... ;

ip-tos-to-client { ... }

ip-tos-to-server { ... }

}

950

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item auth is not valid.

SSL/TLS required on connection in order to match server certificates.

Added items & subsections:

client-cert-match [subject subject] [issuer issuer];

Select an ACL according to a client certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

ip-tos-from-client val ;

Testing an IP TOS value of received packets.

val (type: uint8-set)

max-bytes-in bytes;

Maximum number of bytes from server to client.

bytes (type: uint64)

max-bytes-out bytes;

Maximum number of bytes from client to server.

bytes (type: uint64)

max-time seconds;

Maximum time of session

seconds (type: uint32)

cl2srv-halfclosed-time seconds;

Maximum duration of client to server communication after the connection is half-

closed in server to client direction.

seconds (type: uint32)

srv2cl-halfclosed-time seconds;

Maximum duration of server to client communication after the connection is half-

closed in client to server direction.

seconds (type: uint32)

server-ssl params;

Use SSL/TLS on the connection to a server.

params (type: name of ssl-params, see ssl(5))

data-filter-client rules;

Client data filtering.

rules (type: name of data-match, see mod-match(5))

data-filter-server rules;

Server data filtering.

951

APPENDIX B. KERNUN UTM REFERENCE (5)

rules (type: name of data-match, see mod-match(5))

server-cert-match [subject subject] [issuer issuer];

Requirements for server certificate.

subject subject (type: str-set, optional, default: *)

acceptable certificate subjects

issuer issuer (type: str-set, optional, default: *)

acceptable certificate issuers

client-altq altq [paltq paltq];

ALTQ queues for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

server-altq altq [paltq paltq];

ALTQ queues for data sent to server.

altq (type: name of pf-queue, see pf-queue(5))

queue name

paltq paltq (type: name of pf-queue, see pf-queue(5), optional,

default: NULL)

priority queue name (if set, used for TCP ACK without data)

ip-tos-to-client {

fixed ... ;

received ... ;

other ... ;

}

The ip-tos-to-client section is derived from ip-tos-to-client

section prototype. For detail description of it, see netio(5).

ip-tos-to-server {

fixed ... ;

received ... ;

other ... ;

}

The ip-tos-to-server section is derived from ip-tos-to-server

section prototype. For detail description of it, see netio(5).

[End of section tcp-proxy.session-acl description.]

[End of section tcp-proxy description.]

SEE ALSO

952

configuration(7), acl(5), application(5), auth(5), common(5), ipc(5), ldap(5), listen-on(5), log(5),

mod-match(5), monitoring(5), netio(5), pf-queue(5), radius(5), source-address(5), ssl(5), time(5),

auth(7)

953

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

tcp-proxy.cfg — format of tcp-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the tcp-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in tcp-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

dbglev (see log(5))

logfail-mode (see log(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

954

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ssl-ver (see ssl(5))

extension-op (see ssl(5))

veri-fail-action (see ssl(5))

auth-cert-type (see ssl(5))

distrusted-cert-type (see ssl(5))

data-match-action (see mod-match(5))

ITEMS AND SECTIONS

Program tcp-proxy recognizes following items and sections:

* data-match name { ... }

* fake-cert name { ... }

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

955

APPENDIX B. KERNUN UTM REFERENCE (5)

* shared-file name { ... }

* ssl-params name { ... }

sysctl { ... }

use-resolver ... ;

* tcp-proxy name { ... }

ipv6-mode ... ;

Description:

data-match name {

max-size ... ;

init-match ... ;

max-match ... ;

step-size ... ;

step-match ... ;

* test ... ;

}

The data-match section is derived from data-match section proto-

type. For detail description of it, see mod-match(5).

fake-cert name {

key ... ;

auth-ca ... ;

fail-ca ... ;

* extension ... ;

purge ... ;

}

The fake-cert section is derived from fake-cert section prototype.

For detail description of it, see ssl(5).

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

956

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

957

APPENDIX B. KERNUN UTM REFERENCE (5)

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

958

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

ssl-params name {

versions ... ;

ciphers ... ;

tcp-eof ... ;

id ... ;

* auth-cert ... ;

distrusted-certs ... ;

dont-check-crl ... ;

* crl ... ;

verify-peer ... ;

cache-timeout ... ;

use-ticket ... ;

enable-renegotiation ... ;

fake-cert ... ;

prefer_server_ciphers ... ;

enable-ecdh ... ;

}

The ssl-params section is derived from ssl-params section proto-

type. For detail description of it, see ssl(5).

959

APPENDIX B. KERNUN UTM REFERENCE (5)

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

name (type: name of resolver, see resolver(5))

tcp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

idle-timeout ... ;

960

run-block-sigalrm ... ;

listen-on { ... }

tcpserver { ... }

source-address ... ;

doctype-identification { ... }

client-conn { ... }

server-conn { ... }

err-reset ... ;

ssl-session-cache { ... }

client-ssl ... ;

client-ssl-timeout ... ;

data-mime-db ... ;

auth ... ;

* session-acl name { ... }

}

The tcp-proxy section is derived from tcp-proxy section prototype.

For detail description of it, see tcp-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), tcp-proxy(8), acl(5), auth(5), common(5), interface(5), ipc(5), ldap(5),

listen-on(5), log(5), mod-match(5), pf-queue(5), radius(5), resolver(5), source-address(5), ssl(5),

sysctl(5), tcp-proxy(5), time(5), host-matching(7)

961

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

tcpserver — format of tcpserver component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the tcpserver component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in tcpserver configuration directives:

yes-no (see common(5))

lock-type (see ipc(5))

ITEMS AND SECTIONS

Configuration of tcpserver library component consists of following prototypes:

tcpserver { ... }

Description:

tcpserver {

queue-size ... ;

init-children ... ;

max-children ... ;

max-children-per-ip ... ;

min-idle ... ;

max-idle ... ;

parent-cycle ... ;

info-cycle ... ;

min-start-rate ... ;

max-start-rate ... ;

962

kill-rate ... ;

fork-wait ... ;

fork-retries ... ;

lock ... ;

alt-lock ... ;

listener ... ;

conn-rate ... ;

conn-rate-per-ip ... ;

conn-rate-table ... ;

terminate-wait ... ;

}

General TCP server parameters.

Constraints:

INIT-CHILDREN must be within 0 < INIT-CHILDREN <= MAX-CHILDREN.

Idle-values must be within 0 < MIN-IDLE < MAX-IDLE <= MAX-CHILDREN.

MIN-START-RATE must be within 0 < MIN-START-RATE <=MAX-START-RATE.

Connection rate limitation is allowed only in LISTENER mode.

CONN-RATE-PER-IP must not be greater than CONN-RATE.

MAX-CHILDREN-PER-IP is allowed only in LISTENER mode.

MAX-CHILDREN-PER-IP must not be greater than MAX-CHILDREN.

Items & subsections:

queue-size [value];

Queue length for listen(2) syscall.

value (type: uint16, optional, default: 2000)

init-children [value];

Initially started number of child processes.

value (type: uint16, optional, default: 5)

max-children [value];

Maximum number of running child processes.

value (type: uint16, optional, default: 400)

max-children-per-ip [value];

Maximum number of running child processes per client.

When this limit is reached, no more connections from the client are accepted.

Setting to zero switches the check off.

value (type: uint16, optional, default: 150)

963

APPENDIX B. KERNUN UTM REFERENCE (5)

min-idle [value];

Minimum number of idle child processes.

value (type: uint16, optional, default: 5)

max-idle [value];

Maximum number of idle child processes.

value (type: uint16, optional, default: 10)

parent-cycle [value];

Interval after which parent checks child processes.

value (type: uint16, optional, default: 1000)

(milliseconds)

info-cycle [value];

Number of parent cycles after which process statistics are reported.

value (type: uint16, optional, default: 3600)

(0 = do not report statistics)

min-start-rate [value];

Minimum number of child processes forked per parent-cycle.

value (type: uint16, optional, default: 8)

max-start-rate [value];

Maximum number of child processes forked per parent-cycle.

value (type: uint16, optional, default: 64)

kill-rate [value];

Number of child processes killed per parent-cycle.

value (type: uint16, optional, default: 1)

Constraints:

KILL-RATE must be positive.

fork-wait [value];

Pause after unsuccessful fork(2) before next call.

value (type: uint16, optional, default: 10000)

(milliseconds)

fork-retries [value];

Maximum number of retries after unsuccessfull fork(2).

value (type: uint8, optional, default: 1)

lock [path];

Lock file for exclusive access to select/accept loop.

964

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

alt-lock none;

alt-lock semaphore;

alt-lock lock2 [path];

alt-lock [multilock2] [path];

An alternative implemetation of locks.

<branching element> (type: lock-type, optional, default: multi-

lock2)

path (type: str, optional, default: <NULL>)

If set to directory, file in that directory is created with name

PREFIX.PID.XXXXXX, where PREFIX is a string defined by the proxy, PID is

the proxy parent process ID and X is a random suffix. If not set, directory /tmp

is assumed. Automatic generation of lock file name is strongly recommended,

because each lock must have a unique name.

listener no;

listener [yes];

Use a listener process for accepting clients. If enabled then sysctl kern.ipc.soacceptqueue

value should be at least MAX-CHILDREN.

<branching element> (type: yes-no, optional, default: yes)

conn-rate value;

Maximum number of connections during one second.

When this limit is reached, no more new connections are accepted within the current

second.

If omitted, the value is set to roundup(MAX-CHILDREN / 6), setting to zero switches

the check off.

value (type: uint16)

conn-rate-per-ip value;

Maximum number of connections from one address during one second.

When this limit is reached, no more new connections from the client is accepted within

the current nad next second.

If omitted, the value is set to roundup(MAX-CHILDREN-PER-IP / 3), setting to

zero switches the check off.

value (type: uint16)

965

APPENDIX B. KERNUN UTM REFERENCE (5)

conn-rate-table [size size] [search search];

Parameters for per-ip incoming connection rate statistics.

size size (type: uint32, optional, default: 65536)

table size (in addresses)

search search (type: uint32, optional, default: 20)

maximum table search steps

terminate-wait value;

Each child process waits up to this time when terminating at proxy stop, restart, or

reload. It limits the number of processes that are terminating at the same time.

value (type: uint16)

(milliseconds)

[End of section tcpserver description.]

SEE ALSO

configuration(7), fork(2), listen(2), common(5), ipc(5)

966

NAME

test-expr — format of test-expr command-line arguments

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the test-expr command-line argument.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

ITEMS AND SECTIONS

Command-line argument test-expr can contain following items and sections:

test ... ;

show-acl ... ;

show-proxy ... ;

show-hash ... ;

help ... ;

Description:

test [from from] [transparent] [to to] [server server] [user user]

[group group] [time time];

Test ACL search.

This item uses standard Kernun configuration style syntax and specifies values that will be

used for entry conditions matching when searching for proper ACLs. User must enter all

data needed for ACLs that will be checked during the search. For instance, if (and only if)

you use the TO item in SESSION-ACLs, you must enter it here.

Example:

test-xxx -f xxx.cfg -t "test from [1.1.1.1] to [2.2.2.2] : 53;"

from from (type: host, optional, default: [0.0.0.0])

Connection/request client address.

transparent (type: key, optional)

Transparent/non-transparent flag.

to to (type: sock, optional, default: [0.0.0.0]:0)

Connection/request destination address.

967

APPENDIX B. KERNUN UTM REFERENCE (5)

server server (type: sock, optional, default: [0.0.0.0]:0)

Logical destination server address/name.

user user (type: str, optional, default: <NULL>)

Proxy user name.

group group (type: str-list, optional, default: {})

List of groups.

time time (type: uint32, optional, default: 0)

Time (form: [[mm]dd]hhmm).

Constraints:

GROUP can be used only with USER.

show-acl [phase];

Show ACLs from configuration.

phase (type: uint8, optional, default: 1)

Phase of ACL required.

Constraints:

Phase must be at least 1.

show-proxy [all];

Show proxy parameters from configuration.

all (type: key, optional)

Show also default values.

show-hash;

Show proxy configuration hash.

help;

Show test-cfg man page

SEE ALSO

configuration(7)

968

NAME

time — format of time component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the time component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in time configuration directives:

week-day (name-usage optional)

Weekday names.

sun (0)

mon (1)

tue (2)

wed (3)

thu (4)

fri (5)

sat (6)

month (name-usage optional)

Month names.

jan (1)

feb (2)

mar (3)

apr (4)

may (5)

jun (6)

jul (7)

aug (8)

969

APPENDIX B. KERNUN UTM REFERENCE (5)

sep (9)

oct (10)

nov (11)

dec (12)

ITEMS AND SECTIONS

Configuration of time library component consists of following prototypes:

* time ... ;

time-period-set { ... }

Description:

time [day day] [month month] [wday [hhmm]];

Time Specification.

Special item used for time-based limitation in the configuration.

Different categories are checked in conjunction (AND).

day day (type: uint8-set, optional, default: *)

day of month (1 - 31)

month month (type: month-set, optional, default: *)

month (Jan - Dec or 1 - 12)

wday (type: week-day-set, optional, default: *)

week-day (Sun - Sat or 0 - 6)

hhmm (type: time-set, optional, default: *)

time (in form hhmm)

time-period-set {

exclude ... ;

* time-spec name { ... }

}

Set of Time Periods Sepcification.

Special section used for time-based limitation in the configuration.

Items & subsections:

exclude;

Inverted time specification flag.

If used, the time defined by this section is complementary to the period set listed.

970

time-spec name {

* dates ... ;

* weekdays ... ;

* hours ... ;

}

Particular time range specification.

Items & subsections:

dates from-day from-mon till-day till-mon;

Specification of date within a year.

from-day (type: uint8)

from-mon (type: month)

till-day (type: uint8)

till-mon (type: month)

weekdays from till ;

Specification of day within a week.

from (type: week-day)

till (type: week-day)

hours from till ;

Specification of time within a day.

from (type: time)

till (type: time)

Upper bound of time is not included.

Constraints:

Upper bound must nost be 0000 (use 2400).

[End of section time-period-set.time-spec description.]

[End of section time-period-set description.]

SEE ALSO

configuration(7), time-matching(7)

971

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

udp-proxy — format of udp-proxy component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the udp-proxy component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in udp-proxy configuration directives:

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

week-day (see time(5))

month (see time(5))

auth-method (see auth(5))

source-address-mode (see source-address(5))

source-port-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

dbglev (see log(5))

972

logfail-mode (see log(5))

udp-session-type (see udpserver(5))

listen-on-sock (see listen-on(5))

ITEMS AND SECTIONS

Configuration of udp-proxy library component consists of following prototypes:

* udp-proxy name { ... }

Description:

udp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

source-address ... ;

doctype-identification { ... }

auth ... ;

* session-acl name { ... }

}

Generic UDP proxy configuration.

The udp-proxy section is derived from proxy section prototype. For

detail description of it, see application(5).

973

APPENDIX B. KERNUN UTM REFERENCE (5)

Changes to the udp-proxy section:

Item idle-timeout is not valid.

Section tcpserver is not valid.

Section UDPSERVER required.

At least one SESSION-ACL must be specified (proxy must be named in some SYS-

TEM.ACL.SERVICES).

Section monitoring (see monitoring(5))

Item aproxy-user is not valid.

Item data is not valid.

Item listen-on.non-transparent (see listen-on(5))

Element proto is optional, default: udp.

Item listen-on.transparent (see listen-on(5))

Element proto is optional, default: udp.

Added items & subsections:

auth none;

auth passwd file;

auth radius client ;

auth ldap ldap;

auth ext file;

auth oob oob [mode [loose]];

Authentication method and attributes specification.

For more details, see auth(7).

<branching element> (type: auth-method)

file (type: str)

Password/utility file name.

client (type: name of radius-client, see radius(5))

RADIUS client configuration name.

ldap (type: name of ldap-client-auth, see ldap(5))

LDAP client configuration parameters.

oob (type: name of oob-auth, see auth(5))

OOB authentication parameters.

mode (type: obligation, optional, default: allowed)

loose (type: key, optional)

Constraints:

Only out-of-band authentication is supported in this proxy.

session-acl name {

* from ... ;

* to ... ;

974

* user ... ;

* time ... ;

time-period-set { ... }

deny ... ;

accept ... ;

* doctype-ident-order ... ;

rule ... ;

idle-timeout ... ;

idle-timeout-peer ... ;

source-address ... ;

plug-to ... ;

source-port ... ;

max-dgrams-in ... ;

max-dgrams-out ... ;

max-dgram-sz-in ... ;

max-dgram-sz-out ... ;

max-bytes-in ... ;

max-bytes-out ... ;

session-timeout ... ;

session ... ;

client-altq ... ;

server-altq ... ;

}

The session-acl section is derived from acl-1 section prototype.

For detail description of it, see acl(5).

Changes to the session-acl section:

Item auth is not valid.

SOURCE-PORT can be used with SOURCE-ADDRESS CLIENT only.

Item idle-timeout (see acl(5))

Element seconds is optional, default: 60.

Added items & subsections:

source-port client;

source-port [force] port ;

Source port for outgoing connections to server.

Can be used only with SOURCE-ADDRESS CLIENT.

If omitted, generic port will be used.

<branching element> (type: source-port-mode, optional, default:

force)

port (type: port)

Use specified port.

975

APPENDIX B. KERNUN UTM REFERENCE (5)

max-dgrams-in number ;

Maximum number of datagrams from server to client (0 = unlimited).

number (type: uint64)

max-dgrams-out number ;

Maximum number of datagrams from client to server (0 = unlimited).

number (type: uint64)

max-dgram-sz-in [bytes];

Maximum size of a datagram from server to client.

bytes (type: uint16, optional, default: 65535)

max-dgram-sz-out [bytes];

Maximum size of a datagram from client to server.

bytes (type: uint16, optional, default: 65535)

max-bytes-in bytes;

Maximum number of bytes from server to client.

bytes (type: uint64)

max-bytes-out bytes;

Maximum number of bytes from client to server.

bytes (type: uint64)

session-timeout [seconds];

Maximum duration of session.

seconds (type: uint31, optional, default: 0)

Duration in seconds (0 = unlimited).

session one-way;

session [normal];

session any-port;

session any-sock;

session broadcast [bits];

Type of session establishment.

<branching element> (type: udp-session-type, optional, default:

normal)

bits (type: uint8, optional, default: 24)

Mask size for correct responder recognition.

Constraints:

Number of bits must be at most 32.

client-altq altq ;

ALTQ queue for data sent to client.

altq (type: name of pf-queue, see pf-queue(5))

queue name

server-altq altq ;

ALTQ queue for data sent to server.

976

altq (type: name of pf-queue, see pf-queue(5))

queue name

[End of section udp-proxy.session-acl description.]

[End of section udp-proxy description.]

SEE ALSO

configuration(7), acl(5), application(5), auth(5), common(5), ldap(5), listen-on(5), log(5),

monitoring(5), pf-queue(5), radius(5), source-address(5), time(5), udpserver(5), auth(7)

977

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

udp-proxy.cfg — format of udp-proxy program configuration file

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the udp-proxy.cfg configuration file.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in udp-proxy.cfg configuration directives:

enabling (see common(5))

yes-no (see common(5))

direction (see common(5))

ip-version (see common(5))

osi4-proto (see common(5))

time-cond (see common(5))

zip-mode (see common(5))

obligation (see common(5))

inline-file-format (see common(5))

week-day (see time(5))

month (see time(5))

lock-type (see ipc(5))

radius-attr (see radius(5))

ldap-tls-reqcert-mode (see ldap(5))

ldap-search-scope (see ldap(5))

ldap-group-match (see ldap(5))

978

auth-method (see auth(5))

oob-authentication-method (see auth(5))

bandwidth-mode (see pf-queue(5))

pf-sc-setting (see pf-queue(5))

source-address-mode (see source-address(5))

source-port-mode (see source-address(5))

transparency (see acl(5))

user-auth-spec (see acl(5))

doctype-ident-method (see acl(5))

dbglev (see log(5))

logfail-mode (see log(5))

udp-session-type (see udpserver(5))

lagg-protocol (see interface(5))

listen-on-sock (see listen-on(5))

log-in-vain-proto (see sysctl(5))

blackhole-proto (see sysctl(5))

ITEMS AND SECTIONS

Program udp-proxy recognizes following items and sections:

* interface name { ... }

* ldap-client-auth name { ... }

* oob-auth name { ... }

* pf-queue name { ... }

* radius-client name { ... }

* resolver name { ... }

* shared-dir name { ... }

* shared-file name { ... }

sysctl { ... }

use-resolver ... ;

* udp-proxy name { ... }

ipv6-mode ... ;

Description:

979

APPENDIX B. KERNUN UTM REFERENCE (5)

interface name {

dev ... ;

ipv4 ... ;

ipv6 ... ;

mac ... ;

aggregate ... ;

pike ... ;

vlan ... ;

tunnel ... ;

dhcp-client ... ;

ipv6-rtadv { ... }

* alias name { ... }

* tag ... ;

}

The interface section is derived from interface section prototype.

For detail description of it, see interface(5).

ldap-client-auth name {

server ... ;

ssl { ... }

bindinfo ... ;

kerberos ... ;

users ... ;

groups ... ;

active-directory ... ;

}

The ldap-client-auth section is derived from ldap-client-auth

section prototype. For detail description of it, see ldap(5).

oob-auth name {

method ... ;

max-sessions ... ;

max-user ... ;

max-groups ... ;

truncate-groups ... ;

980

file ... ;

lock ... ;

}

The oob-auth section is derived from oob-auth section prototype.

For detail description of it, see auth(5).

pf-queue name {

parent ... ;

bandwidth ... ;

priority ... ;

qlimit ... ;

cbq { ... }

priq { ... }

hfsc { ... }

}

The pf-queue section is derived from pf-queue section prototype.

For detail description of it, see pf-queue(5).

radius-client name {

nas ... ;

groups ... ;

* server ... ;

}

The radius-client section is derived from radius-client section

prototype. For detail description of it, see radius(5).

resolver name {

* server ... ;

search ... ;

preference ... ;

edns ... ;

conf-timeout ... ;

initial-timeout ... ;

final-timeout ... ;

conn-timeout ... ;

981

APPENDIX B. KERNUN UTM REFERENCE (5)

disable-deresolution ... ;

}

The resolver section is derived from resolver section prototype.

For detail description of it, see resolver(5).

shared-dir name {

path ... ;

}

The shared-dir section is derived from shared-dir section proto-

type. For detail description of it, see common(5).

shared-file name {

path ... ;

format ... ;

}

The shared-file section is derived from shared-file section pro-

totype. For detail description of it, see common(5).

sysctl {

* variable ... ;

portrange-default ... ;

portrange-high ... ;

portrange-low ... ;

portrange-reserved ... ;

somaxconn ... ;

log-in-vain ... ;

blackhole ... ;

}

The sysctl section is derived from sysctl section prototype. For

detail description of it, see sysctl(5).

use-resolver name;

Resolver Section Specification.

This item defines name of global (system) resolver section used in particular configuration

environment. Namely, it is applicable within SYSTEM section and within any section derived

from PROXY prototype. The former usage defines system-wide values, the latter one values

valid for particular proxy.

982

name (type: name of resolver, see resolver(5))

udp-proxy name {

phase ... ;

* tag ... ;

log-debug { ... }

log-stats { ... }

use-resolver ... ;

cfg-resolution ... ;

monitoring { ... }

stats-daily { ... }

stats-weekly { ... }

stats-monthly { ... }

nodaemon ... ;

singleproc ... ;

app-user ... ;

run-block-sigalrm ... ;

listen-on { ... }

udpserver { ... }

source-address ... ;

doctype-identification { ... }

auth ... ;

* session-acl name { ... }

}

The udp-proxy section is derived from udp-proxy section prototype.

For detail description of it, see udp-proxy(5).

ipv6-mode [status];

Enabling/Disabling IPv6 Mode.

status (type: enabling, optional, default: enable)

SEE ALSO

configuration(7), udp-proxy(8), acl(5), auth(5), common(5), interface(5), ipc(5), ldap(5),

listen-on(5), log(5), pf-queue(5), radius(5), resolver(5), source-address(5), sysctl(5), time(5),

udp-proxy(5), udpserver(5), host-matching(7)

983

APPENDIX B. KERNUN UTM REFERENCE (5)

NAME

udpserver — format of udpserver component configuration

DESCRIPTION

General syntax rules of Kernun Firewall configuration files are described in configuration(7). This

man page describes types, sections and items specific for the udpserver component configuration.

Repeatable sections/items are marked by the ’*’ before section/item name.

TYPES

Configuration directives have attributes of several value-types. For the basic types description,

see configuration(7).

Enumeration is a list of words (names) representing integer values. Some enumerations accept

both names and direct integer values; in this case, enumeration description contains values for

every name (in parenthesis next to name). For other enumerations, using of names is obligatory.

The following enumerations are used in udpserver configuration directives:

udp-session-type (name-usage obligatory)

Style of session establishment.

one-way

Server never replies.

normal

Server replies from the IP address and port where the first datagram from the client

has been sent to.

any-port

Server replies from the IP address where the first datagram from the client has been

sent to, and from any port. The source port of the reply defines the server-side port

used for all other datagrams of the same session.

any-sock

Server replies from any IP address and any port. The source IP address and port of the

reply defines the server-side socket used for all other datagrams of the same session.

broadcast

Client sends broadcast messages, every recipient replies from its own address and port.

This session type must not be mixed with normal unicast traffic.

ITEMS AND SECTIONS

Configuration of udpserver library component consists of following prototypes:

udpserver { ... }

984

Description:

udpserver {

max-sessions ... ;

}

General UDP server parameters.

Constraints:

Maximum number of sessions must be specified.

Items & subsections:

max-sessions number ;

Maximum number of simultaneously active sessions.

number (type: uint16)

[End of section udpserver description.]

SEE ALSO

configuration(7)

985

APPENDIX B. KERNUN UTM REFERENCE (5)

986

Appendix C

K e r n u n U T M R e f e r e n c e (7)

987

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

access-control, acl — Kernun proxies access control system

DESCRIPTION

Access control in the Kernun firewall is driven by so-called Access Control Lists (ACLs) defined in

the configuration. In terms of Kernun configuration(7), an ACL is a repeatable section consisting

of subsections and items. A set of ACLs for every particular proxy is defined in the firewall

configuration (see kernun.cml(5)) and by the cml(8) tool; it is written to the particular proxy

configuration file.

Kernun ACLs form a multilayer structure, in order to fit several phases of decisions made by

the particular proxy when serving client requests.

For example, tcp-proxy has only one layer, because it makes access decisions only once after

accepting a TCP connection. On the contrary, ftp-proxy implements three layers of ACLs:

session-acl, command-acl, and doc-acl. First, session-acl is consulted when receiving

a connection from a client. Then, command-acl is consulted for each command received from

the client. Finally, doc-acl is consulted for each transferred file.

At each layer, multiple ACLs can be defined. They present a ruleset for proxy decisions. In

an ACL there are configuration directives of two basic functions:

entry conditions define whether or not the particular ACL matches the current situation;

actions define proxy operation continuation.

Every ACL definition in each proxy/layer is derived from the general prototype called acl.

Each proxy/layer ACL changes the general model by

• defining a new name of the configuration section (e.g. doc-acl instead of just acl);

• renaming subsections/items;

• excluding subsections/items (they become unknown in the new ACL);

• adding new subsections/items specific for the proxied protocol;

• changing default values of item elements (attributes);

• changing/adding/removing integrity constraints.

The ACLs used by individual proxies are described in the proxy-specific manual pages (section

5 and section 8). This manual page desribes the general model of ACLs.

Layering model

As we have stated above, if the proxy needs to make an access control decision in several phases,

it uses a multilayer ACL model. The current Kernun proxies use up to three layers of ACLs.

988

1. The first layer (which is present in all proxies) is called session-acl. It is derived from a

specialized prototype acl-1 (see acl(5) for details) and represents the crucial proxy decision:

whether or not the client is to be served. This decision is made at the very beginning of the

communication and therefore uses only data from the lower OSI layers — connection/request

source (item from) and destination (item to) physical address etc. Specifically, this means

that it uses no protocol dependent data.

For these reasons, this layer plays a very important role and is therefore handled specially

in the CML. The phase 1 ACLs (named acl) are defined at the system level (rather than

within a particular proxy definition). Thus, the administrator can express the global access

control policy at the single point by defining which clients may connect to which servers,

which protocols they may use and at which time.

A proxy can add proxy-specific actions to a particular acl by listing them in a

session-acl section within its configuration section with the name identical to the

system-level one.

2. The second layer of ACL (derived from the acl-2 prototype, see acl(5) for details) comes

into effect when the connection or request has been accepted, the proxy has read some data

from the protocol and makes some protocol-dependent decisions. That is why:

• different proxies use different names for the ACL (e.g. request-acl for HTTP or

DNS, but delivery-acl for SMTP);

• ACL entry conditions use protocol-dependent data (e.g. URI for HTTP, SERVICE for

SQL*Net etc.); the to item (physical target) is mostly changed to the server item

(logical target);

• ACL actions can define protocol-specific responses (e.g. special reply code and text).

3. The third layer of ACL is specific only for proxies that work with documents (i.e. HTTP,

FTP and mail handling protocols). It therefore includes document-specific entry conditions

and actions (e.g. mime-type or html-filter, see acl-3 prototype definition in acl(5)

for details).

One of the tasks that can be performed by the third-layer ACL is antivirus check. There is a

fundamental difference between proxies using the store-and-forward model (such as SMTP)

and those using the pass-thru model (such as HTTP). The former have the whole document

available before making a decision, so they can use the antivirus result as an entry condition.

The latter must decide on-the-flow: they define antivirus check as an action and, together

with it, they define also ex-post reactions.

ACL Selection

If multiple ACLs of the same layer are present in the configuration, the proxy must select a single

one that will control its further operation. ACL matching is performed according to the entry

conditions used in the particular ACL. The individual ACL sections are evaluated in the order in

which they occur in the configuration, and the first matching ACL is selected. If no ACL matches,

the service is denied.

989

APPENDIX C. KERNUN UTM REFERENCE (7)

The following data items are defined in the general acl prototype and can be used to select

the proper ACL (unless the proxy definition excludes them from a proxy-specific ACL):

from addrs This condition matches if the client address is a member of the addrs host-set.

The algorithm used for address and host-name matching is described in host-matching(7).

to mode addrs [port ports] This condition tests the destination address of the connection

or request. In the non-transparent mode case, the destination address is one of addresses

of the firewall itself. In the transparent mode case, the destination address is the address

of the target server (see also transparency(7)). It is also possible to match the target port

number.

server addrs This condition matches if the (logical) target server of the connection/request

is a member of the addrs host-set. The server may (but need not) be the same as the

host matched by the to item. In HTTP, for example, the to item checks the IP destination

address of a connection from a client, whereas the server item checks the server name

specified in the request URL or Host HTTP request header.

user none This condition matches if the user authentication data is not present.

user users [group groups] This condition is true if the user has been successfully authen-

ticated and her/his username is a member of the users str-set. It is also possible to

match groups a user belongs to.

time time-spec The condition matches if the current time matches time-spec. The match-

ing algorithm is described in the time-matching(7) manual page.

parent-acl acl-names This condition can be used only in a multilayer ACL set. It is true if

the name of the ACL chosen in the previous layer is a member of the acl-names str-set.

Within one ACL section, the entry conditions of the same type are combined using logical OR

(matches if any one is true). Entry conditions of different types are combined using logical AND

(matches if all of them are true). Unused conditions are not checked.

For example, the ACL

command-acl transparent-for-joe-or-mary {

user joe;

from [192.168.254.10];

user mary;

...

}

matches if the following logical formula is true:

(user=joe OR user=mary) AND from=192.168.254.10

990

ACL Actions

A set of actions can be specified for each ACL using configuration items or subsections within the

ACL. The specified actions are performed if the ACL is selected (matched). Each proxy declares

its own set of proxy-specific actions. For actions available in individual proxies, consult the proxy-

specific manual pages (section 5). The following list presents the set of common actions that have

the same meaning in all proxies, in which they are supported. Each ACL must contain exactly

one action from the pair {accept|deny}.

accept This item specifies that any connection/request satisfying this ACL is accepted. Various

parameters from this ACL and other parts of the configuration control further handling of

the connection/request.

deny This item specifies that any connection/request satisfying this ACL is denied. Typically,

no other actions are neither applicable nor performed, although some proxies may, in some

cases, allow special actions that fine-tune the kind of negative reaction to be be used.

auth method [param] This item specifies that proxy authentication is required and the au-

thentication method to be used. For more information, see auth(7).

source-address {client|addr} The specified source address is to be used for connection to

the server. If client is specified, the client’s address will be used. The addr element is of

the host type.

plug-to server The connection or request is to be forwarded to server regardless of the IP

destination address and target server specified by the user. The server element is of sock

type.

SEE ALSO

acl(5), auth(7), configuration(7), host-matching(7), time-matching(7), transparency(7)

991

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

adaptive-firewall — Adaptive Firewall

DESCRIPTION

Adaptive Firewall is a module that can protect against both locally identified and globally shared

lists of attackers. The blocking is executed by the pf(4) system component and the Adaptive

Firewall controls it by changing the content of specific pf tables. The SQL databases and pf tables

related to Adaptive Firewall can be managed by the kat.af command.

AUTONOMOUS BLOCKING

The autonomous part of the Adaptive Firewall module works with data collected from local traps.

The attackers are stored into various tables of a local database called IDS (Intrusion Detection

System) implemented as SQLite file /data/var/db/af/ids.db. It contains the following ta-

bles:

AKBL4 Addresses of clients already blocked that tried to access the firewall again.

HPOT4 Addresses caught by the Honeypot trap (see below).

Records in this table can have an HPOT_SYN flag, this means that this address occured only

in SYN packet and so it might be faked. Such addresses are not blocked.

SRCT4 Addresses caught by Suricata.

SSHD4 Addresses found in the /var/log/auth.log as a client unsuccessfully trying to log in

an ssh server.

Records in this table can have an SSHD_REP flag, this means that number of attempts

reached limit configured in the adaptive-firewall(5) configuration and the address will be

reported as an attacker.

This table is defined by a watchdog section of the configuration. Similarly, other database

tables can exist if defined by other instances of this section.

Data remains in the IDS tables until is cleaned due to expired lifetime. The lifetime and the

time of the day when the cleanup is executed are configured in the auto-blocking section.

The newly caught data from the IDS database is periodically converted to an IPS (Intrusion

Protection System) database by the af-db.sh command. The IPS database is implemented as

SQLite file /data/var/db/af/ips.db. Currently, it contains only one table, IPV4. The new

content of the IPS SQL database is then loaded to the auto-blocking pf table by the af-reload

command. The period of this refresh is configured in section auto-blocking.

Content of the IDS and IPS SQL database tables can be modified by the af-db.sh script but

due to the nature of the refreshment process, an address removal, for instance, must be done by

a special unblock subcommand of the kat.af.

992

ADAPTIVE DATABASE

The globally shared list is called adaptive-database and it can be periodically downloaded

from a central server. The download parameters are configured in global section update. The

downloaded database is first filtered according to the adaptive-database.policy-level,

adaptive-database.max-entries and whitelist options. Then, the list of addresses

is stored to pf tables adaptive-database-any-block, adaptive-database-src-block

and adaptive-database-dst-block, according to the original database source.

Any activity from or to blocked addresses is registered and stored into the IDS SQL database

tables ADAB, ADSB and ADDB that correspond to the pf table holding the particular address.

This data are used only for feedback to the central server. The ADFB table is for an internal

purpose only.

HONEYPOT

Honeypot is a special Adaptive Firewall function targeted against port scanning. There is a special

IP address (or more), unused and unpublished. On a given port range (can be also 1-65535) on

this address, there is the pf-control(8) daemon listening. The daemon accepts and closes every

connection, and it adds the client to the HPOT (HPOT4) table in the IDS SQL database.

If a client tries only sending a SYN packet, it is also added to the database, but no restriction

is used since the source address can be faked.

SEE ALSO

Kernun: pf-control.cfg(5), ak-db.sh(8), kat(8), pf-control(8)

993

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

antivirus — Kernun virus checking support

DESCRIPTION

As a part of the data content inspection, the Kernun proxies can send processed documents for

virus checking to various antivirus engines. The engine interfaces are configured as antivirus

global sections within a system section (see the antivirus(5) manual page). The method of

using of the interfaces in particular proxy is defined within the proxy configuration by different

approaches:

• In some proxies (e.g. SMTP), the general principles are defined globally on the proxy-level

by the use-antivirus item, all data is handled by the same manner, and the antivirus check

results are used as an entry value for the doc-acl search.

• In some proxies (e.g. ICAP, IMAP, POP), the general principles depend on particular

service, or protocol command used, thus the use-antivirus item is moved into proper ACL

(service-acl, or command-acl).

• In some proxies (e.g. FTP, HTTP), the antivirus check execution depends on the particular

document. Thus, a proper doc-acl is chosen first, and within it both the antivirus engines

selection (by the antivirus item) and the virus check result application (by the accept-

antivirus-status) is defined.

The data can be sent to antivirus checking to more engines in parallel. After finishing all the

checks, the final results is set by using the folloving rules:

1. If some virus has been found by any engine, the result FOUND is used.

2. Otherwise, if some engine has told that the data is clean, the result FREE is used.

3. Otherwise, if some engine configuration has skipped the check due to data size, the result

SKIPPED is used.

4. Otherwise, if some engine return UNKNOWN status, the result UNKNOWN is used.

5. Otherwise, the result ERROR is used.

STANDARD OPERATION MODE

Standard behavior of the checking module is to store the whole file to the temporary file first and

then to send it to the engine(s). With large files, this may cause some problems in on-line proxies

(FTP, HTTP), both on the sender and recipient side.

Some of these problems can be solved by configuring the max-checked-size parameter and

ways what to do with larger files.

• One possibility is to skip the files, i.e. pass them without check.

994

• The alternative way is to check only the initial part of the file and to decide according to it.

During the check, the rest of the file is still being received and stored.

KEEPALIVE MODE OPTION

In some proxies, the check should be configured with so called keepalive option. It means that

data is transferred in small chunks to the destination prior the check is finished. The document

behaves like it would be virus FREE. If the final decision by the engine does not match with the

ACL selected in advance, the session is reset.

This option is configured in proper item (antivirus-keepalive or antivirus-mode) by

using nonzero interval and chunk elements.

STREAM MODE OPTION

In some proxies, the check should be configured with so called stream option. It means that data

is sent to antivirus engines periodically as soon as a multiple of defined chunk size is reached and

after a successfull check, the data is forwarded to the destination. However, only three chunks can

be processed by the proxy in parallel (one being read, one being checked and one being sent out).

When the output channel or the antivirus check is slow, the receipt of data is suspended until a

chunk is released.

This option is configured in proper item (antivirus-keepalive or antivirus-mode) by

using zero (or omitted) interval element and nonzero chunk one.

ENGINES

The current version of antivirus support following engines:

ClamAV ClamAV 0.9X.

NOD32 ESET File Security v3.0.

ICAP Generic engine listening on a TCP/IP socket via the ICAP protocol. In the configuration,

the socket address and target URI must be defined. In the URI, the scheme (ICAP), server

name/address and optional port need not be included, if they can be derived from the

connection.

The following ICAP engines was successfully tested:

Symantec Symantec Scan Engine 5.2.

Sophos Sophos Anti Virus Dynamic Interface (SAVDI) v2.0.

995

APPENDIX C. KERNUN UTM REFERENCE (7)

Warning

In the proper service of the savdid.conf, the 204 answers must be permit-

ted:

allow204: YES

McAfee Email and Web Security 5.6

ESET Gateway Security 4

Warning

Configuration/ICAP/Performance Agent must be enabled

SEE ALSO

Kernun: antivirus(5)

996

NAME

auth — client authentication on proxy

DESCRIPTION

The auth library handles the authentication of client users to proxies. The firewall administrator

can restrict access to a proxy by requiring authentication of users. If this is the case, a user must

not only connect to the proxy from an allowed host, but also prove his or her identity in order to

be granted access.

The proxy authentication library currently supports the following authentication methods:

none, password file, RADIUS, LDAP, and out of band authentication. Not all the methods are

supported by all proxies.

None Authentication

The none authentication mode means in fact "no authentication is required". Any user is granted

access without a requirement to provide their identity.

Password File Authentication

In the password authentication mode, each user is required to provide a valid user name and

password. These are compared against a password file stored on the firewall. The file has a simple

line structure: each line contains information about one user. It includes two fields delimited by

a colon: the first one is the user name and the second one the encrypted password. Optionally,

there can be the third colon-delimited field containing a comma-separated list of groups the user

belongs to.

The fwpasswd utility can be used to manipulate the password file. See also fwpasswd(1).

RADIUS Authentication

The RADIUS Authentication mode also requires valid information to be received from the user.

The user identity is verified by sending an authentication request to a RADIUS (Remote Authenti-

cation Dial In User Service) server. The RADIUS server checks the information from the user and

tells the proxy whether the user has been authenticated successfully. The RADIUS authentication

mode supports a simple name/password scheme as well as a securer challenge/response scheme.

If the name/password authentication is used, the user presents his/her name along with a

password, which remains always the same. This represents a potential security hole, because the

password could be sniffed while being transferred over the network.

The challenge/response scheme offers better security. The user enters his/her name, the RA-

DIUS server sends back a challenge, which is changed after each (successful) authentication at-

tempt of the user. The user performs some calculation on their local machine and obtains a

response based on their password and the challenge received. He/she then sends the proxy only

the response, but not the password itself. The RADIUS server verifies the response and notifies

the proxy whether or not the user should be considered authenticated. An example of a widely

997

APPENDIX C. KERNUN UTM REFERENCE (7)

available challenge/response scheme is OPIE (One-time Passwords In Everything). However, the

Kernun authentication library offers generic support of challenge/response protocols, which does

not depend on a particular challenge/response scheme implemented by a RADIUS server.

LDAP Authentication

LDAP Authentication is somewhat similar to the preceding authentication methods; the difference

is that the information about users is stored on an LDAP server.

The user presents his/her username and password in order to prove his/her identity. The

firewall first checks the username/password with the information stored on the LDAP server. If

the provided information is valid, the firewall obtains the list of groups the user is member of.

External Tool Authentication

The authentication can be managed also by your own tool, instead of LDAP or RADIUS servers.

The tool (with a pathname given in the configuration) is called whenever the user submits

data. The data is supplied to the tool in the following environment variables:

USER User name.

RESP User password or response.

DATA Any data supplied by the previous call of the tool.

The tool responds by writing one status and zero or more data lines to the standard output.

The status line has following format:

status data-length

The status must be a 3-digit status code, the first digit defines authentication result (2 – OK,

3 – another response needed, 4+5 – error). The data-length is the total length of all subsequent

lines (including the LF characters). Every data line starts with the type character follwed by the

colon and the text. There are following types of data lines:

M The message text to be displayed to the user.

D The internal data to be supplied in the subsequent tool invocation.

G The (comma separated) list of groups the user belongs to.

S The session timeout (in seconds).

The M data has the following meaning, according to the response codes:

2xx response The (HTML) message contains additional info concerning the session.

3xx response The (plain) message that needs to be displayed to the client in order for the

authentication to be completed successfuly. It should be the challenge text in challenge

response, an error message if the tool gives the user another chance to reenter response etc.

4xx/5xx response The (plain) message containing the reason of a nonrecoverable authentication

error.

998

Out of Band Authentication

The out of band (OOB) authentication mode is special. All other authentication methods obtain

authentication data (a user name, a password, or a response to a challenge) from the user via

the proxied application protocol. They are thus usable only in proxies for protocols that support

passing of authentication data, such as HTTP or FTP. OOB authentication first authenticates

a user to the firewall as a whole. The user may enter the authentication data into an HTML

form, or some other mechanism can be used to provide a list of authenticated users. Out of the

box, Kernun contains tools for obtaining user list from a Samba server. The use of other sources

of authentication data requires only modification of a single script. The authenticated user is

associated to an IP address. All connections from this IP address are considered to be from this

user. As the source IP address is available in all protocols, OOB authentication can be used in

(almost) any proxy. Even the generic tcp-proxy and udp-proxy support OOB authentication.

OOB authentication is managed by an OOB authentication server, which is a specially config-

ured http-proxy(8). The ooba-samba(1) script is used to read of the list of users from Samba.

NTLM Authentication

The NTLM authentication mode is specific to http-proxy. It allows a Web browser on a Mi-

crosoft Windows client operating system to be authenticated without user interaction, provided

that the user is authenticated in an Active Directory domain. If the proxy requests NTLM authen-

tication from a browser, several messages are exchanged among the browser, the proxy, the NTLM

authentication support part of the Kernun system, and the Active Directory domain controller.

In this process, the browser uses the user credentials acquired during the user login to the Active

Directory domain. See the manpage for http-proxy(8) details about the NTLM authentication.

SEE ALSO

Kernun: fwpasswd(1), ooba-samba(1), auth(5), radius(5), http-proxy(8)

FreeBSD: opiekey(1), opiepasswd(1)

999

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

cluster — Kernun firewall redundancy cluster support

DESCRIPTION

To reduce the risk of system failure, Kernun firewall allows to build hot stand-by clusters. As the

name suggests, apart from the main system, there is another host, usually equipped with the same

features and configuration, ready to step up and start handling the communication automatically

if the partner fails. The system that is currently in charge of traffic control is called master node

within the cluster, while its idle peer is backup node.

One physical cluster of firewalls can provide several logical clusters (called virtual clusters). In

such a case, each cluster may have a different master, which handles a certain subset of services.

The advantage of such setup is that when all firewalls are functional, the workload is distributed

among them.

The partners in a virtual cluster can be two equivalent peers, or one of them can be dedicated for

the master role whenever is ready. This mode is called preemptive and the node is called primary.

In non-preemptive mode, the current master node keeps the role all the time it is operational.

The signalling and switching of states between partners is implemented using a special PIKE

protocol (as a replacement of VRRP and CARP ones). For this purpose, the couple is intercon-

nected by a special “wire”, ideally really an extra ethernet cable binding them. This interface is

called heart-beat interface. The subprotocol of PIKE responsible for keepalive control is called

HELLO and it can be controlled by a set of timeouts.

The monitoring is executed by a special daemon pikemon (see pikemon(8) and pikemon.cfg(5)

manual pages) which is run as an ordinary Kernun application.

Technically, the traffic is lead through a bridge interface with assigned both a common shared

IP address and MAC address. The master node sends a gratuitous ARP to inform all network

nodes about current localisation of the MAC address. This bridge interface has assigned a single

ordinary interface handling the real traffic and this interface becomes a member of the bridge

interface when the node takes the master role and discontinues the membership when it drops the

master role. The backup node can keep the IP address, or it unconfigures it whenever it looses

the master role (so called nomadic mode configured within the bridge interface section). One

virtual cluster can consist of more bridge interfaces.

The operation ability is periodically monitored by the pikemon daemon using the ICMP

ECHO messages. For every virtual cluster, there can be several ping groups, i.e. lists of hosts

from which at least one has to respond within given timeout, otherwise the group (and whole

node) is considered to be “down”.

The node role can be also bound to a set of services. Thus, a set of Kernun components should

be started only in case of master role and/or a special command should be executed when taking

or dropping the role.

1000

SEE ALSO

Kernun: pikemon.cfg(5), system(5), cml(8), pikemon(8)

1001

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

configuration — general syntax of configuration files

DESCRIPTION

Configuring a proxy

Each Kernun firewall proxy must be started with a configuration file (the -f option). In fact, in the

current version of the Kernun Firewall, these configuration files (so called low-level configuration

files) are generated by the CML (Configuration Meta Language) tool (see cml(8)). Nevertheless,

the syntax rules for the CML (high-level) configuration files are the same as for the low-level ones.

This manual page describes the general syntax rules for the configuration file. The definitions

governing the configuration of particular applications are described in the pertinent section 5

manual pages (e.g. ftp-proxy.cfg(5) for ftp-proxy). In the CML, the description can be displayed

by

/info descr topic

Configuration versions

In order to make detection of errors stemming from the use of an old configuration files for

newer applications easier and to simplify conversion of older configurations to newer formats,

every configuration file must contain the version of Kernun firewall it is designed to work with.

For example, version 2.3 of Kernun firewall expects the following line at the beginning of every

configuration file:

version KERNUN-2_3-RELEASE;

The version tag is Kernun’s distribution version string. It can be obtained by running a Kernun

application with the -v option. Also, every section 5 manual page refers to the proper version

in the VERSION section. Configuration files generated by the CML have this line generated

automatically.

SYNTAX

Structure of the configuration file

A configuration file consists of sections and items.

An item is a configuration “command”. It begins with a word (the item’s keyword) followed

by its elements, that is, attributes represented by values of various types. An example of an item

command with its elements:

1002

command { RETR, STOR } size 33K;

An item can be defined as repeatable (all of its occurrences are chained) or non-repeatable (only

one occurrence is allowed).

A section is a block of items and/or subsections. It begins with a word (the section’s keyword)

followed by items and subsections enclosed in a pair of braces. A repeatable section must have its

name before the first opening brace. Examples:

ftp-proxy FTP { # repeatable section ftp-proxy named FTP

proxy-user kernun; # item proxy-user

msgs { # non-repeatable subsection msgs

welcome "Welcome"; # item welcome

}

}

The allowed sections, items, types etc. for each application configuration are described in the

section 5 manual page (e.g. ftp-proxy.cfg(5) for the ftp-proxy). In order to facilitate configuring

of similar functions in different proxies by the same means, the configuration description consists

of so-called prototypes, from which particular proxy-dependent constructions are derived. For

instance, the acl section prototype collects all general sections and items used in ACL declara-

tions (see access-control(7)), the acl-1 section prototype is derived from the acl prototype by

modifying some features to fit phase 1 ACL decisions and the ftp-proxy session-acl section

is derived from the acl-1 prototype to fit session-initialisation phase decisions in FTP. In such

cases, the special section 5 manual page describes only the modifications to the prototypes and

the prototypes themselves are described in their own section 5 manual page (e.g. acl(5) in this

case).

More occurrences of a non-repeatable section or of a repeatable section with the same name

lead to an error.

The order of items/subsections with different names is irrelevant. The synonymic

items/subsections are searched in the order they are entered and the order may be meaningful

(e.g. first-match), if it is stated so in the section 5 manual page. Otherwise, it is simply an

(OR-ed) list of information.

Configuration atoms

The basic term of configuration description is an atom. There are the following atom types in

Kernun configuration:

integer A positive integer value in decimal or hexadecimal (C-style: 0xhex) form; the decimal

ones can have ’K’, ’M’, ’G’ and ’T’ suffices meaning 1000, 1000000, 1000000000 and

1000000000000 values respectively, or ’Ki’, ’Mi’, ’Gi’ and ’Ti’ suffices meaning 1024,

1048576, 1073741824 and 1099511627776 values respectively, or ’d’, ’h’ and ’m’ suffices

meaning days (x 86400), hours (x 3600) and minutes (x 60) respectively.

1003

APPENDIX C. KERNUN UTM REFERENCE (7)

fractional A positive fractional value with up to three decimal digits (e.g. 1.95, 2). Internally,

this atom is stored as an integer value (multiplied by 1000) so it behaves like an integer.

word A sequence of letters, digits, underscores (’_’) and hyphens (’-’) (e.g. ftp-data,

kerberos_master); words are case-insensitive.

string A string of characters enclosed in double quotes. C-style escapes (’\t’, ’\r’, ’\n’, ’\"’, ’\\’

and ’\xhex) must be used to code special characters. If a string is a concatenation of words,

dots (’.’) and at-signs (’@’) then it need not be enclosed in quotes (e.g. root@tns.cz).

IP address An IPv4 address in dotted decimal format. It MUST be enclosed in square brackets

(e.g. [127.0.0.1]).

IP address with mask IPv4 netmask must follow immediately after an IP address (inside the

square brackets), starting with a slash; the allowed formats include single number (the

number of bits), dotted decimal format and hexadecimal format (e.g. [127.0.0.0/8],

[10.0.21.0/255.0.255.0], [10.0.0.0/0xFF000000]). Note that exactly four bytes

must be specified in the dotted notation, even if they are zero.

regexp A UNIX regular expression enclosed within a pair of slashes. Inside regexp, literal

slashes and spaces must be escaped with backslash (e.g. /ab\ \/\ cd/ matches string

"ab / cd"). The character ’i’ following immediately after the closing slash makes this

regexp to be case-insensitive (e.g. /abc/i matches all of "abC", "AbC", "ABC" etc.).

Atoms can be separated by a sequence of white-space charaters (space, tab, newline). Thus,

newlines (except in comments) have the same meaning as a single space.

A comment starts with a hash (’#’) character and ends at the end of line. Note that in the

CML, comments are allowed on the session level only (i.e. between two items/subsections, not

within items, after section names etc.).

Types

Item elements have defined types and only values (i.e. atoms) of proper type can be used in

configuration (see Section C). The following table defines the atom types that are allowed for

known types:

uint8 ?? value (size: 8 bits).

uint16 ?? value (size: 16 bits).

uint32 ?? value (size: 32 bits).

uint64 ?? value (size: 64 bits).

port ?? value or ?? (recognized by getservbyname(3), usually stored in /etc/services file).

time ?? value of daytime in form hhmm.

fract ?? value (size: 32 bits after multiplying by 1000).

1004

str ?? or ?? value; known keywords used as simple string must be quoted.

regexp Regular expression (see ??).

host Hostname (expressed as a ??) or an ?? without mask.

addr Interface ??. If mask is omitted, default mask according to class is assumed. Local part of

address must not consist of all-zeros or all-ones.

net Network ??. If mask is omitted, default mask according to class is assumed. Local part of

address must be zero.

sock Hostname or IP address followed by colon (’:’) and port number or name (e.g.

[127.0.0.1] : 3333, ftp.freebsd.cz:ftp).

key Exactly the keyword specified in configuration description (Section 5 manual page) of par-

ticular item can be used.

Enumerations

For some types, mnemonic names may be used instead of direct integer values. For instance, the

dns-type type recognizes the word CNAME instead of the value 5. Such types are called enumer-

ations. For some enumerations, the use of mnemonic names is obligatory since the corresponding

integer values have no real meaning (e.g. FTP command numbers in the ftp-cmd type). The

description of allowed enumerations is a part of every section 5 manual page. In the CML, you

can display the description of an enumeration using

/info enum enumeration

Section-Name Types

Every repeatable section at the global level can be used to create a special type from the section’s

keyword and the suffix "-NAME". Prospective values of such a type include the names of all

sections (of the proper type). Example:

Suppose the following definition:

radius-client FIRST {

server radius.xyz.com "shared secret";

}

Then, the following item is correct, if its second element is of the radius-client-name

type:

auth radius FIRST;

1005

APPENDIX C. KERNUN UTM REFERENCE (7)

Lists

A sequence of zero or more instances of a base-type (see above) is called a list. List items are

enclosed in braces (’{’ and ’}’) and separated by commas (’,’). If the list contains only one

member, the braces are not neccesary. The type name for a list is derived from the base type by

suffixing with "-LIST". Example:

The following value is acceptable for the type port-list:

{ ftp, ftp-data, 512 }

It represents three values (the ftp and ftp-data ports, and port 512).

A list can have another list as a member. In this case, all sublist members become members

of the main list. Example:

The above list can be also expressed as:

{ { ftp, ftp-data }, 512 }

Sets

A set is another way to specify more values acceptable for an element. The type name for a set is

derived from the base type by suffixing with "-SET".

The basic difference between lists and sets is that the former can be used by an application for

’going through all list members’, and the latter only for testing ’whether a value matches the set

or not’. That is why sets can have the following special members:

Ranges of values Two values separated by a hyphen (’-’). Care should be taken if the lower

value is represented by a word; in such a case, the word must be separated from the hy-

phen by at least one white-space character (e.g. ’ftp-http’ is treated as one word, while

’ftp - http’ is a correct range).

Excluding members Members prefixed by an exclamation mark (’!’) are treated as “value that

is not a member of current (sub)set”. The matching algorithm works as FIRST-MATCH.

Therefore, the excluding members must precede non-excluding members containing excluded

values in the same (sub)set. Otherwise, the values are treated as being members of the

(sub)set.

ANY value The wildcard character * represents a set containing “all acceptable values” (pos-

sibly except the ones specified in excluding members of the (sub)set).

Examples:

The following values are acceptable for the type port-set:

{ ! { ftp - ftp-data }, * } # all ports except FTP ones

{ ! { ftp - ftp-data }, 1-1024 } # all generic ports except FTP

1006

The following value is syntactically correct, but has no meaning, because FTP ports were

excluded after including them:

{ 1-1024, ! ftp - ftp-data } # all generic ports

The following value is syntactically correct as well, but has no meaning either, because FTP

ports were excluded in a subset and no * or range item is present within this subset:

{ { ! ftp - ftp-data }, 1-1024 } # all generic ports

In the last two examples above, configuration reader logs a warning.

For two types, suffix "-SET" extends the possibilities of specifying values:

str-set member Besides strings and words, regular expressions can be specified. Note that

matching of strings in str-set is done in ignore-case manner, whereas ignore-case matching

of regular expressions must be forced by the ’i’ suffix (see above the Configuration atoms

paragraph).

host-set member Besides hostnames, regular expressions can be specified. IP addresses can

have a netmask.

Example:

The following host-set value matches any hostname ending with .cz and any address

matching 10.0.*.1:

{ /ˆ.*\.cz$/, [10.0.0.1/0xFFFF00FF] }

Matching of host values against host-sets is slightly more complicated, see

host-matching(7) for details.

Elements

The order and types of elements in an item are fixed. Each element of an item has a type, as

discussed above. Unless special conditions (stated below) apply, all elements must be included in

every occurrence of an item.

An element can be omitted only if it is defined (in the pertinent Section 5 manual page) as an

element with a default value and if one of the two following conditions are true:

1. The element is defined to have an arbitrary keyword.

2. No following element of the item is to be used.

Moreover, some items can be used in several different forms; the particular form is selected by

the value of a special element (so called branching element).

1007

APPENDIX C. KERNUN UTM REFERENCE (7)

An example of a section 5 manual page: The configuration of the acl library component

consists of the following prototypes:

* user ... ;

...

Description:

user none;

user [name [name [group group]];] User and group specification.

<branching element> (type: user-auth-spec, optional, default: name)

name (type: str-set, optional, default: *) user name (authenticated on

firewall)

group group (type: str-set, optional, default: *) list of groups; if present,

both NAME and GROUP must match

This repeatable item can be used in two forms selected by the first element. The former one

consists of the branching element (none) only. The latter one may have the branching element

value (name) specified, or omitted, and many variations of the other elements are valid.

The following forms are all equivalent and only explicitely confirm the default values:

user name * group *;

user name *;

user name;

user *;

user;

Two examples of defining user-list of two members:

user { user1, user2 } group *;

user name { user1, user2 };

Two examples of defining both lists as single-member ones:

user name { user1 } group grp1;

user user1 group { grp1 };

An incorrect example (group-list cannot be specified without user-list):

user group *;

An incorrect example (the word none cannot be used as a username):

1008

user none group none;

Possible corrections of the previous mistake:

user "none" group none;

user { none } group none;

SEE ALSO

Kernun: ftp-proxy.cfg(5), log(5), host-matching(7)

FreeBSD: getservbyname(3), services(5)

1009

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

data-matching — generic data matching and processing in proxies

DESCRIPTION

In addition to checking compliance with an application protocol specification, a proxy can also

scan protocol payload data. This capability comprises features (described elsewhere), such as

HTML filtration or MIME processing, and, in some proxies (only http-proxy(8) at the time of

this writing), generic configurable data processing (described in this manual page).

Generic data processing is performed by the software module mod-match. Its parameters are

specified in the configuration section data-match. The section can be referenced by an ACL

of a proxy that should use the data matching feature. The matching module is inserted to the

data flow between a client and the server, separately in each direction. The module scans the

initial part of the data; its size can be set in the module configuration using the max-size item.

As blocks of data are received by the proxy, the scanning process is repeated for newly arriving

data, in accordance with the parameters step-size and step-match. A sequence of checks,

defined by repeatable items test, is executed. Each test can accept or deny the data. A test

of the html-alert type can either report a match to the proxy log only, or report and deny,

depending on the deny flag. The decisions are based on regular expression matching. There are

also some more complex tests, suitable particularly for processing of submitted HTML form values

in http-proxy. For detailed description of avaliable test types, see mod-match(5).

Database files used by the tests html-hash, html-alert, and html-replace are managed

by the program html-match-db(1).

The test type html-save saves values of HTML forms to a text file as hexadecimal strings

in a format compatible with Snort rule syntax. The test type html-hash saves hashes of HTML

form values, so that it is later possible to test whether a value is stored in the database, but it

is impossible to get the original values from the database. The test type html-replace uses a

database with encrypted replacement data and decrypts them by a key obtained from the HTML

form values being replaced; therefore, the replacement data cannot be obtained from the database

without knowing the corresponding data to be replaced.

DATA MATCHING IN PROXIES

HTTP proxy

It is possible to scan HTTP request and response body. Body processing is enabled

and configured by the configuration items request-acl.request-body-match and

doc-acl.response-body-match. Actions html-save, html-hash, html-alert, and

html-replace are most useful when used for processing HTTP request body.

SEE ALSO

1010

html-match-db(1), mod-match(5), http-proxy(8)

1011

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

doctype-identification — document type recognition methods and configuration

DESCRIPTION

The third-level ACL, doc-acl, has as an entry condition mime-type specification (see

access-control(7), configuration(7) manual pages). There are several methods that can be used to

recognize the type of a document and several ways to control them in the configuration. The

recognized type can be used in ACL matching, and also can be sent instead of the original

Content-Type (see force-doctype-ident in acl(5) manual page).

METHODS

The following methods are used by Kernun applications. The order of their usage is defined in the

configuration. They are tried subsequently until some succeeds; in none does, the type remains

unknown, matching the string "" only.

Original Content-Type

The default metod is quite simple. The proxy uses the type declared by the document originator

(server for download, client for upload) in the Content-Type header (e.g. SMTP or MIME

header).

This method is very clear and fast, it needs no special configuration, but it has two disadvan-

tages: some protocols, such as FTP, cannot use it, and the others are quite vulnerable to type

faking.

Method name: content-type

File Name Extension Mapping

If the name of the document (or URL) is available, the type can be guessed by searching a database

that maps filename extensions to MIME types.

This method has characteristics similar to the default one (clarity, speed, but also vulnerabil-

ity). It needs somewhat more information to be well configured, namely a file with the extension-

to-type mapping database.

Method name: extension

Magic Number Recognition

The last method is similar to the one used e.g. by the system command file. The proxy reads the

initial block of the document (the size of the block is configurable) and tries to guess the file type

based on this block, with the help of a magic number file (see magic(5) manual page).

This method is the most complicated — it needs to gather some data from the document

originator before the control decisions are made. On the other hand, this method yields results

very close to the real content of documents, regardless of data originator’s instructions.

1012

Method name: magic

CONFIGURATION

In order to ensure correct operation, it is necessary to define the order of the methods and some

additional information. If no order is given, only the content-type method is used.

Global Information

Each proxy can set global parameters and the default order of methods in the

doctype-identification section (see application(5) manual page).

mime-types shared-file-name; This item must be used if the extension method is used

anywhere in the proxy configuration.

magic [filename [scan-size]]; This item should be used if nonstandard filename or dif-

ferent block size is to be used for the magic method.

order [for direction] order; This item is repeatable, but the only reason for this is to

enable different method order for upload and download. In protocols where direction makes

sense (e.g. FTP or IMAP4, contrary to POP3 or SMTP), the keyword for with a value

can be used to distinguish between upload and download definitions. The order is simply

a list of above-mentioned keywords (method names).

Order Redefinition

Each ACL on the first two levels (with some exceptions, such as delivery-acl in SMTP) can

redefine the default order (see acl(5) manual page).

doctype-ident-order [for direction] order; This item has the same syntax and se-

mantics as the order item of the proxy global doctype-identification section.

For a particular transfer, the order in the second-level ACL is searched for; then (if not found),

the one in the first-level ACL is tried and, finally, the order from the proxy global section is used

(if any).

EXAMPLE

Suppose the following configuration:

proxy ... {

doctype-identification { ...

doctype-ident-order for download { extension, magic };

}

session-acl sa-1 { ...

1013

APPENDIX C. KERNUN UTM REFERENCE (7)

doctype-ident-order for upload { content-type, magic };

}

session-acl sa-2 { ...

doctype-ident-order for download { };

}

session-acl sa-3 { ...

doctype-ident-order { content-type, magic };

}

In this case, downloads according to sa-1 use the "{ extension, magic }" order, while uploads

use "{ content-type, magic }"; sa-2 downloads use no method (type will be "") while uploads use

default method (content-type); finally, transfers via sa-3 use "{ content-type, magic }" (in both

directions).

SEE ALSO

Kernun: acl(5), application(5), access-control(7), configuration(7)

FreeBSD: file(1), magic(5)

1014

NAME

host-matching — configuration semantics of lists of hosts

DESCRIPTION

The Kernun Firewall configuration files can contain lists of hosts to be matched against

client/server hostnames or IP addresses. This man page describes the semantics of such lists.

List Members

According to the Kernun Firewall configuration file syntax (see configuration(7) for details), you

can create a host list containing members of several types:

• hostname, e.g. www.tns.cz (meaning: www.tns.cz and all its addresses; the name is resolved

to IP addresses during proxy startup and then periodically refreshed when needed)

• regular expression, e.g. /ˆwww\..*\.cz$/ (meaning: all hosts named ’www’ in domains under

TLD ’cz’)

• single IP address, e.g. [192.168.1.1] (square brackets are not metasymbols, they mark IP

addresses in configuration)

• IP address range, e.g. [192.168.1.12]-[192.168.2.5]

• IP address with mask, e.g. [10.0.1.0/255.0.255.0] or [10.0.1.0/0xFF00FF00] (means: all IP

addresses with the 1st and the 3rd bytes equal to 10 and 1, respectively)

• IP address with mask size, e.g. [192.168.1.0/24] (meaning: all IP addresses with the first 24

bits defined by 192.168.1.0 address)

• symbol * (meaning: all hosts)

• sublist (meaning: all hosts represented by a sublist)

Members can be prefixed with an exclamation mark (’!’); in such a case, all names/addresses

represented by the particular member are excluded from the list (so-called excluding or negative

members).

For example,

{ ! [192.168.3.3]-[192.168.3.8], * }

means: All but the six addresses specified by the range.

Note that if a sublist is negative, it means that all hosts represented by the sublist are excluded.

It does NOT mean that all hosts excluded in the sublist are automatically included in the superlist.

For example,

{ ! [10.1.1.1], [10.0.0.0/8] }

1015

APPENDIX C. KERNUN UTM REFERENCE (7)

means: The network of 10.* except for 10.1.1.1. However,

{ ! { ! [10.1.1.1], [10.0.0.0/8] }, ...

means: All 10s except 10.1.1.1 are excluded. It does not imply inclusion of 10.1.1.1!

As a conclusion, if a negative member is not followed by a positive member on any list level,

the resulting list has the same effect as an empty list.

For example,

{ ! { ! [10.1.1.1], [10.0.0.0/8] } }

means: no hosts are allowed (even [10.1.1.1] is not allowed).

The order of appearance of members in the list is important. Each list is searched from the

left to the right and the first match, either positive (for non-excluding member) or negative (for

excluding member) stops the search and defines the result (success or failure) that is passed to

superlist.

Warning

In fact, hostnames are “stronger” than regular expressions. Let us suppose a host ’a.b.c’

with IP address 10.1.2.3 and two lists in the configuration: { a.b.c } and { /ˆa\.b\.c$/ }.

If the proxy is testing the hostname ’a.b.c’, both lists match. However, if it is testing the

IP address, it doesn’t know the hostname and the latter list doesn’t match. The former one

matches because it behaves like the { a.b.c, [10.1.2.3] } list.

Matching Keys

The host being matched is known either by an IP address or by a hostname. This is the so-called

primary key. However, the matching algorithm may, in some cases, use also a set of so-called

secondary keys:

If the primary key is a hostname (e.g. when an HTTP request contains a hostname and the

proxy is trying to match it against a particular ACL server list), it is first resolved by a DNS and

all IP addresses asociated with it create its secondary key-set.

Matching Modes

If a primary key resolves to more than one secondary key, we must define how to match those

secondary keys. Specifically: is it sufficient if just one of the secondary keys matches for the whole

key to match, or must all of the secondary keys match? We recognize these two modes of matching

of a secondary key-set and use them both, each in a different context.

Permitive Matching (MATCH-ALL Mode) This mode is applied if the list is used to permit

some feature, i.e. when matching a host against a server-list in a non-denying ACL (a

standard ACL without the deny option).

1016

In this case, if the primary key or all secondary keys are positively matched, the result is

positive (i.e., the host is accepted). If the primary key or any secondary key is negatively

matched, the result is negative.

Restrictive Matching (MATCH-ANY Mode) This mode is used if the list is used to deny

some feature, i.e. when matching a host against a server-list in a denying ACL (an ACL

with the deny option set).

In this case, if the primary key or any secondary key is positively matched, the result is

positive (and the host will be denied). If the primary key or all secondary keys are matched

negatively, the result is negative.

If a list contains a positive (non-excluding) sublist, the matching mode for the sublist is the

same as for the superlist. However, if the sublist is negative (excluding), the matching mode

changes to the opposite one. For instance, if a hostname resolving to two IPs 10.1.1.1 and 10.2.2.2

is to be rejected by a MATCH-ANY list and we choose to do it by a negative sublist, the sublist

must be as follows:

..., ! { [10.1.1.1], [10.2.2.2] }

because it will be searched in MATCH-ALL mode (all IPs must be excluded for the host to be

excluded).

A rule that applies to both modes is that if the top-level list has been searched through without

positive result, the result is negative.

Matching Algorithm

The secondary key-set is created for the host being matched, and every element of the set is flagged

as NOT_MATCHED.

Next, the list members are taken in the order of appearance in the list and

• if the member is a regexp then

[for NAME primary key]

the hostname is checked against the member and if it matches, the result is stated

(either positive or negative, according to the member)

[for IP key]

the IP address never matches against regexp

• if the member is a hostname then

[for NAME primary key]

the hostname is checked against the member (hostname member against hostname key,

then IP addresses that the list member resolves to against IP addresses in the secondary

key-set) and if it matches, the result is stated (either positive or negative, according to

the member)

1017

APPENDIX C. KERNUN UTM REFERENCE (7)

[for IP key]

the IP address is checked against the set of IP addresses that the list member resolves

to

• if the member is an IP address (or network or range of addresses) then

[for NAME primary key]

each of addresses in the secondary key-set that are still NOT_MATCHED is checked

against the member and if a match is found, the secondary key is flagged as POSITIVE

or NEGATIVE (depending on the “sign” of the list)

[for IP key]

the IP address is checked against the member and if it matches, the result is stated

(positive or negative)

• if the member is * (positive), the result is positive

• if the member is * (negative), the result is negative.

Now,

[for permitive mode]

• if any set-element is flagged NEGATIVE, the result is negative

• if all set-elements are flagged POSITIVE, the result is positive

[for restrictive mode]

• if any set-element is flagged POSITIVE, the result is positive

• if all set-elements are flagged NEGATIVE, the result is negative

If the result is not stated, go on searching the list.

If the result is not stated after passing the end of the list, the result is negative.

EXAMPLES

Suppose the following configuration:

ACL crazy {

SERVER { ! [10.1.2.3], /\\.crazy\\.com$/ };

DENY;

}

We want to deny access to the crazy.com domain, except for the host 10.1.2.3. Suppose that

www.crazy.com administrator tries to compromise this restriction and defines another "fictitious"

interface to www.crazy.com with the address 10.1.2.3. A user is trying to contact www.crazy.com.

1018

It resolves to two addresses, and one of them matches the first member of the list. However, this is

not satisfactory for restrictive matching (used for DENY), the algorithm continues and the second

member of the list is matched with a positive result and the access is denied.

Suppose another configuration:

ACL friend {

SERVER { [10.0.0.0/255.0.0.0] };

COMMAND * PERMIT;

}

We want to allow access to the A-class network 10. However, a host www.friend.com has

another interface to another network. This is why connections to www.friend.com will not be

allowed - not all its IPs will be flagged as POSITIVE during the matching process. (Of course,

this rejection is not necessarily fatal - there can still be another ACL suitable for this host.) If we

want to allow the host in this ACL, ALL of its IP addresses or its NAME must be present in the

list. Connection to any IP address (not a hostname) within the network 10 will be granted.

SEE ALSO

access-control(7), configuration(7)

1019

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

ips — intrusion detection/prevention system and the related aspects

DESCRIPTION

suricata(1) IDS/IPS is integrated in Kernun UTM where it known as ids-agent.

Configuration

ids-agent is configured in the adaptive-firewall.ids-agent section on the system level

of the Kernun UTM configuration. See system(5) and adaptive-firewall(5).

ids-agent can run in two modes, selected by the presence of item

system.adaptive-firewall.ips:

IDS mode The suspicious traffic is logged but no other action is taken.

IPS mode The suspicious traffic is logged and reported to pf-control(8) which blocks it.

The traffic from the interfaces named by items iface are analyzed by the ids-agent.

Rule refreshments aspects can be configured using the rules-download section.

Providing the rules

Section rules can be used to define the rules directly in CML.

Use item include-rules to reference an external file with the rules in suricata syntax. The

file will be copied, and the copy-filename will be referenced in ids-agent configuration.

Use item add-rule to define the rule directly in CML syntax. The rules will be flushed into

a text file in suricata syntax, and referenced in ids-agent configuration.

Item change-rules-to-block can be used to change the action of rules specified by ID to

block.

Item disable-rules disables rules that were published as enabled, effectively removing them

from existence for ids-agent.

Item enable-rules enables rules that were published as enabled.

Items global-rate-filter and rule-rate-filter can be used to conditionally change

the action of either all rules or only of given rules. It specifies how many times a given rule needs

to be detected before its action is changed to a different given action. This is useful for example

to make the rule alert 10 times within a minute before the communication is blocked.

Items global-suppress and rule-suppress are similar to *-rate-filter, the differ-

ence being that the condition is not number of occurences but rather the IP addresses. These

items are useful for making certain rules not apply for a given IP address.

Items global-threshold and rule-threshold make given rules take action only when

they are detected certain times within given time interval.

Items global-suppress and rule-suppress make given rules not apply for given IP

address and direction. It is similar to adding IP address to a whitelist, only more specific, because

it is possible to specify the rule and the direction of communication.

1020

Item modify-rules changes given rules by replacing a regular expression matching with a

given string. This is designed to be used only when none of the options above are applicable

because there is no validation of the replacement. If ids-agent gets invalid rules, it ignores them,

parsing only valid rules.

Downloading the rules from the Internet

The rules can be automatically, periodically downloaded from Kernun download server using

program pulledpork. Section system.update.adaptive-firewall specifies the parameters

for it.

Item source defines the source of the rules. There are predefined values for downloading the

emerging-threats rules. The custom URL can be given — see pulledpork documentation on the

format of the rule_url it expects.

Item schedule defines the rules update policy. The rules can be manually (re)downloaded

by command kat ids-agent-update-rules. The corresponding command can also be performed

from the GUI. When the rules are downloaded and processed, the signal is sent to ids-agent, so it

reloads the new rules automatically.

The rules can be altered by pulledpork by items in section rules. The following types of

modifications are possible:

• A rule that is distributed as disabled can be enabled by item enable-rules. A disabled

rule is commented out in the downloaded rule file so the IPS engine would otherwise ignore

it.

• When disabling a rule, the administrator has more options. A rule can be disabled uncondi-

tionally by item disable-rule or only for certain IP addresses by item rule-suppress.

It is also possible to disable all rules for certain IP addresses by item global-suppress.

• In IPS mode, it is sometimes desired to change the rule action from alert to

drop or reject. This can be done by items change-rules-to-drop and

change-rules-to-reject.

• Items rule-rate-filter and global-rate-filter can be used to change the rule

action after the rule matched a certain number of times within a specified time frame.

Similarly, items rule-threshold and global-threshold alter the rule so it is applied

only after it matches a certain number of times within a specified time frame.

• When the above methods are not sufficient, it is also possible to modify a certain rule by

providing a regular expression and a replacement string in item modify-rules.

The flags used as the command-line arguments when starting pulledpork can be redefined by

item downloader-extra-flags.

The pulledpork configuration is generated in

/usr/local/kernun/etc/pulledpork.conf. The rules are downloaded to

/usr/local/share/suricata/rules/downloaded-pulledpork.rules. This file is

automatically included in the ids-agent configuration.

1021

APPENDIX C. KERNUN UTM REFERENCE (7)

Fine-tuning the ids-agent configuration

The configuration of ids-agent is stored in /usr/local/kernun/etc/suricata.yaml. Its

contents is merged from two sources:

• the configuration provided by the system administrator in item

ADAPTIVE-FIREWALL.IDS.AGENT.ENGINE.CFG-FILE. It is a recommended practise to

use a file based on /usr/local/kernun/conf/samples/shared/ids-agent.yaml

which is the file that is used if the item is not specified. Be aware when

using a custom CFG-FILE, the configuration can become obsolete and even

unusable after a system upgrade, in which case it is necessary to consult

/usr/local/kernun/conf/samples/shared/ids-agent.yaml for changes.

• configuration generated by Kernun UTM

(/usr/local/kernun/etc/kernun-suricata.yaml).

Namely, this file specifies the rules (section ADAPTIVE-FIREWALL.IDS.AGENT.RULES)

and the logging/output definition.

Network scanning of ids-agent

The traffic from the interface(s) selected by item(s) iface is scanned by ids-agent via PCAP.

SEE ALSO

Kernun: system(5), kat(8), pf-control(8)

FreeBSD: suricata(1), pulledpork (/usr/local/share/doc/pulledpork/README.*,

/usr/local/etc/pulledpork/*)

1022

NAME

kernun — signpost to Kernun firewall manual pages

DESCRIPTION

Kernun is a flexible toolkit that makes it possible to build secure network firewalls combining

application-specific proxy gateways with stateful packet filtering and address translation (NAT),

virtual private networks, network IDS and detailed log analysis.

Individual application proxies, important aspects of the configuration, as well as internal inter-

faces implemented in Kernun support libraries are documented in their respective manual pages.

The best way to start using the Kernun firewall is to read the Kernun Firewall Handbook,

especially the tutorial. After learning Kernun firewall basics, detailed information can be found

in these manual pages, which are available also as the reference part of the Handbook. The

most important administrative tasks are covered by the following manual pages: kat(8),

cml(8), and kernun.cml(5). It may be also helpful to examine the initial configuration in

/usr/local/kernun/conf/kernun.cml, which is generated after the installation, and

configuration samples that can be found in /usr/local/kernun/conf/samples.

Components

The Kernun firewall consists of:

• The underlying FreeBSD operating system, see also intro(1).

• A high-level configuration interface that integrates the configuration of most components of

the Kernun firewall host in a single file, see also cml(8), kernun.cml(5) and configuration(7).

• A graphical user interface (GUI) for remote configuring and monitoring of the Kernun fire-

wall. The GUI is available at least for FreeBSD and Microsoft Windows. It is an open source

application so it can be ported to other platforms supported by the Qt toolkit (most notably

Linux). The GUI is described in the Kernun Firewall Handbook.

• The command line administration tool for easy configuring and monitoring the firewall, see

also kat(8).

• A set of protocol-specific and generic proxies for traffic inspection on the application

layer, each with its own configuration mechanism, see also dns-proxy(8), ftp-proxy(8),

gk-proxy(8), h323-proxy(8), http-proxy(8), imap4-proxy(8), pop3-proxy(8), sip-proxy(8),

smtp-proxy(8), sqlnet-proxy(8), tcp-proxy(8), udp-proxy(8), dns-proxy.cfg(5),

ftp-proxy.cfg(5), gk-proxy.cfg(5), h323-proxy.cfg(5), http-proxy.cfg(5), imap4-proxy.cfg(5),

pop3-proxy.cfg(5), smtp-proxy.cfg(5), tcp-proxy.cfg(5), udp-proxy.cfg(5), and

configuration(7).

• A PF (packet filter) package for traffic inspection on the network and transport layers,

network address translation (NAT), and traffic shaping. These functions are controlled by a

component pf-control, see also pf-control(8), pfctl(8), pf.conf(5).

1023

APPENDIX C. KERNUN UTM REFERENCE (7)

• Log processing and runtime monitoring tools that provide statistics and online alert mes-

sages, see also sum-stats(1), switchlog(1), logsurfer(1), monitor(1), and rrd(1). The GUI

also provides a wide range of log processing and monitoring features.

• User authentication based on various methods including password files, RADIUS, LDAP,

and out-of-band authentication (with user login via a Web form or via a Samba server) see

also auth(7).

• A virtual private network module, see also openvpn(8).

• NTP, DHCP, DNS, ICAP, and SNMP servers, see also ntpd(8), dhcpd(8), and named(8),

and icap-server(8), and snmpd(8).

• An intrusion detection and prevention module, see also adaptive-firewall(5).

• The SpamAssassin antispam module, see also spamassassin(1).

• Web filtration functionality based on the interface to an external Proventia Web Filter.

• The Adaptive Traffic Routing for dynamic loadbalancing, see also atrmon(8).

Features

Components of the Kernun firewall have the following common features:

integrated configuration It covers key system components and all proxies. See kat(8), cml(8),

kernun.cml(5).

hot-standby backup firewalls See cluster(7).

intrusion detection/prevention system See ips(7).

name resolving See resolving(7).

sophisticated logging See logging(7).

authentication See auth(7).

fine-grain access-control See access-control(7), host-matching(7), data-matching(7),

time-matching(7).

data content inspection See antivirus(7).

document type recognition See doctype-identification(7).

runtime monitoring See monitoring(7).

enhanced network I/O with traffic shaping See netio(7), traffic-shaping(7).

efficient process management See application(5), tcpserver(7), udpserver(7).

network transparency See transparency(7), port-range-listen(7), listen-on(5).

1024

administrative accounts with two levels of privileges The administrator accounts have

privileges equivalent to the root user. The auditor accounts are allowed to view the

configuration and logs, but do not have privileges to manipulate the state of the firewall

(change configuration, start or stop proxies, etc.). See system(5).

SEE ALSO

Kernun: monitor(1), rrd(1), sum-stats(1), switchlog(1), dns-proxy.cfg(5), ftp-proxy.cfg(5),

gk-proxy.cfg(5), h323-proxy.cfg(5), http-proxy.cfg(5), imap4-proxy.cfg(5), kernun.cml(5),

listen-on(5), pop3-proxy.cfg(5), application(5), smtp-proxy.cfg(5), sqlnet-proxy.cfg(5),

system(5), tcp-proxy.cfg(5), udp-proxy.cfg(5), access-control(7), antivirus(7), auth(7),

cluster(7), configuration(7), data-matching(7), doctype-identification(7), host-matching(7),

ips(7), logging(7), monitoring(7), netio(7), port-range-listen(7), resolving(7), tcpserver(7),

time-matching(7), traffic-shaping(7), transparency(7), udpserver(7), atrmon(8), cml(8),

dns-proxy(8), ftp-proxy(8), gk-proxy(8), h323-proxy(8), http-proxy(8), icap-server(8),

imap4-proxy(8), kat(8), pf-control(8), pop3-proxy(8), smtp-proxy(8), sqlnet-proxy(8),

tcp-proxy(8), udp-proxy(8)

FreeBSD: intro(1), logsurfer(1), spamassassin(1), suricata(1) pf.conf(5), openvpn(8), dhcpd(8),

named(8), ntpd(8), pfctl(8), snmpd(8),

1025

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

logging — Kernun firewall logging facility

DESCRIPTION

All native applications of the Kernun firewall use a special interface to contact the syslog daemon,

and a common format of messages. Several attributes of the logging interface can be set in each

application configuration by the same means. Information about packet filter (PF) events are read

from the pflog(4) and pfsync(4) pseudodevices by the pf-control daemon and logged in a similar

way. The PF logging is configured also by the same means; moreover, you can precisely configure

which events of PF will be logged by special log option of PF rules. For detailed description of

the logging configuration syntax, see the Section 5 application manual page or log(5).

There are two logs created by Kernun: the stats log and the debug log.

Stats log

The stats log logs each event (request, session, email, etc. — depending on the traffic type) as

a single record. The statistics is generated out of this log. The log is (by default) stored in

/var/log/kernun-stats.

Since there can be a limitation to the maximal length of a single row in the logging facility, a

long record can be split into more rows. In that case, there is ’\’ at the end of the record to be

continued, and ’˜’ at the beginning of record that is the continuation of some record.

The statistics is generated from the stats log.

The format of the stats log records is described in their particular man pages: AKHP-888(6),

DNSP-888(6), FTPP-888(6), HTTP-888(6), ICAP-888(6), IMAP-888(6), MMCG-888(6), MMCP-

888(6), PFLG-888(6), POP3-888(6), SIPP-888(6), SMTP-888(6), SQLP-888(6), TCPP-888(6),

UDPP-888(6)

Debug log

The debug log contains verbose information, and is intended for thorough investigation the traffic

or other troubleshooting. The debug log is (by default) stored in /var/log/kernun-debug.

Kernun debug log messages format

Kernun log messages look like the following example:

Sep 8 7:40:22 fw ftp-in[2018]: FTPP-110-E Message text

Parts of the message:

Date and time It is a part of the message and is prepared by the application.

Firewall hostname

Application identification It can be either the name of the application, or any string set by

the firewall administrator in application configuration.

1026

Process ID If the application needs to distinguish among several “problems” solved by one pro-

cess (e.g. several requests served by a UDP-based proxy), it uses also a numerical suffix

to PID. The “.0” suffix means the “main program”, other suffices denote particular request

tracks.

Message identification This identification can facilitate post-processing of the log file, as every

message has its own identification and all of them have the same form: Kernun component

code, Message number, Severity code.

Message text See below.

Kernun component codes

Each library module or application has its own code. This code has either four letters, or three

letters as a prefix and fourth one for detailed distinguishing of submodules. A list of the component

codes follows:

ADFI - Adaptive Firewall - core

AFHP - Adaptive Firewall - honeypot module

AFLD - Adaptive Firewall - reload tool

AFWD - Adaptive Firewall - watchdog module

ARGS - argument handling

ASN1 - ASN.1 parser utilities

ATRM - ATR monitoring daemon

AUTx - authentication

H - general authentication library

R - RADIUS

CASE - configuration integrity check

CFGx - configuration

L - lists handling

P - parsing

R - reader utilities

CHSC - Character set conversion library

CIBR - Configuration definition reader

CKGB - CML Kernun Generation Base

CMLx - CML/KAT tools

I - command line interface

K - Kernun Admin Tool

M - CML main program

R - reading configuration

S - showing configuration

T - tree management

CWBP - Clear Web ByPass

CWCD - Clear Web automatic categorization daemon (cwcatd)

CWDx - Clear Web DataBase

1027

APPENDIX C. KERNUN UTM REFERENCE (7)

B - database engine

X - configuration checks

DHCP - DHCP server configuration

DHDR - document header handling

DNSx - DNS-proxy

C - nameserver cache management

E - DNS proxy and resolver engine

I - configuration and post-config initialisation

P - proxy itself

R - resource records utilties

X - configuration checks

FTPx - FTP-proxy

P - FTP-proxy, main program

S - FTP-proxy, control connection operations

T - FTP-proxy, data connection operations

H - FTP-proxy, HTTP <-> FTP gateway

H225 - H.323-proxy, H.225 Parser

H245 - H.323-proxy, H.245 Parser

HTCT - HTTP cookie table

HTCW - Clear Web DataBase

HTTx - HTTP-proxy

A - HTTP authentication proxy

F - module mod-ftp-dir

H - HTTP header processing

P - HTTP-proxy main program

X - configuration checks

ICAx - ICAP server

P - ICAP server

B - ICAP server, ICAP BNF parser/printer

R - ICAP server, server request control module

S - ICAP server, main program

IFSC - pikemon, interface status checking

IMAP - IMAP4-proxy

IPCx - IPC facilities

L - locks

M - shared memory

IPSE - IPsec

KERN - Kernun general messages

KEYV - keyword-value handling

LDAP - LDAP authentication

LIBx - general library functions

A - ACL

I - IP utilities

1028

P - process utilities

T - time utilities

U - general utilities

LICC - license checking

LIST - doubly linked lists

LSQL - SQLite library

LSTN - listening sockets management

MAVC - module mod-antivirus

MAVP - module mod-antivirus

MCHU - module mod-chunked

MEMM - memory managemenent

MENC - MIME encoding/decoding utilities

MGZI - module mod-gzip

MHTF - module mod-html-filter

MIME - MIME type utilities

MIMF - module mod-image-filter

MIMX - MIME features configuration checks

MLSN - module mod-listen

MMAT - module mod-match

MMCx - H.323 Multimedia Communication proxy

C - control protocol (H.225, H.245)

D - multimedia data flow

G - gatekeeper proxy

P - proxy itself

R - Registration and Admission Service

Y - RAS Yellow Pages

MMIM - module mod-mime-magic

MNIO - module mod-netio

MNUL - module mod-null

MODM - module management

MONI - runtime monitoring

MPWF - ICAP interface to Proventia Web Filter

MRDF - module mod-read-file

MRWD - module mod-rw-data

MSPA - module mod-antispam

MWRF - module mod-write-file

NATT - NAT utilities

NETx - network library functions

L - network I/O library

S - select handling library

NTIF - network interface and routing utilities

NTLM - NTLM authentication module

NTPC - NTP configuration resolver

1029

APPENDIX C. KERNUN UTM REFERENCE (7)

OOBA - out-of-band authentication

OSSL - OpenSSL support

OVPN - OpenVPN

PFCD - Packet-filter - configuration daemon

PFLG - Packet-filter - logger

PIKE - PIKE monitoring daemon

PING - PING group monitoring library

POP3 - POP3-proxy

PRXY - proxy configuration support

RCSL - Revision Control System

RDST - get real destination of transparent connection

RGAI - resolver, getting address info

RGHD - resolver gethostbydns() function

RGHT - resolver gethostbyht() function

RSLx - resolver

C - resolver, name compressing

I - resolver, initialisation

M - resolver, DNS making query

N - resolver, low-level API

Q - resolver, DNS query formulation

V - resolver, Kernun top-level routines

RSND - resolver, DNS query sending

SDPB - SIP-proxy, SDP BNF parser

SDPC - SIP-proxy, data channels management

SIPx - SIP-proxy

B - SIP-proxy, SIP BNF parser

C - SIP-proxy, control channels management

M - SIP-proxy, SIP messages management

P - SIP-proxy, main program

R - SIP-proxy, SIP requests management

S - SIP-proxy, SIP sessions management

Y - SIP-proxy, SIP YP map management

SLOG - system logging itself

SMTx - SMTP-proxy and mail processing proxies

B - mailing proxies, BNF parser

C - mailing proxies, configuration

D - mailing proxies, mail document module

I - SMTP-proxy, initialization

N - SMTP-proxy, DSN creation module

P - SMTP-proxy, main program

R - SMTP-proxy, client-side (reader)

S - SMTP-proxy, server-side (sender)

T - SMTP-proxy, tools

1030

V - SMTP-proxy, client verification

X - mailing proxies, configuration checks

SQLx - SQL*Net proxy

P - proxy itself

S - TNS session layer

T - SQL RPC transport layer

TCPC - TCP client

TCPP - TCP-proxy

TCPS - TCP server

TCPX - TCP-proxy, configuration checks

TEST - configuration tester

UDPP - UDP-proxy

UDPS - UDP server

USBA - script for auto-configuration from an USB device (usb-setup.pl)

URIP - URI parsing and printing

Severity codes and logging levels

Each Kernun message has assigned a severity code, expressed as the last part of identification - a

single letter. Every Kernun severity code corresponds to one syslog severity level and has assigned

a numeric value:

X - 0,LOG_EMERG - system is unusable

A - 1,LOG_ALERT - potential security problem detected

C - 2,LOG_CRIT - critical error, application fails

E - 3,LOG_ERR - error, current connection fails

W - 4,LOG_WARNING - potential error

N - 5,LOG_NOTICE - normal but noticeable condition

K - 5,LOG_KERNUN - Kernun message

(non-maskable LOG_NOTICE messages)

I - 6,LOG_INFO - statistical message

D - 7,LOG_DEBUG - debugging message

T - 8,LOG_DEBUG - tracing message

F - 9,LOG_DEBUG - full log message

The firewall administrator can decide what level of debugging they desire; the lowest available

is ’E’ (error messages).

Warning

The full debug level is very exhaustive for the system resources and disc capacity. It is

recommended to set this level only when hunting bugs, to direct logging to a file (see

log(5) for deatils) instead of syslogd, and to do so for a single process only and for as

short time as possible. The logging level can be increased and decreased by sending the

SIGUSR1/SIGUSR2 signals.

1031

APPENDIX C. KERNUN UTM REFERENCE (7)

Message texts and explanation

Every (non-debugging) log message has its own Section 6 manual page, the name of which is

equal to the first and second message identification parts. For example, the above example would

correspond to the FTPP-110 manual page. This manual page shows the message text (if the

message contains various values, they are substituted by adequate C-printf style directives — %s,

%d etc.) and describes the meaning of the message.

There are five types of message texts:

1. Panic messages

PANIC [ftp-proxy.c:97] ftpadr(): Bad IP type (0)

These messages are logged in the case of unexpected internal errors. The program imme-

diately fails in this case. The information in the square brackets (source module name and

line) and before the parentheses (function name) locates the error in the source code and

is important when reporting such an error to a support technician. The section 6 manual

pages contain only the last part of the messages.

2. Errno messages

[log.c:97] open(): Permission denied (EACCES=13)

These messages are logged when a syscall returns an error state that cannot be reached in

a natural way. All messages of this type have KERN-100 log ID and are usually followed

by some “high-level” message describing the situation, in which the error occurs and its

consequences.

For instance, when a write syscall fails, the application (or library) will log the appropriate

errno message and then another message describing what kind of connection has failed.

However, if the reason of the failure is “peer has closed connection”, no errno message is

generated and only the “high-level” message appears. This kinds of error need not necessarily

stop the application.

The information in square brackets (source module name and line) locates the error in the

source code. The name before the parentheses is the name of the syscall that has caused

the error. The text after colon is the standard “strerrno” text, the name in the last

parentheses is the proper errno constant, the number is the errno value.

3. Configuration error messages

Line 21, char 1: Exactly one of DENY and ACCEPT must be

specified FTP-PROXY.ACL-1: Exactly one of DENY and ACCEPT must be

specified

These messages are printed when the configuration reading utility or the CML tool finds an

error in the syntax or semantics of the configuration. If the configuration is read by a proxy,

the printed line and char numbers approximately locate where in the configuration file the

error occurs. In the case of verification by the CML tool, the “configuration path” printed

points to the place in the configuration where the error occurs. This path can be used as a

parameter of the /SHOW command.

1032

4. Ordinary log messages

closecfg(): Configuration failed, exiting

Such a log message is produced in the case of an error or of a normal, but significant condition.

The function name (before parentheses) can sometimes be replaced by the ’%s’ symbol when

the same message is produced by several functions.

5. Statistical messages

ACL PHASE=2 CLIENT=[127.0.0.1]:2471 SERVER=localhost:21 USER=des

PARENT=normal NAME=all ACCEPTED

The last type of message is statistical information. It is supposed to be automatically post-

processed, which is why its format is less human-readable, but stricter. It begins with a

keyword describing the message type, followed by couples keyword=value and at most

one keyword ACCEPTED or REJECTED at the end of the message.

Log level setting

By default, Kernun applications log messages up to level 5 (LOG_NOTICE). The firewall admin-

istrator can change the logging level limit to a value between 3 (error messages) and 9 (full debug)

by several means. K-level messages are logged in any case and cannot be switched off.

• The configuration-time log level can be set using the -d option on the command line. The

value of the option can range from 3 to 9, corresponding to the numeric values of severity

levels.

• The run-time log level can be set using the level item of the log section of the particular

application configuration file. The logging levels are expressed mnemonically there: error,

warning, normal, debug, trace, and full.

• The last way of setting the logging level is to send a running process the SIGUSR1 (to

increase level by one) or SIGUSR2 (to decrease it) signal. The logging level cannot get

outside the range 3-9.

Variants of log output

By default, Kernun applications log via syslog using the LOCAL4 facility. Alternatively, the log

output can be directed to a file. It is possible to specify how to handle the situation when the

writing of a log message fails.

Another variant of the logging output is logging to memory. It is independent to and can be

used simultaneously with syslog/file logging. Even the log level can be set differently for memory

logging. The principle of logging to memory is that each process has a fixed circular memory

buffer. Log messages are written to the buffer and if the buffer becomes full, the oldest messages

are overwritten. The buffer is mapped to a file, hence it can be viewed by any program that

displays file contents (e.g., less). When a proxy process terminates successfully, its memory log

file is deleted. If the process fails, the file is retained. The memory log is not physically written

to the disk until the termination of the process and it takes only a fixed amount of space for each

1033

APPENDIX C. KERNUN UTM REFERENCE (7)

process. It is therefore faster and takes smaller disk space than the normal log. The memory log

level can be set to D or T, in order to get detailed records of the last moments of failed processes.

SEE ALSO

log(5), configuration(7)

1034

NAME

monitoring — Kernun firewall runtime monitoring support

DESCRIPTION

In addition to logging, Kernun applications report their status using the runtime monitoring

facility.

Monitoring in proxies provides a means for obtaining information about sessions in progress.

Such a session has not yet written its final log message (e.g., SESSION-END), hence the log

cannot be used to get information, such as the amount of data transferred during the session

so far or the current communication speed. Proxy monitoring provides information about each

active proxy process, i.e., a process serving some client. The output of monitoring includes session

duration, client and server IP addresses and ports, size of transferred data received/sent from/to

client/server, and the current speed of communication. Some proxies, for example ftp-proxy and

http-proxy, provide additional information: user name, file name, or request URI. This additional

data has the form of text strings of variable length, which have a fixed (configurable) space

reserved in the communication file. Too long strings are truncated. The monitoring utilities

provide indication of such truncation.

Applications using remote host monitoring via ICMP ECHO (ping) write data about total and

recent ping attempts (i.e. number of sent packets, number of received responses and the round

trip time).

The pikemon application writes yet another type of monitoring data about its own health

status, priority and role and also some data about the cluster peer (priority, role, status and the

last HELLO coming from the peer).

Monitoring is currently available in atrmon(8), ftp-proxy(8), http-proxy(8), imap4-proxy(8),

pikemon(8), pop3-proxy(8), smtp-proxy(8), sqlnet-proxy(8), and tcp-proxy(8).

An application generates monitoring data into a communication file named

monitor.app-name.pid in a directory specified in the configuration. The communication files

are processed by the monitor(1) utility, which collects data from several communication files and

outputs selected data in textual or HTML formats. Data in communication files are in a binary

format that is decoded by an auxiliary program monitor-dump called by the monitor utility.

The current communication speed is computed from the amount of data processed in last T

seconds, where T can be set in the configuration. The speed is only an approximation, which may

differ from the real current bandwidth utilization, especially in the case of a long T parameter,

short sessions or rapidly changing communication speed. It should be quite accurate during a

long, steady data transfer.

SEE ALSO

monitor(1), atrmon(8), ftp-proxy(8), http-proxy(8), imap4-proxy(8), pikemon(8), pop3-proxy(8),

smtp-proxy(8), sqlnet-proxy(8), tcp-proxy(8)

1035

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

netio — Kernun firewall network I/O layer

DESCRIPTION

All native Kernun Firewall applications use a special mechanism for network operations called

netio. Its goal is to unify the processing, logging and configuring of network operations. Several

attributes of the netio library can be set in each application, configured in the same way (see

netio(5) for details).

When connecting to remote sites, it is possible to tell netio to use other than the default

operating system connection timeout (75 seconds on most systems). This is done using the config-

urable parameter conn-timeout (expressed in seconds, default value 75). The conn-timeout

parameter is relevant only if the socket connection is initiated by the firewall. This is typically

the case of server sockets (clients issue their connections to firewall themselves).

For both input and output, netio functions may use internal buffers of configurable sizes

(recv-bufsize and send-bufsize, respectively, expressed in bytes). Some applications may

use unbuffered input or output. The setting of buffer size is not allowed in these cases. Both buffer

sizes default to 16KB.

The netio functions use recv-timeout when waiting for client or server responses. It is

used when the proxy is awating some input from a client or server. Its use is protocol-dependent.

On the other hand, send-timeout is used when data has been sent to a peer (client or server)

and the proxy is waiting for the acknowledgment of that operation. Both values are expressed in

seconds and default to 120 seconds.

When closing a TCP connection, netio waits for the peer (usually the client or the server) to

close its half of the connection. If the peer does not close the connection until close-timeout

expires, the proxy terminates the connection by TCP reset. This prevents TCP sockets from

getting stuck in the FIN_WAIT_2 state for a long time. The default value is likely to be suitable

for most situations. It should be increased only if it is really needed, because waiting for the close

blocks a proxy process. If set to zero, the connection will be terminated by reset whenever the

proxy closes the connection earlier than the peer.

If full logging is set (see logging(7) for more details), the netio functions also log all the data

going through. This may lead to very extensive logging and have significant impact on firewall

performance and even on its overall behavior. It is therefore possible to limit the number of data

octets per block that are logged in the full logging mode. This is done through the configurable

parameter log-limit, which is set to 80 (expressed in bytes) by default.

All attributes of an application socket are collected in one configuration section, which is called

sock-opt. Proxies may use several instances of that structure, typically one for each socket.

For example, tcp-proxy uses two instances of sock-opt:

client-conn defines the socket parameters of a connection from a client to the proxy and

server-conn defines the socket parameters of a connection from the proxy to a server.

On the other hand, ftp-proxy has four such sections:

1036

client-ctrl defines the socket parameters of an FTP control connection from a client to the

proxy,

server-ctrl defines the socket parameters of an FTP control connection from the proxy to a

server,

client-data defines the socket parameters of an FTP data connection between a client and

the proxy (it may be initiated by any of the parties, depending on whether the connection

is passive), and

server-data defines the socket parameters of an FTP data connection between the proxy and

a server (it may be initiated by any of the parties, depending on whether the connection is

passive).

EXAMPLES

The following is a sample excerpt from tcp-proxy configuration:

client-conn {

recv-timeout 60;

recv-bufsize 32768;

send-timeout 60;

send-bufsize 32768;

log-limit 64;

}

server-conn {

conn-timeout 120;

recv-timeout 300;

recv-bufsize 32768;

send-timeout 600;

send-bufsize 32768;

log-limit 64;

}

The client connection timeouts are set to lower values, because we know that clients are on our

local network. The connection timeout is relevant only for server connections, as client connections

are always initiated by clients. We set the same buffer sizes of 32KB.

The following is a sample excerpt from ftp-proxy configuration:

client-ctrl {

recv-timeout 30;

recv-bufsize 2048;

send-timeout 60;

send-bufsize 2048;

1037

APPENDIX C. KERNUN UTM REFERENCE (7)

log-limit 2048;

}

server-ctrl {

conn-timeout 120;

recv-timeout 300;

recv-bufsize 2048;

send-timeout 600;

send-bufsize 2048;

log-limit 2048;

}

client-data {

conn-timeout 15;

recv-timeout 60;

recv-bufsize 32768;

send-timeout 60;

send-bufsize 32768;

log-limit 64;

}

server-data {

conn-timeout 120;

recv-timeout 300;

recv-bufsize 32768;

send-timeout 600;

send-bufsize 32768;

log-limit 64;

}

Both control and data connections with clients have their timeout values lower. Both client and

server control connections have much lower buffer sizes, as there is supposed to be much lower data

flow in control connections than within data connections. The client control connection timeout is

irrelevant, as these connections are always issued by clients. However, client data connection may

be initiated both by the firewall and by clients, depending on the FTP data mode (either PORT,

or PASSIVE). Also, we may want to have more data logged in control connections (which are, in

fact, commands) and less data in data connections.

SEE ALSO

netio(5), configuration(7), logging(7)

1038

NAME

port-range-listen

— the ability of proxies to listen on a port range and the related aspects

DESCRIPTION

The Kernun firewall proxies are able to listen on a contiguous set of ports, i.e., on a port range.

Configuration

Proxies can be configured to listen on a port range in their listen-on(5) section, in both

transparent and non-transparent item, by specifying the optional element ports. Both

TCP and UDP based proxies may be configured to listen on a port range.

Proxies listening on a port range can be identified in a running system using sockstat(1) as

they show the port range instead of a single port number:

kernun sip-proxy 97949 9 tcp4 vr0>>:5060-5062 *:*

kernun sip-proxy 97949 10 udp4 vr0>>:5060-5062 *:*

Limitations

The port range may not intersect the port ranges defined by sysctl net.inet.ip.portrange

• lowfirst–lowlast

• first–last

• hifirst–hilast

SEE ALSO

Kernun: listen-on(5), transparency(7)

FreeBSD: sockstat(1), sysctl(8)

1039

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

resolving — DNS resolving in Kernun applications

DESCRIPTION

All Kernun components use Kernun own name resolver, which differs from the standard FreeBSD

name resolver in some key features. Moreover, the components having only one regular child (e.g.

UDP based proxies) use non-blocking model of name/addresses resolving.

BLOCKING RESOLVER

The Kernun library name resolver differs from the standard FreeBSD name resolver in following

points:

• It is possible to set the total timeout for a query regardless of the number of domain in the

search list and the number of servers.

• It is possible to set different timeouts for different situations.

• It is possible to set the timeout for the connect() call in the case of a TCP query.

• It is possible to set different port numbers for different servers.

NON-BLOCKING RESOLVER

In UDP-based proxies there is a problem with online resolving. Since all requests are processed

in a single process, the calling of regular blocking resolver routines would increase proxy latency.

Thus, UDP-based proxies running in parent/child mode (i.e. not in the singleproc mode) start

an extra child process (“Asynchro Parallel Resolver”, or APR) that provides the resolution. This

process is, in fact, an instance of the core of the dns-proxy(8) working in the forwarding mode.

The resolver section used by the APR is converted to the dns-proxy structures using this

schema:

• There is a special “zone” named resolver-section-name.APR. Name of this pseudozone

can be found in log messages like DNSE-590-C.

• There is a special “server” named #server-number within the APR pseudozone for every

server in resolver section. These server names can be found in log messages like DNSE-740-

W.

RESOLVER CONFIGURATION

The key part of resolver configuration is a section named resolver (see resolver(5) manual page)

that contains following directives:

1040

conf-timeout The timeout for resolution of each domain name used in configuration. The

value is given in seconds with decimal values allowed.

For configuration resolution, see Section C below.

conn-timeout Timeout to resolve connection critical addresses. The value is given in seconds

with decimal values allowed.

This timeout will be used for any resolution necessary for successful progress of the proxy

work, e.g. of a server address.

disable-deresolution The deresolution of (client and server) IP addresses can be suppressed

entirely using this item.

final-timeout The timeout used for deresolving a client address immediately before logging

the SESSION-END message. The value is given in seconds with decimal values allowed.

When a session closes, the SESSION-END message is to be logged. For this message, another

attempt to deresolve the client’s address is made (of course, only if the first attempt on client

deresolution failed because of reaching the initial-timeout).

initial-timeout The timeout for the initial attempt to deresolve a client address. The value

is given in seconds with decimal values allowed.

When a client contacts the proxy/server, an attempt to deresolve its address is made. If it

fails, the client’s address will be logged without a name until the SESSION-END message.

In the case of APR (see above) usage, this timeout is ignored.

preference The order of IPv4 and IPv6 addresses in responses can be selected using this item.

search The order of domains added to non qualified domain names for resolving can be selected

using this item.

server The list of nameservers being queried can be defined using this item.

There can be more resolver sections in the kernun.cml and every component can use its

own one (being configured by the use-resolver item). The same item is used also on the system-

level configuration and this resolver section defines the system-wide parameters, i.e. content of the

file /etc/resolv.conf and parameters for components not using their own resolver section. The

behavior of the system name-service switch dispatcher (nsdispatch() function) is not changed

- Kernun creates the file /etc/nsswitch.conf with the content “hosts: files dns” during the

installation and does not alter it further.

CONFIGURATION RESOLUTION

All names in the configuration are resolved during the proxy startup. Within this process, each

name resolution is tried for conf-timeout seconds; if it fails, the name remains unresolved.

If the proxy runs in the parent/child mode (i.e. not the singleproc mode), it starts an extra

child process (“Asynchro Configuration Resolver”, or ACR) as soon as new resolution is needed

(i.e. some names have expired). This child tries to resolve the expired names again and stores the

1041

APPENDIX C. KERNUN UTM REFERENCE (7)

result in a memory mapped file shared by all regular children. There are some exceptions to this

rule. For instance, the listen-on addresses must be resolved immediately at the beginning of

the proxy run and they are not refreshed until the end of the execution of the proxy.

Some parameters of the configuration resolution refreshment can be specified by means of the

cfg-resolution configuration item (see application(5)).

max-addrs Every configuration name has a limited number of addresses, to which it can be

resolved. Default: 10.

def-ttl If the name remains unresolved (either for the negative answer or because of query

expiration), this value is used as expiration (and thus also next refresh period) time. Default:

1 min.

max-ttl If the name TTL is too high, or the name is resolved using the /etc/hosts file (not

by DNS), this value is used as expiration (and thus also next refresh period) time. Default:

1 day.

pool-dir Parent process, resolving child and regular children use a shared file for exchanging

resolution results. The file is named RESCFG.proxy-name.parent-PID and resides in

the pool-dir directory. Default: /tmp.

SEE ALSO

Kernun: application(5), resolver(5), system(5), dns-proxy(8)

FreeBSD: resolv.conf(5), nsswitch.conf(5)

1042

NAME

tcpserver — TCP client connections and process management in proxies

DESCRIPTION

The part of Kernun Firewall called tcpserver handles the server side of proxies. It is implemented

by the C function tcpserver() contained in a library linked to proxies. After a proxy performs

the initializion (command line parsing, configuration reading, log opening), it calls tcpserver().

Among other parameters, tcpserver() gets a callback function for connection handling. The

tcpserver() function waits for a connection from a client and then calls the callback and passes it

the file descriptor of the accepted connection. The callback is supposed to process the connection

(it performs the proxy-specific work) and then return to tcpserver(). When this happens,

tcpserver() waits for the next connection.

The tcpserver() function also manages multiple processes needed for parallel handling of

connections. Moreover, it processes termination and log level change signals.

The management of proxy child processes is performed using pre-forked processes. This concept

of process managemenent is used, for example, by the Apache WWW server.

Most TCP process control attributes are contained in the tcpserver configuration section

(see tcpserver(5) manual page); some, which are common for TCP and UDP proxies, are part of

another configuration section, application (see application(5) manual page).

Signals

TCP server handles some signals. All signals except SIGUSR1 and SIGUSR2 should be always

sent to the parent process of a proxy only.

SIGUSR1 Increase the log level of a child process (or the parent process and all its children, if

sent to parent).

SIGUSR2 Decrease the log level of a child process (or the parent process and all its children if

sent to parent).

SIGHUP Graceful termination; the proxy does not accept any new connection, waits until all open

connections are closed, and terminates.

SIGTERM, SIGINT, SIGQUIT Immediate termination; the proxy closes all connections and ter-

minates immediately.

Single Process Operation

If item singleproc is present in the application configuration section, the proxy manages

all connections using a single process. The algorithm is very simple:

1. Create and bind sockets according to the configuration (see listen-on(5)).

2. Switch credentials according to the configuration (see application(5)).

1043

APPENDIX C. KERNUN UTM REFERENCE (7)

3. Wait for a connection from a client.

4. Call the proxy-specific connection handling function and pass it the accepted connection.

5. After a successful return from the handling function, go to 3. If the handling function returns

an error, exit TCP server.

Parent/Children Operation

If item singleproc is not present in the configuration, the parent proxy process forks child

processes that handle incoming connections. The parent does not accept any connection; it only

monitors the status of child processes, starts new children and/or kills superfluous ones.

Parent algorithm:

1. Create and bind sockets according to the configuration (see listen-on(5)).

2. Switch credentials according to the configuration (see application(5)).

3. Create init-children child processes.

4. Count busy children (those processing a connection) and idle ones (those waiting for a

connection).

5. If there are less than min-idle idle children, try to fork new children to achieve min-idle.

At most min-start-rate children are forked and the total number of child processes

never exceeds max-children. If there are still not enough idle child processes during the

next parent cycle, 2 * min-start-rate new children will be forked. Subsequently, the

number of forked children is doubled in each following parent cycle, up to the maximum of

max-start-rate new children per cycle. If min-idle is reached, the number of forks

per cycle is changed back to min-start-rate.

6. If there are more than max-idle idle child processes, try to kill some idle children to achieve

max-idle. At most kill-rate children are killed.

7. If SIGHUP has been received, wait for all children to terminate and exit.

8. If the parent cycle has been repeated info-cycle times, log a statistical message containing

the number of forked and killed children.

9. Wait for parent-cycle ms and start a new parent cycle (go to 4).

If the creation of a new child process fails because of a lack of system resources, it is repeated

up to fork-retries times. There is a pause of fork-wait ms between every two attempts. If

all fork-retries are unsuccessful, no new child is started, but the proxy continues its operation

(and possibly starts children later, when the system load decreases).

Additionally, the parent process manages a single child process that resolves DNS names from

the configuration. This child process is not controlled by the above algorithm and is restarted as

required for proper name resolution (see resolving(7)).

Child algorithm:

1044

1. Start listening on all server sockets, as specified by the listen-on configuration value.

2. Wait for a connection from a client.

3. Call the proxy-specific connection handling function and pass it the accepted connection.

4. After a successful return from the handling function, go to 2. If the handling function returns

an error, terminate the particular child process. The proxy continues running and replaces

the terminated child as necessary.

Inter-Process Communication

In order to be able to manage its child processes, the parent process must communicate with them.

Two mechanisms are used for this purpose: shared memory and signals. There is a shared memory

structure called “scoreboard” containing one slot for each possible child (i.e., max-children

slots). Each child maintains a flag in its scoreboard slot that indicates whether the child is busy,

or idle. The parent reads these flags when counting its children. The parent sends signals to the

children in order to kill a superfluous child, perform an immediate or graceful termination, and

increase or decrease the log level. As there are not enough signal numbers available, the parent

uses SIGTERM for immediate termination and SIGHUP for all other requests. The type of request

is indicated by a value set by the parent in the scoreboard before sending the signal.

Accept Serialization

Doing select()/accept() by multiple processes in parallel on the same set of sockets causes a

problem (see, e.g., Apache WWW server documentation, section "General Performance hints").

If a single connection arrives, all processes are woken up from select() and call accept(). A

single accept() succeeds and returns, all the other processes are blocked in accept(). However,

all processes are waiting for a connection on a single socket now and the remaining sockets are

not handled. Therefore, select() and accept() are placed in a critical section secured by a

lock, which ensures that only one process sleeps in select() at a time. The lock is implemented

using flock() on a file specified by a parameter of the lock item. For a large number of child

processes (many hundreds or thousands), locking via flock() may behave incorrectly and block

the proxy operation. Therefore, it is possible to use an alternative lock implementation selected

by the alt-lock item. The following possibilities are available:

none No locking is done. Accept is called in the non-blocking mode, in order to solve the above-

mentioned problem with processes blocked in an accept() function on a single socket.

semaphore Locking is done using a System V semaphore.

lock2 Locking uses a two-level flock() locking scheme with locking parts of a single lock file.

This is an experimental variant that should not be used, because it exhibits a similar problem

with many processes as the standard single flock().

multilock2 This is the recommended alternative locking mechanism. It uses a two-level

flock() locking scheme with each lock on a separate file. The set of NxN processes is

1045

APPENDIX C. KERNUN UTM REFERENCE (7)

divided into N subsets of N processes. Members of each subset share one lock and there is

a single global lock. To acquire the lock, a process must first lock the lock file belonging to

its subset and then lock the global lock. This algorithm reduces the maximum number of

processes waiting on a single lock file.

If either both or none of the lock and alt-lock items are specified, the standard locking

is used if max-children is up to 500, and multilock2 is used for max-children of 501 or

more.

Note

Experiments indicate that this arrangement is not strictly necessary on FreeBSD, because

it seems that if there is a very short time between select() and accept(), only a single

process is woken up from select() and calls accept(). However, this positive feature is

dependent on timing (and thus on such unpredictable conditions as the system load). We

have implemented the serialization lock in order to prevent race conditions.

Warning

Be careful when configuring lock-file names for proxies. If two different proxies happen to

use the same filename, one of them gets stuck. Such a situation looks rather strange: the

TCP handshake takes place, but data exchange does not. As proxy processes are unable to

detect this situation, care should be taken.

Process Groups

Caution

If item nodaemon without singleproc is used in the configuration, i.e., parent/children

operation in no-daemon mode, the proxy runs in the same process group as its parent process

(if it was not moved to another group before executing the proxy program). The proxy parent

process uses kill(0, sig) syscall to propagate SIGTERM and SIGHUP to its children.

But the signal is delivered to all processes in the process group of the proxy. Thus, other

processes (not belonging to the proxy) in the same group should make appropriate provisions

in order not to be disturbed by these signals.

SEE ALSO

listen-on(5), application(5), tcpserver(5), resolving(7)

1046

NAME

time-matching — syntax and semantics of time specification in configuration

DESCRIPTION

Time specifications may appear in various modifications of acl sections of the Kernun configura-

tion (see access-control(7), configuration(7) manual pages). There are two independent mutually

exclusive ways how to define proper time interval.

REPEATABLE ITEM TIME

time [day days] [month months] [wdays [times]]

The semantics of individual elements is as follows:

day days It stands for days of month and its type is UINT8-SET.

month months This element is a set of months (again UINT8-SET).

wdays This parameter is a set of special enumeration type for days of the week, where standard

English three-letter shortcuts may be given (Sun, Mon, Tue, Wed, Thu, Fri, Sat). Their

numerical counterparts can be given as well, beginning with 0 for Sunday through 1 for

Monday, 2 for Tuesday etc. ending with 6 for Saturday.

times This element is of type TIME-SET and specifies hours within a day, such as { 0800-1630

} which means 08:00:00 to 16:29:59.

Time conditions specified in the same time item are linked with logical AND. Unused con-

ditions are not checked. Repeated occurrences of the time item within one acl are linked with

logical OR.

NONREPEATABLE SECTION TIME-PERIOD-SET

time-period-set {

[exclude;]

time-spec NAME {

[dates from-day from-mon till-day till-mon;]

[weekdays from till;]

[hours from till;]

}

...

}

1047

APPENDIX C. KERNUN UTM REFERENCE (7)

The semantics of individual items is as follows:

dates from-day from-mon till-day till-mon; Specification of date interval within a year.

Lower bound can represent higher date then upper one in which case the interval goes across

the new year. Upper bound is included in the range.

weekdays from till ; Specification of day interval within a week. Day abbreviations of numbers

can be used. Lower bound can represent later day then upper one in which case the interval

goes across Sunday/Monday. Upper bound is included in the range.

hours from till ; Specification of time within a day. The HHMM time format is used for values.

Lower bound can represent higer time then upper one in which case the interval goes across

midnight. Upper bound is NOT included in the range.

Time specifications of the same type are linked with logical OR. Time specifications of different

types are linked with logical AND. Unused conditions are not checked. The item exclude forces

complementary specification, if the current time matches all given conditions, it is not accepted,

and vice versa.

EXAMPLES

The following time specification is satisfied every Monday in February and October between 8

a.m. and 1 p.m. as well as every Wednesday, Thursday and Friday in July between 10 p.m. and

midnight:

time month { 2, 10 } { 1 } { 0800-1300 };

time month { 7 } { Wed - Fri } { 2200-2400 };

Below, there is another time specification example that stands for the first ten days of each

month between 1 p.m. and 7 p.m.:

time day { 1-10 } { 1300-1900 }

The last example shows the Czech schoolyear:

time-period-set {

time-spec SCHOOLYEAR {

dates 1 9 30 6;

weekdays Mon Fri;

hours 0800 1400;

}

}

SEE ALSO

acl(5), access-control(7), configuration(7)

1048

NAME

traffic-shaping — Kernun firewall traffic shaping support

DESCRIPTION

Kernun firewall supports traffic shaping. The PF/ALTQ package is used for this purpose, see pf(4),

altq(4), pfctl(8), pf.conf(5). ALTQ sends outgoing network packets to queues. Each queue has

its own bandwidth parameters that define how it sends packets to the network interface. Packets

are assigned to queues by pf filter rules. Queues and filter rules are defined in pf configuration

pf.conf(5).

All Kernun proxies support an alternative and more flexible way of assigning traffic to queues.

Queue names can be set in ACLs. All communication that matches a particular ACL will use

the queues specified in the ACL. This way, the queue selection process may utilize all conditions

available for ACL matching, including time-based (slow download speed from some servers during

working hours, remove limits in the night), or user-based limits (some users have priority). Queues

for a session are configured separately for each communication direction, i.e., sending data to a

client, server, antivirus, and antispam modules.

Notes

• ALTQ works only for outgoing traffic. Received packets are not subject to traffic shaping.

• ALTQ queue specifications in proxy ACLs require a kernel patch in order to work. Patching

system sources and building a patched kernel is done as a part of the Kernun installation

process.

• Each UDP queue specification consists of a single queue name. TCP requires one or two

queues. If two names are given, the second one is used only for prioritized packets, i.e., TCP

acknowledgements without payload. Everything else is sent via the first queue.

• In order to use ALTQ on a network interface, the network interface card driver must support

it. For the list of supported drivers, see altq(4).

SEE ALSO

FreeBSD: altq(4), pf(4), pf.conf(5), pfctl(8)

1049

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

transparency — network transparency and the related aspects

DESCRIPTION

The Kernun firewall is able to transparently grab clients’ connections and hand them over to its

proxies, as well as to pretend to servers that connections come from clients’ real IP addresses

instead of the firewall’s IP address. This ability is implemented in the transparency support that

was added to the FreeBSD kernel.

Transparency for clients

Transparency for clients is realized using special sockets called transparent listening sockets. Unlike

a regular listening socket, a transparent listening socket is able to accept transparent connections,

i.e., it accepts a connection even if the client is not connecting explicitly to the firewall, but directly

to some server’s IP address.

A transparent listening connection can be configured either to accept connections that arrive

to any interface, or it can be limited to a particular interface. The former case is configured in

the Kernun configuration by specifying a special IP address, 0.0.0.0. The latter one can be

configured either by specifying the name of the interface, or by specifying its IP address (which is

only used to determine the particular interface). See listen-on(5) for the proper syntax.

Transparent listening sockets can be identified in a running system by sockstat(1). They

are distinguished from regular sockets by the special syntax in the LOCAL ADDRESS field of the

sockstat(1): {iface|*}>>:port. If present, the iface value denotes the interface the transparent

listening socket is limited to. Otherwise (denoted by *), the socket listens on all network interfaces.

In the TCP protocol, accepting connection by accept(2) returns a new socket that is used

for communication with the client. Packets sent via this socket are automatically assigned the

real destination (the server’s) IP address as the source address, and all packets sent within this

connection from the client to the server would come to this socket. These sockets are indicated by

syntax >>addr:port in the LOCAL ADDRESS field of the sockstat(1). Here, the addr denotes

the IP address of the server (i.e., the IP address the client thinks to be connected to).

In the typical scenario there would be one transparent listening socket for each interface the

proxy listens on (FD 5 in the following example). This socket is shared by the proxy’s parent

process and by all of its child processes. In addition, there would be two sockets for each connection

established via the proxy: one for the connection from the client to the proxy (FD 11), and another

for the connection from the proxy to the server (FD 12). The situation is shown in the following

example (10.1.1.1 stands for the client IP address, 10.3.3.3 stands for the firewall external

address and 10.4.4.4 stands for the server IP address):

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

kernun tcp-proxy 26802 5 tcp4 vr0>>:22 *:*

kernun tcp-proxy 26801 5 tcp4 vr0>>:22 *:*

1050

kernun tcp-proxy 26800 5 tcp4 vr0>>:22 *:*

kernun tcp-proxy 26800 11 tcp4 >>10.4.4.4:22 10.1.1.1:36528

kernun tcp-proxy 26800 12 tcp4 10.3.3.3:62175 10.4.4.4:22

kernun tcp-proxy 26799 5 tcp4 vr0>>:22 *:*

kernun tcp-proxy 26798 5 tcp4 vr0>>:22 *:*

kernun tcp-proxy 26797 5 tcp4 vr0>>:22 *:*

Matching transparency

Connections can be considered in ACLs according to their transparency. This is done using a

keyword to the to configuration item. If the key transparent is present in this item, only

transparent connections get matched. Similarly, with keyword non-transparent present, only

non-transparent connections get matched.

Changing source address

This feature allows servers to see real clients’ addresses upon receiving connections instead of the

firewall’s address (which is the standard behavior for proxies). It can be specified in an ACL

section using either of the following syntax constructions:

source-address client;

source-address [5.5.5.5];

This feature can be regarded as transparency for servers. source-address might be used

either in transparent or non-transparent mode.

For example, if a client of 10.1.1.1 wants to connect through proxy at 10.2.2.2 (either

transparently or non-transparently) to server 4.4.4.4, the server sees normally the connection as

coming from firewall’s external address, e.g. 3.3.3.3. Taking advantage of source-address

client, the server sees the connection as if it were coming from 10.1.1.1. In that case, the

sockstat(1) gives the following output:

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

...

kernun tcp-proxy 23008 11 tcp4 >>10.4.4.4:22 10.1.1.1:36528

kernun tcp-proxy 23008 12 tcp4 10.1.1.1:62175 10.4.4.4:22

...

Unlike in the first example, the connection from the firewall to the server (FD=12) shows the

LOCAL ADDRESS to be 10.1.1.1 (i.e., the client’s IP address).

Socket conflicts

For a given TCP/UDP port there can be more than one type of application listening side-by-

side: transparent proxies, non-transparent proxies or system daemons (such as ssh daemon sshd).

However, they must not be in mutual conflict.

1051

APPENDIX C. KERNUN UTM REFERENCE (7)

Conflicts are detected by the /verify command of cml(8). Two applications that listen on the

same port (or with their listen port ranges overlapping) are in conflict, if any of the following cases

occurs:

1. Both listen in the non-transparent mode on the same IP address

2. Both listen in the non-transparent mode on the wildcard IP address 0.0.0.0

3. Both listen transparently on the same interface (either if the interface name was given directly

or if it was deduced from the IP address)

4. Both listen transparently without interface restriction

Note that the conflicts check is only performed for the components configured within the cml

configuration file. It is not performed for the components that are configured out of it.

Socket precedence

When a packet arrives, the most specific socket is chosen according to the following precedence

order (from the most specific to the most generic):

1. Non transparent, single IP address, single port

2. Non transparent, wildcard address (0.0.0.0), single port

3. Transparent with interface restriction, single port

4. Transparent without interface restriction, single port

5. Non transparent, single IP address, port range

6. Non transparent, wildcard address (0.0.0.0), port range

7. Transparent with interface restriction, port range

8. Transparent without interface restriction, port range

It is therefore possible to provide several services for the same port, as long as they do not

collide. For example, the SSH daemon might be available for an administrative connection to

the firewall on all interfaces (SSH daemon only makes sense in the non-transparent mode), while

tcp-proxy might be configured in the transparent mode for proxying the ssh traffic through the

server for the internal interface. In that case, packets with the destination address equal to any of

the firewall’s IP addresses would end up in the SSH daemon, while packets with the destination

in the external network would be processed by the tcp-proxy. See the examples section.

1052

Bypassing transparency

When transparency is enabled (sysctl net.inet.ip.transparency=1), every packet is

considered to be potentially local (i.e., destinated for some firewall’s process) and is therefore

delivered into the local IP stack. One of the consequences of this fact is that the packet is not

eventually ip-forwarded (even if sysctl net.inet.ip.forwarding=1 and it would have been

forwarded, if the standard FreeBSD kernel had been used).

Under certain circumstances it might be desirable to bypass transparency. Kernun firewall

uses the packet filter (pf(4), packet-filter(5)) for this purpose. When the packet has the pf tag

NOTRANSP set, the kernel handles it the same way the regular FreeBSD kernel would. The actual

tag that is used for this purpose can be changed using sysctl net.inet.ip.no_transp_tag.

NOTRANSP is the default value.

The following rule can be used to tag all the traffic from client of 10.1.1.1:

pass in on vr0 from 10.1.1.1 to any tag NOTRANSP

Note that all the traffic that is required not to undergo the transparency must be tagged

NOTRANSP. Especially, for bidirectional communication, packets for both directions must be tagged

so (see the latter example in this manual page).

SEE ALSO

Kernun: acl(5), ftp-proxy.cfg(5), listen-on(5), access-control(7), dns-proxy(8), ftp-proxy(8), kat(8),

smtp-proxy(8), tcp-proxy(8)

FreeBSD: ioctl(2), pf(4), pf.conf(5), pfctl(8)

1053

APPENDIX C. KERNUN UTM REFERENCE (7)

NAME

udpserver — UDP session and process management in proxies

DESCRIPTION

UDP-based proxies in Kernun (e.g., udp-proxy) use a special library module called udpserver for

the process and operation control.

Process control

There are two modes of udpserver operation. In the normal operational mode (parent/child mode),

the proxy consists of a parent and up to three child processes.

parent process The parent process monitors the children, restarts them if they terminate unex-

pectedly, and terminates them if proxy termination is requested by the administrator (via

the kat utility).

regular process (REG) The REG child process handles the “real work” of the proxy, that is,

communication with clients and servers.

configuration resolver process (ACR) The ACR child process tries to resolve all domain

names from configuration (see resolving(7)). It starts at the proxy beginning and reschedules

itself so that expired names can be resolved again.

run-time resolver process (APR) The APR child process is used to process on-line resolving

for the REG process so that it needs not to wait for nameservers’ responses (see resolving(7)).

In the single-process mode (turned on by item singleproc in the configuration), the proxy

consists of a single process. The configuration resolution is not refreshed, the proxy waits for

online resolutions. This mode is intended for debugging purposes only.

Signals

The udpserver handles the following signals:

SIGINFO Log process-specific information. This signal must be sent to a particular process and

it is valid for the process only.

SIGUSR1 Increase the log level. This signal can be sent either to a child process (valid for the

child only), or to the parent (to be resent to all its children).

SIGUSR2 Decrease the log level. This signal can be sent either to a child process (valid for the

child only), or to the parent (to be resent to all its children).

SIGWINCH Reopen the log file. If the proxy logs to a file, this signal forces it to reopen the log

file (e.g. after the log file rotation). This signal can be exceptionally sent to a child process,

but under the normal circumstances it should be sent to the parent (to be resent to all its

children).

1054

SIGHUP, SIGTERM, SIGINT, SIGQUIT Immediate termination. The proxy immediately termi-

nates all sessions and exits. This signal can be exceptionally sent to a child process, but under

the normal circumstances it should be sent to the parent (to be resent to all its children).

Operation control

The udpserver receives incoming UDP datagrams, assigns them to proper active sessions (or creates

new ones), controls time and data limitations for session termination etc. In the case of specific

proxies (such as gk-proxy), udpserver calls proxy-specific functions for further processing.

SEE ALSO

listen-on(5), application(5), udpserver(5), resolving(7)

1055

APPENDIX C. KERNUN UTM REFERENCE (7)

1056

Appendix D

K e r n u n U T M R e f e r e n c e (8)

1057

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

af-db.sh — Adaptive Firewall database management tool

SYNOPSIS

af-db.sh [-h] [-f db-file] [-v] [table|db] command [parameters]

DESCRIPTION

Utility af-db.sh provides a user interface to the blacklist databases of the Adaptive Firewall (see

adaptive-firewall(7) manual page) module.

For the list of tables, see the adaptive-firewall(5) manual page, or run the script with the -h

option.

Options

The script options are as follows:

-f Use given filename. By default, the standard filename is used, according to the table name

selected.

-h Print usage and exit.

-v Be more verbose; print also all SQL commands being executed.

COMMANDS

feed [address...] Exports data from IDS databases, makes a new IPS database.

• Addresses in the parameter are temporary whitelisted, i.e. they will not be included in

the IPS database.

db remove [-y] Removes an Adaptive Firewall database.

• If the -y option is used, the script does not query to confirm the removal.

db list Prints list of tables in given database file.

db find { IP-address | regular-expression } Finds all occurences of an IP address or an IP

address pattern in all tables of given database.

table show [-uR [-tc] [-r] [-n num] [-fF flag]] Displays content of a database table. By

default, it sorts the output by IP addresses.

The output format for all tables begins by four columns (ADDRESS, FLAGS, COUNT,

LAST). For the SSHD table, there is another colmun at the end of line showing the difference

(in seconds) between the LAST occurence and the occurence number num given by the -n

option.

1058

• If the -c option is used, the items are sorted by number of occurences.

• If the -f option is used, only the items having given flag set are printed.

• If the -F option is used, only the items having given flag unset are printed.

• If the -r option is used, the items are sorted in reverted (descending) order.

• If the -R option is used, the items are printed in raw format (no formatting).

• If the -t option is used, the items are sorted by time of last occurence.

• If the -u option is used, the times are shown in UTC instead of local time.

table add [flag IP-address { +time-offset | -time-offset | 0 }...]

Warning

SSHD table version...

Adds given client to the table with any number of recent occurences set as current time

plus/minus given offset(s) and flag set accordingly.

table add [flag { +time-offset | -time-offset | 0 } IP-address...]

Warning

Non-SSHD table version...

Adds given clients to the table with last time set as current time plus/minus given offset and

flag set accordingly.

table del IP-address... Deletes given clients from the database.

table find { IP-address | regular-expression } Finds all occurences of an IP address or

an IP address pattern in given DB table.

table flush Removes the whole content of given DB table.

SEE ALSO

Kernun: adaptive-firewall(7)

1059

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

alertd — The SNMP trap sending daemon

SYNOPSIS

alertd [-hv] [-d dbglev] -f cfgfile

DESCRIPTION

The alertd daemon is a component waiting for messages sent via special UNIX sockets

(security.alert, security.notify, system.alert and system.notify) in the

/var/run/alertd directory and send them as a SNMP trap to a set of SNMP managers.

The daemon runs in fact as three processes, like Kernun proxies do. The main process just

controls run of its children. The Asynchronous Configuration Resolver provides for DNS resolution

refreshing. The regular child process handles the real operation.

SIGNALS

The alertd daemon handles following signals:

SIGUSR1 Log level increasing.

SIGUSR2 Log level decreasing.

SIGINFO Operation status logging; parent process logs info about all children, child process logs

current status of all ping groups.

SIGHUP, SIGINT, SIGQUIT, SIGTERM Immediate termination; the daemon immediately closes

the service.

OPTIONS

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

SEE ALSO

Kernun: application(5), alertd.cfg(5), configuration(7), logging(7), resolving(7), kat(8)

1060

NAME

atrmon — Adaptive Traffic Routing monitoring daemon

SYNOPSIS

atrmon [-hv] [-d dbglev] -f cfgfile

DESCRIPTION

The Adaptive Traffic Routing is a component allowing to delegate a special zone (or zones) name-

server to itself and respond to client requests according to the current accessibility of particular

hosts.

The ATR monitor sends ICMP ECHO messages to all configured targets (ping groups). From

every group, at least one response must be received within configured timeout to keep the group

alive. If all groups are alive, particular address is included into the set of addresses being sent as

a response to DNS query. Otherwise it is excluded from the set. Currently, only IPv4 targets can

be tested.

If there is more than one live address, the ATR monitor selects the answer according to the

strategy item setting. It can send all live addresses, or select only one according to the

loadbalancing strategy. If there is no live address, the ATR monitor behaves according to the

fallback item setting.

The daemon runs in fact as three processes, like Kernun proxies do. The main process just

controls run of its children. The Asynchronous Configuration Resolver provides for DNS resolution

refreshing. The regular child process handles the real operation.

The current status of pinging to the target hosts can be watched by the monitor(1) tool

avaliable also as a command of the kat(8) tool.

EXAMPLE

We create a special subdomain for loadbalancing, define the nameserver for it and alias a host to

a name in this special domain:

lb.tns.cz. 3600 IN NS atr.tns.cz.

www.tns.cz. 3600 IN CNAME www.lb.tns.cz.

Then we run the ATR on the host atr.tns.cz with configuration like this:

atrmon ATR {

listen-on {

1061

APPENDIX D. KERNUN UTM REFERENCE (8)

non-transparent atr.tns.cz;

}

session-acl ALL {

accept;

}

request-acl DOMAIN {

name lb.tns.cz;

accept;

nameserver 3600 atr.tns.cz;

}

request-acl WWW {

name www.lb.tns.cz;

accept;

address BNS {

data 10 [1.1.1.1];

ping { [1.1.1.1] } 5;

}

address PHA {

data 10 [2.2.2.2];

ping { [2.2.2.2] } 5;

}

}

}

SIGNALS

The atrmon daemon handles following signals:

SIGUSR1 Log level increasing.

SIGUSR2 Log level decreasing.

SIGINFO Operation status logging; parent process logs info about all children, child process logs

current status of all ping groups.

SIGHUP, SIGINT, SIGQUIT, SIGTERM Immediate termination; the daemon immediately closes

the service.

OPTIONS

-h Print usage information.

-v Display version information and exit.

1062

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

SEE ALSO

Kernun: monitor(1), application(5), atrmon.cfg(5), configuration(7), logging(7), resolving(7),

kat(8)

1063

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

bootmgr — tool for configuring Kernun boot manager

SYNOPSIS

bootmgr [-x] [-d { 1| 2| 3 }] [-u| -n] [-1 label| +| -] [-2 label|

+| -] [-3 label| +| -] [dev]

DESCRIPTION

Utility bootmgr can be used to view or change configuration of the Kernun boot manager. If

invoked without command line parameters, the boot manager configuration is displayed in a text

format. If only option -x is specified, the boot manager configuration is displayed in XML. Other

command line options set various parameters of the boot manager.

The boot manager displays a boot menu that allows to boot one from up to three installations

(in the first three disk slices) of the Kernun firewall. For security reasons, the administrator can

disable some menu choices. There is always a default selection, that is booted after a timeout if

no key is pressed. It is configurable whether selection of a non-default choice changes the default

for next reboots or not.

The Kernun boot manager is a slightly modified FreeBSD boot manager. It is installed by

the Kernun installation process into the MBR (Master Boot Record) of the system disk. It can

be reinstalled by boot0cfg(8), but this is almost never needed. The main difference from the

FreeBSD loader is the boot menu. Instead of slice types, it shows changeable labels of individual

Kernun installation. There are two variants of the boot manager boot0 and boot0ext, stored in

directory /usr/local/kernun/lib. The preferred variant is boot0ext, which is two sectors

(1024 B) long. It has space for 74 character labels. By default, a label contains a Kernun version

identification, including a full build number, and the date and time of the installation. The smaller,

one sector (512 B) variant boot0 has space for ony 9 character labels. By default a label contains

date and time of the Kernun installation.

Options

-x Displays boot manager configuration in XML.

-d {1 | 2 | 3} the default slice to boot from

-u Selection from the boot menu will update the default choice.

-n Selection from the boot menu will leave the default choice unchanged.

-1 label

-2 label

-3 label Changes a label of a menu item.

1064

-1 +

-2 +

-3 + Enables a menu item and booting from the corresponding slice.

-1 -

-2 -

-3 - Disables a menu item and booting from the corresponding slice. Use with caution, as

disabling all working Kernun installations will render the system unable to boot. In such

situation, the boot manager may be reconfigured using the installation medium.

dev Operates on the boot manager located on this disk device. If not used, the disk containing

the root file system is selected.

FILES

/usr/local/kernun/lib/boot0 The one sector boot manager; deprecated, because it has

only 9 characters for each boot menu item.

/usr/local/kernun/lib/boot0ext The two sectors boot manager; preferred, with 74 char-

acters for each boo menu item.

SEE ALSO

boot0cfg(8), boot(8), fdisk(8)

1065

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

cml — Configuration Meta-Language

SYNOPSIS

cml [-hv]

cml [-d dbglev] [-f cfgfile] [-k] [-r revision] [-R]

cml [-d dbglev] -f cfgfile [-k] -g

cml [-d dbglev] [-f cfgfile] [-lLicsu]

DESCRIPTION

The abbreviation CML denotes both the Kernun Firewall configuration language and the command-

line tool for editing and verifying the configuration and for generating proper files used by the

system. The tool can be used in three modes:

• When option -g is not given, the CML will start an interactive mode and prompts user for

commands (see Section D below).

• When option -g is given, the CML run is intended to generate target configuration tree only

(see option explanation below).

• When one of options -l, -L, -i, -c, -s, -u is given, the CML performs just the requested

RCS file locking operation (see option explanation below).

Options

The CML options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debugging level to a specific number. Permitted values are 3 through to 9, 3

being the least and 9 the most verbose. See logging(7) for details. This setting is needed

for debugging until the CML prompt is ready. Then, more flexible /dbg command (see

Section D below) can be used.

-f cfgfile As the first operation, the CML will load named configuration file. If not used, the

CML will start with an empty configuration. The cfgfile can be then later loaded by the

/load cfgfile command (see Section D below).

-g The CML does not enter the interactive mode, just loads the configuration file (option -f must

be used, too) and generates configuration files tree (see /generate command in Section D

below).

1066

-r revision If the CML is invoked with the -f option, the specified revision saved in the RCS

file cfgfile,v is used instead of the current configuration file. For more details see the

/load command description in Section D below.

-R The CML runs in read-only mode (this is default, when started under AUDITOR user).

-k The CML does not unlock the configuration file when exiting. The file is kept locked for

current user.

-l The CML tries to lock particular RCS file. If the file is not free, or the plaintext version differs

from the RCS copy, the program will fail.

-L The CML tries to break the lock of particular RCS file.

Warning

Use this operation with care!

-i The CML tries to create particular RCS file. If the file is exists, the program will fail.

-c The CML tries to check whether the current user owns the lock of particular RCS file. If not,

the program will fail.

-s The CML tries to save (check-in) current plaintext into particular RCS file. If the file is not

locked for current user, the program will fail.

-u The CML tries to unlock particular RCS file.

CML Operation

After start, the CML checks whether running from a terminal. If so, it prepares the editline

environment (see editline(3)) and Command Completion and Context Help support (see Section D

below). Otherwise, the CML will read commands from standard input.

If the -f option was used, the CML loads configuration from given file like if it would be

ordered by the /load command (see Section D below). If not, no configuration is read, the user

must either use the /load command or create a new configuration from scratch.

Finally, the CML looks whether the -g option was used and if so, it generates output files

using /generate command (see Section D below) and exits. Otherwise the CML starts normal

command processing.

The CML tool uses standard Kernun logging library for displaying messages (see logging(7)),

the messages are written both to the standard error output (i.e. sent to the terminal, typically)

and to the system log (as configured in /etc/syslog.conf file). This behavior can be changed

by setting the environment variable KERNUN_LOG_FILE to a file name willing to be the log

target. As usual, every message (produced by the CML, not by other system programs called by

the CML) has a log-id prefix (e.g. CMLR-710-W) that can be found in Kernun section 6 manual

pages (CMLR-710(6) in above example).

If the CML runs in read-only mode (due to current user type, or the -R option), it allows only

commands they do not alter the configuration content. Other commands are disabled.

1067

APPENDIX D. KERNUN UTM REFERENCE (8)

CML COMMANDS

The maximal length of the command line depends on current system settings of the editline(3)

library. However, for the purpose of configuration editing is sufficient. The Section D may work

slightly fuzzy on too long lines.

There are three essential types of commands in the CML:

Low-level configuration directives Most of Kernun configuration is based on directives known

for both the CML and the idividual proxies. They have the same syntax and semantics as

described in section 5 manual pages, root of them is kernun.cml(5). These directives are

written in the Kernun configuration file and the CML copy them into individual proxies

configuration files when preparing the output. Example:

system BILOVICE {

hostname bns;

admin root@tns.cz;

}

High-level configuration directives There are a group of directives having the sense only in

the CML. They are written in the Kernun configuration file, but they are only used by the

CML when generating the output files which they are not a part of. Example:

include "samples/root-servers.cml";

set name = "gateway";

for x in { INT, OUT } {

...

}

The CML control commands These commands are used for configuration manipulation (edit-

ing, saving etc.) and therefore they are not part of saved configuration files. Hence, they also

have a different syntactical form: they are prefixed by a slash (’/’) character or optionally

dot-slash (’./’) pair. Examples:

/load kernun.cml

/cut

./paste NEWNAME

All commands, configuration directives and names are case-insensitive.

1068

Low-level configuration directives

Although general syntax of configuration files is free in the sense of whitespaces and newlines

using, the CML uses strict form of line breaks, indentation etc. The reasons for it are both version

difference checking and easier Command Completion and Context Help support (see Section D

below).

For the detail description of low-level syntax, see configuration(7). For clarity, we mention here

only a few basic facts. The configuration consists of configuration directives of two types:

Item is a series of elements (or “attributes”) of simple values (integers, names, strings, IP addresses

and also comma separated lists of previous types enclosed in curly braces (’{ ... }’) terminated

by a semicolon (’;’) character.

Section is a set of configuration directives (items and subsections) enclosed in a pair of curly

braces (’{ ... }’).

Both items and sections are either repeatable or non-repeatable. Repeatable sections must

have a name specified between the keyword and the opening brace. The name must be at most 63

characters long, otherwise it is not recognized by parser and it is treated as string. For brevity we

use the term name in the natural sense, in the case of repeatable section we distinguish between

type name and name. Example:

routes { # non-repeatable section of type routes

static DMZ { # repeatable section of type static,

section name is DMZ

flags { cloning, iface }; # item with one element (list)

} # end of section DMZ

} # end of section routes

Comment lines start with the hash (’#’) character and can be inserted freely between con-

figuration directives. Lines with a single hash character will be copied to the low-level (proxy)

configuration files. If you want to make a comment hidden for the target files, simply double the

hash character on the beginning of the comment. Example:

This comment will be generated

...while this not

If you type a configuration directive on the command line, the behavior depends on directive

type and current configuration content.

• If the directive is non-existing (i.e. not specified yet) non-repeatable section/item, then a

new one is entered.

• If the directive is existing (i.e. already specified before) non-repeatable section/item, then

the old one is modified.

1069

APPENDIX D. KERNUN UTM REFERENCE (8)

• If the directive is repeatable section and its name has been already used, then the old one is

modified.

• If the directive is repeatable section and its name has not been used yet, then a new one is

entered.

• If the directive is repeatable item, then a new one is entered.

Repeatable section names must be unique within current section. On the contrary to the low-

level configuration files, in the CML, this is true even for sections of different types. For instance,

you cannot use the same name for doc-acl and command-acl in the ftp-proxy configuration.

When entering a configuration directive, the CML tries to check correctness of it by so called

on-line verification. In fact, it tries to parse the directive by an ordinary low-level parser, the

same one as will parse it later on within low-level configuration files generated for proxies. This

can recover some errors in very early stage of configuration creation.

High-level configuration directives

The high-level configuration handles primarily variables and loops.

Variables

The most important value added in high-level configuration is the concept of variables. We rec-

ognize two kinds of variables:

data variables can contain one “simple” value, i.e. one element of item (examples see below)

section variables can contain several directives (items, subsections, comments, etc.) of some

section.

Variable names are at most 32 characters long, they can consist from alphanumeric characters

and the hyphen (’-’) characters. the first character must be a letter.

When applied, variable name prefixed by a dollar (’$’) character is used.

Variable is visible from the place where defined, on the level where defined and on all lower

levels. Within visibility range, no other variable can have the same name. Example:

set X = 1;

system FIRST {

set X = 2; # false - repeated definition

set Y = $X; # correct

set Z = $W; # false - variable $W unknown

}

set W = 3;

system SECOND {

set Z = $W; # correct

}

1070

In-line files

An interesting feature of the high-level configuration is the list outsourcing. If you have an external

source for some list (e.g. list of “valid” email addresses), you can define a global shared-file

section for the file and instead of writing the whole list directly into CML (using the CML syntax),

you will use only a special construct “< shared-file-name”. Example:

shared-file ADDRESSES {

path "/var/adm/emails";

format text;

}

...

system SYS {

smtp-proxy SMTP {

delivery-acl ACL-2 {

recipient ok < ADDRESSES;

The format item defines handling modes for lines from the source file:

text (default) Whitespaces form the begining and the end of lines are stripped, rest of the line

is double-quoted (like regular strings in the CML). Empty lines and lines starting by the #

character are ignored.

raw No special handling, the lines are just double-quoted.

native Lines should contain valid low-level syntax values, they are used as-is, just adding sepa-

rating commas. Empty lines and lines starting by the # character are ignored.

ip-addr Lines should contain IP addresses with or without mask (in slash-notation), but without

brackets. Empty lines and lines starting by the # character are ignored.

regexp Lines should contain regular expressions without delimiters (slashes). Empty lines and

lines starting by the # character are ignored.

High-level directives desription

The CML recognizes following high-level directives:

include "filename"; Import variable definitions from another file. This feature was added to

facilitate some standard settings, like set of root nameservers or general crontab setting. The

aim of it is not to split configuration to several files and so the CML does not support for

editing the included files.

Including is allowed only on the highest level of configuration and included files can contain

only comments and variable definitions. The filename is either absolute, or relative to the

“configuration root path”. This path is set to /usr/local/kernun/conf, by default, and

can be changed by the /cfgpath command (see Section D below).

1071

APPENDIX D. KERNUN UTM REFERENCE (8)

In some cases, parts of the include file can be “parametrized” by variables intended to be set

in the main configuration file (not within the file). Such variables must be declared within

the include file using the param directive.

set varname = value; Define data variable. For the value, any type (including LISTs and

SETs) can be used. Besides, for string variables, also concatenation is allowed, concatenation

operator is a plus (’+’) character. Examples:

set ADMIN = root;

set DOMAIN = xyz.com;

set EMAIL = $ADMIN + @ + $DOMAIN;

set MY-ADDR = [1.2.3.4];

set DNS-ADDR = $MY-ADDR : 53;

set IFACES = { INTERNAL, EXTERNAL };

set varname [section.path] { section variable body }

set varname prototype.path { section variable body } Define section variable

(macro). The “value” of the variable is a set of configuration directives. Such a variable can

be primarily applied as a part of regular configuration section. For this reason, the context

of the variable must be known, i.e.

1. point of the configuration tree, where it can be applied

2. set of subsections and items it can contain.

This context is defined by the “path” between the variable name and the opening brace and

one of the following modes can be used:

configuration context This mode means that variable context is derived from current

point of configuration. If the current section is to be the context, the path should be

omitted. If a sub-node of the current node is to be the context, the (type) name of the

node should be written. If a distant descendant is to be the context, a “path” should

be constructed by particular names of section along to the path from current point to

the node desired, separating them by dots (’.’). Examples:

set SYSTEM-DATA system { # applicable within any system

DOMAIN xyz.com;

}

set IN-OUT system.acl { # applicable within system.acl

from [10.0.0.0/8];

accept;

}

system BILOVICE {

$SYSTEM-DATA; # variable application

1072

acl IN-OUT {

$IN-OUT; # variable application

}

}

This excerpt will be expanded as:

system BILOVICE {

domain xyz.com;

acl IN-OUT {

from [10.0.0.0/8];

accept;

}

}

prototype context This mode means that variable context is derived from a prototype.

Prototypes are templates used for building of similar configuration directives in different

parts of the configuration tree (see more in configuration(7)). The prototypes can

be also used as the context and such variables can be used in different evironments.

Example:

system BILOVICE {

set IN-OUT acl-1 { ... } # prototype acl-1 used

ftp-proxy FTP-PROXY {

session-acl OUTGOING {

$IN-OUT; ... } } # used in ftp-proxy.session-acl

tcp-proxy TCP-PROXY {

session-acl OUTGOING {

$IN-OUT; ... } } # used in tcp-proxy.session-acl

Warning

Current version of the CML does not support defining of system sections within a

macro body.

param varname; Section variable (macro) parameter, or forward variable declaration for

switch and include directives.

Section variables can have parameters that behaves like data variables inside the section

variable definition. Values of parameters are defined when variable is applied. Example:

set CLUSTER system { # macro definition

param NAME; # parameters definition

1073

APPENDIX D. KERNUN UTM REFERENCE (8)

param PROXIES;

hostname $NAME;

acl IN-OUT {

services $PROXIES;

...

}

system FW-A {

$CLUSTER GATE-1 { FTP }; # macro application with 2 parameters

}

This excerpt will be expanded as:

system FW-A {

hostname GATE-1;

acl IN-OUT {

services { FTP };

Number of parameters is fixed for all applications of parametrized variable.

for varname in { iteration list } { for loop body } Repeat set of configuration

directives several times. The loop control variable varname is set to each element of the

iteration list in turn, and the for loop body is generated each time. The iteration

list can consist of simple values, variables and sublists which are considered as “subset” rather

than “one element”. Example:

set ALL-ACLS = { IN-OUT, OUT-IN };

command-acl ALLOW-ALL {

for X in { $ALL-ACLS } { # list with variable with a sublist

session-acl $X; # loop control variable application

}

}

This excerpt will be expanded as:

command-acl ALLOW-ALL {

session-acl IN-OUT; # iteration #1

session-acl OUT-IN; # iteration #2

}

In the for-loop body, besides the loop control variable, two special variables can be used,

too.

1074

$_run_ Value of this variable is an iteration number.

$_all_ Value of this variable is the whole iteration list.

These variables can help to construct unique names, addresses etc. within multiple times

generated for-loop body.

Warning

Current version of the CML does not support defining of system, system.acl and

proxy sections within a for-loop body. Also, for-loop cannot be used for constructing

of list values (i.e. for-loop inside the item).

switch $varname { case value { ... } } Differentiate parts of configuration depending on the

value in a variable (typically a parameter). According to the value of the varname variable,

proper case label is selected. Match means that the case label value is equal to the variable

one, or the label has value *. Within case branches, normal configuration source code

continues.

There is one small exception, if you want to alter the value of another variable. Simple using

of the set command within a case branch, will fail due invisibility of the variable behind the

switch command. In this case, such a variable must be declared in advance by the param

command. Example:

set CLUSTER {

param HOST;

...

switch $HOST {

param ADDR; # variable declaration

case host-a {

set ADDR = [10.0.0.1]; # assigning value for "host-a"

}

case host-b {

set ADDR = [10.0.0.2]; # assigning value for "host-b"

interface DMZ { ... } # some more definitions

}

case * { # branch for other cases

}

}

interface INT {

ipv4 $ADDR; # using the value

1075

APPENDIX D. KERNUN UTM REFERENCE (8)

Warning

Current version of the CML does not support defining of system sections within a

switch-case body.

Variable and reference paths

Wherever a simple value can be used, a data variable (of proper type) can be used, instead.

Moreover, even a part of a (non-parametrized) section variable can be used, too. Proper part

must be specified with “dotted-path” (variable path). Every path component is either a type name

of a non-repeatable section/item/element or name of a repeatable section. Example:

set SYSTEM-DATA system {

domain xyz.com;

}

system BILOVICE {

set ADMIN = root@ + $SYSTEM-DATA.domain.name;

variable SYSTEM-DATA

non-repeatable item domain

item element name

Similar concept can be used for references to existing configuration directives. So called ref-

erence path starts either with a subnode name (when following path downward), or with (one

or more) path item consisting of a single up-arrow (’ˆ’) character. The latter way may be more

explicitly expressed by a single path item formed from an up-arrow and parent section name.

Example:

shared-file ERR-DOC {

path "samples/error-documents";

}

system BILOVICE {

http-proxy HTTP-PROXY {

document-root ˆ.ˆ.ERR-DOC; # twice up, then to ERR-DOC

or better

document-root ˆroot.ERR-DOC; # up to root, then to ERR-DOC

In the example above we see also an application of a “section” (ERR-DOC) in a place where

a simple string value is expected (element of mime-types item). In this case, name of the

section is used. So, the item will be expanded as document-root "ERR-DOC";.

As for variable ones, all reference paths must lead “towards the beginning” of the file.

Methods

Some items have special “elements” called methods that can operate with other item elements and

produce some output. All methods of an item are described in particular section 5 manual page

1076

describing the item. Example:

system BILOVICE {

interface I1 {

ipv4 [1.2.3.4/8];

}

acl IN-OUT {

from ˆsystem.I1.ipv4.addr; # error: [1.2.3.4/8] is invalid here

from ˆsystem.I1.ipv4.net; # method returning [1.0.0.0/8]

}

ftp-proxy FTP {

listen-on {

transparent ˆsystem.I1.ipv4.addr:21; # [1.2.3.4/8] invalid here

transparent ˆsystem.I1.ipv4.host:21; # method => [1.2.3.4]

}

Some predefined methods are available to simple data variable values, too. Namely, the two

methods for IP addresses modifications (host and net, see above) are valid for them. Example:

set ACL-INT system {

param ADDR;

acl FROM {

from $ADDR.net;

...

}

}

$ACL-INT [1.2.3.4/8]; # will produce ... from [1.0.0.0/8];

Special usage of data variables

Data variables can be used also as a token of path. This is very useful, namely in for-loops.

Example:

system BILOVICE {

interface I1 { ipv4 [1.2.3.4/8]; }

interface I2 { ipv4 [4.3.2.1/8]; }

ftp-proxy FTP {

listen-on {

for X in { I1, I2 } {

transparent ˆsystem.$X.ipv4.host:21;

}

}

1077

APPENDIX D. KERNUN UTM REFERENCE (8)

This excerpt will be expanded as:

system BILOVICE {

interface I1 { ipv4 [1.2.3.4/8]; }

interface I2 { ipv4 [4.3.2.1/8]; }

ftp-proxy FTP {

listen-on {

transparent [1.2.3.4]:21;

transparent [4.3.2.1]:21;

}

Data variables can be used also as a name of repeatable section (unfortunately not for proxy

and ACL level 1 names in current version of CML). This is, again, useful in for-loops. Example:

routes {

for X in { net1, net2 } {

set NAME = ROUTE- + $_run_;

static $NAME { ... };

}

This for-loop will produce two sections named ROUTE-1 and ROUTE-2.

Special usage of section variables

Section variables, in fact, represent a “container” of configuration directives. Sometimes, it can be

useful to apply only a part of the variable. In this case, we can use the the variable path (as dis-

cussed above, in Section D) and CML will insert only part of the variable definition corresponding

to the path.

There are two modes of insertion:

container mode If the variable with path is applied in the context equal to the context of the

node referenced, the content of it (i.e. all subnodes) are expanded from the definition.

Example:

set FTP-PROXIES system {

ftp-proxy FTP-IN-OUT {

listen-on { ... }

...

}

}

system BILOVICE {

ftp-proxy SPECIAL-IN-OUT {

1078

$FTP-PROXIES.FTP-IN-OUT; # expand content of FTP-IN-OUT ...

command-acl SPECIAL-ACL-2 { ... } # ... and complete it

...

}

This excerpt will be expanded as:

system BILOVICE {

ftp-proxy SPECIAL-IN-OUT {

listen-on { ... }

...

command-acl SPECIAL-ACL-2 { ... } # ... and complete it

...

}

single-node mode If the variable with path is applied in the context parental to the context of

the node referenced, the node as a whole is expanded from the definition. Example:

set FTP-PROXIES system {

ftp-proxy FTP-IN-OUT {

listen-on { ... }

...

}

}

system BILOVICE {

$FTP-PROXIES.FTP-IN-OUT; # expand unmodified FTP-IN-OUT node

This excerpt will be expanded as:

system BILOVICE {

ftp-proxy FTP-IN-OUT {

listen-on { ... }

...

}

The CML Control Commands

There are four groups of the CML control commands:

informational /help, /show, /info, /man

1079

APPENDIX D. KERNUN UTM REFERENCE (8)

editing /goto, /edit, /delete, /undelete, /rename, /cut, /copy, /paste, /hide, /unhide

configuration /load, /save, /verify, /generate, /cfgpath, /rcs

control /quit, /dbg

Editing commands operate at one moment with a single configuration node. This point of

configuration is called cursor and it is indicated by an arrow symbol ("->") pointing to particular

node when displaying content of the currently modified node. The cursor node is e.g. deleted if

/delete command is issued. If the cursor has an invalid value (e.g. when modifying an empty

section), such a command will fail. The cursor represents also the exact point, where new nodes

will be placed. More precisely: new nodes will be placed after the cursor. When editing or

adding a node, this node becomes the cursor. When deleting a node, the cursor moves to the node

following the removed one. This is the reason, why sequence of /cut + /paste commands swops

the two nodes, similarly like the sequence of "xp" or "ddp" commands in the vi editor.

The configuration files are kept not only in the plain form, however, the RCS system (see rcs(1))

is used for keeping track of configuration changes. The /load command checkes whether plain

and RCS versions of configuration files differ; if you change the configuration file in an external

editor, you will be prompted for authorizing the changes. The /save command stores file to the

plain form and then does the check-in operation to save it to the RCS form. When creating a new

RCS file or a new RCS file version, user is prompted by rcs program to add some comment. The

comment is closed by entering a line with the dot (’.’) only.

/cfgpath directory Set the “configuration root path” used as reference point for relative paths

in

• include directives (see Section D above)

• shared-file and shared-dir sections path items

• all other strings referring the filename.

The directory must be absolute and must exist.

/copy [{ + | n | +n | * }]

Copy nodes to the clipboard. The clipboard content can be inserted back to the configuration

by the /paste command.

By default, only the single node under cursor is copied. This usage of the command is allowed

for any node type. All other possibilities (with parameters) allow to store more nodes from

the same context.

By means of + parameter, the node under cursor can be appended to the current clipboard

content (instead of replacing it).

Instead of several subsequent calls of appending copy, a group of nodes (starting by the

current one) can be stored into the clipboard by using the number of nodes as a parameter.

Similarly, all subnodes at current level can be placed to the clipboard by using the asterisk

as a parameter (if the above constrains are fulfilled).

1080

/cut Move the cursor node to the clipboard. The cursor will then point to the next node. The

clipboard content can be then put back to the configuration by the /paste command.

All the parameter variants of the /copy are allowed for this command, too.

/dbg level [{ con | log [filename] }]

Change amount of displayed messages to the level (see logging(7) for possible values and

their meaning).

If you want to change the level only for console or log, you can specify the con or log

keyword respectively. In the case of log, you can also change the target file name.

/delete Remove the cursor node. The cursor will then point to the next node. The node can be

imediately restored by the /undelete command.

/edit configuration directive ... Edit the cursor node. The configuration directive

must be of the same type as the cursor node. The command will replace the cursor node (in

an item case) or will reopen it (in a section case).

This command is used for editing (i.e. changing of the content) of configuration directives.

For some kind of directives (repeatable items, comments, for-loops, section variable applica-

tions) this is the only possibility of editing. Other directives can be edited simply by typing

them anew and the /edit command is only one of the ways how to modify them.

This command cannot be used for replacing of one configuration directive by anoter one (in

other words, you cannot change type of the directive, e.g. to comment-out a line, to change

an item for other one etc.). This can be done only by deleting the old directive and typing

the new one.

Similarly, when using this command, the node name (i.e. repeatable section name, for-loop

control variable name) cannot be changed, the /rename command must be used for this

purpose, instead.

Using of this command is simplified by help of C3H — you can type /edit, space and press

<TAB> — the CML will complete the command line by the content of the cursor node.

Similar behavior is implemented for editation of some configuration directives not using the

/edit command (e.g. the set directive — see above).

/edit Edit the cursor node by an external editor. The content of all subnodes of the node under

cursor are exported to a temporary file, the external editor is called, and the edit result is

stored back into the configuration file replacing the original node. The editor can be defined

by the environment variable $EDITOR.

In the current version of the CML, this command usage is permitted for structured comments

only. The slash characters (’#’) on the beginning of comment lines are removed when saving

into the file and returned back before reading.

/generate Generate system configuration files. For every system section, a set of files is created

under the directory named SYSTEM-name (for more details, see Section D below).

1081

APPENDIX D. KERNUN UTM REFERENCE (8)

If the configuration was changed after the last loading/saving operation, or the configuration

loaded is not equal to the last version stored in the RCS file, the /save command must be

used before issuing the /generate command.

[/goto number]

[/goto { + | - } [count]]

[/goto { + | - | = } type]

[/goto = name]

Move the cursor within the node currently being processed. You can move cursor

• to the node with given absolute number as shown by the /show command

• count nodes from current position toward the end (’+’) or the beginning (’-’) of node

currently being processed (default: one)

• to the next (’+’), the previous (’-’) or the first (’=’) node with given type (where type

can be "FOR", "SET", section or item type name)

• to the node (repeatable subsection) with given name (you can use C3H to complete the

name).

/help [topic] Show the help (to the given command name).

/hide Hide the cursor node. The cursor node will be marked as hidden and will not be taken into

account while working with the configuration, except saving and loading it (e.g. it is possible

to have several hidden versions of definition of the same variable). Thus, this feature can be

used instead of commenting-out some parts of the configuration.

The node can be enabled by the /hide command later.

/info enum enumeration Show the enumeration description (meaning, values...).

/info descr [path] Show configuration directive (item or section) description). The config-

uration node is given by the CDF path.

Without any parameter, the current node description is shown. Examples:

/info descr

/info descr ftp-proxy.command-acl

/info descr ˆroot.system.interface

/info find [pattern] Find all configuration directives (items and sections) containing

pattern as a substring. CDF node paths of found directives (applicable e.g. in the /info

descr command) are printed.

/info param Show internal parameters of the configuration. For the explanation of the parame-

ters, see proper section 6 manual pages.

1082

/load [-r revision [filename]]

Load the configuration from given filename. If the name is omitted, last loaded file name

is used. Before loading the file, its content is checked against the one checked-out from the

RCS file filename,v (see rcs(1) for the details). The following cases can be recognized:

• Neither filename nor filename,v exist. User is prompted whether to create (both

of) them.

• File filename exists, but filename,v not. User is prompted whether to create the

RCS file.

• File filename does not exist, while filename,v does. User is prompted whether to

recreate the plain file from the current RCS version.

• Both filename and filename,v exist, but the checked-in version differs from the

plain file. User is prompted whether to store the plain file as a new version.

• Files filename and filename,v are consistent. File is loaded.

In most cases, user can reject recommended actions and can continue to work with the

configuration.

The -r option allows user to request loading of a particular revision from RCS file

filename,v. This version can be normally browsed in CML and then stored back

into both configuration files (plain and RCS). The acceptable forms for revision are

major.minor or ’0’ for the last version stored in RCS.

/man [section] topic Show given Kernun manual page. The command behaves similarly

to the system man(1)) except that it shows only Kernun manual pages. On the other hand,

the advantage is in using of C3H support for the section and the topic completion.

/paste [newname] Paste the clipboard content after the cursor. If the context is not compat-

ible, the command fails. If some unrepeatable nodes were duplicate, the behavior depends

on the length of the clipboard: pasting of single member clipboard fails while in the multi-

member case, all incorrect nodes are pasted as hidden. In the singlemember case, the pasted

node can be renamed, if applicable (see the /rename command below).

/quit [!]

Quit the CML tool. This command ends the CML run, using of it is necessary only in

the case when configuration has been changed, but is not to be saved (use with the ’!’

parameter).

/rcs diff [-r rev1 [-r rev2]]

Display differences between particular revisions of the current configuration file.

/rcs lock Lock the current configuration file.

/rcs log Display the RCS log for the current configuration file.

/rcs unlock Unlock the current configuration file.

1083

APPENDIX D. KERNUN UTM REFERENCE (8)

/rcs remove revision Remove the particular revision of the current configuration file from the

RCS file.

/rename newname Rename cursor node. If the node has a name (repeatable section, variable

definition, for-loop) this command can change the name.

/save [! [filename]]

Save the configuration file to the plain file and store it then into RCS. The filename

parameter can be omitted only if some configuration file was loaded (see the /load command

above) and the same filename will be used by this command.

Before saving the file, the CML will try to verify the configuration. If this verification

fails, configuration will not be saved. This feature can be switched off by using the ’!’

parameter. However, we do not recommend to use it unless it is absolutely necessary because

the configuration may not be loadable more.

If you use C3H in the place of command argument, the CML will offer the name of the last

processed file.

/[show [{ -a | -e | -p | -P }] [{ path | . } [filter]]]

/[show [{ -a | -e }] -c]

Display the content of the node being currently edited, or the node referred by the variable

path or reference path (for the explanation of paths, see above, in Section D). The last

possible choice is showing the clipboard content which is requested by using a special option

-c.

When option -a (“all”) is used, the whole configuration tree is displayed (recursive display)

instead of a list of subnodes only.

When option -e (“expand”) is used, the expanded form of configuration tree is displayed

(including variable expansion, for-loop expansion etc.).

When option -p or -P is used, only nodes relevant to current proxy are displayed. The

lower-case form show also nodes the relevancy of which is not known.

When the last parameter is used, only nodes with given CDF type are displayed.

The command accepts a bit more complex CML paths than described above in Section D.

So called extended path can contain (besides normal tokens) also indexed tokens so that it

can point even to a repeatable item, section variable application etc. This paths are also

used by CML when referring to an error during on-line verification. Example:

CML.BILOVICE.HTTP-PROXY> /show ˆsystem ftp-proxy

ftp-proxy FTP-PROXY { ... }

ftp-proxy FTP-VIA-HTTP { ... }

CML.BILOVICE.HTTP-PROXY> /show ˆsystem.ftp-proxy[2]

ftp-proxy FTP-VIA-HTTP { ... }

1084

/undelete The last deleted node is restored.

/unhide Enable the hidden node. The cursor node marked as hidden (by the /hide command

sometimes in the past) will be enabled. During this operation, validity of the node occurrence

is checked (e.g. unhiding a repeatable section with the name equal to another section will

fail).

/verify [{ . | -> }]

Verify formal correctness of configuration. Without parameters, this command, in fact, does

the first phase of the /generate command work (see above) — expands configuration into

a temporary file and tries to read it by the low-level parser.

Warning

This command re-creates some files and directories for its purpose, so if you want to

use the configuration (e.g. by the apply in the kat tool), you must use the /generate

as the last command.

With parameters, only a part of configuration (the node currently being edited, od the node

pointed to by the cursor, respectively) is verified.

C

3

H SUPPORT

The Command Completion and Context Help support is one of the basic features of the CML. It

helps admin to write correct configuration and even guides him to solve some troubles he can get

into. The simple basic rule is: “If you don’t know what to do now, press <TAB>!”

The basic function is quite clear: C3H completes names of the CML commands of all types. In

addition, the CML shows possible structure of the configuration node being currently modified.

If the <TAB> is pressed after the first word on the line and the word is set or type name of a

repeatable section, C3H searches for all acceptable names already entered and offers their names

to complete. In the case of proxy phase 1 ACL section, the C3H offers system.acl names.

Example:

CML> <TAB>

* shared-dir <name> { ... }

* shared-file <name> { ... }

* system <name> { ... }

CML> sy<TAB>

CML> system <TAB>

<new name> BILOVICE

CML> system BILOVICE { <TAB>

admin ...;

...

CML> system BILOVICE { _

1085

APPENDIX D. KERNUN UTM REFERENCE (8)

If the <TAB> is pressed somewhere in the middle of the line, C3H tries to advise in following

cases:

• If the current value must be a keword.

• If the current value must be an enumeration member.

• If the current value must be a global section name.

• If the current value must be a parent ACL section name.

• If the current word begins with a dollar (’$’) character, all possible variables are offered. If

there already is a variable name followed by a dot (’.’), C3H tries to complete variable path

(see above, in Section D).

• If the current word begins with a single up-arrow (’ˆ’) character, all possible continuation

of reference path (see above, in Section D) is offered.

• If the current word begins with a double quote (’"’) character, filename completion is pro-

vided.

The C3H helps you also in some special circumstances:

• If you type the /EDIT command and press the <TAB>, C3H will complete command line

by the content of the node being currently under the cursor so that you can simply edit it.

• The C3H will help you to complete the (extended) CML path when using the /SHOW

command.

• The C3H will help you to complete the CDF context path when defining a section variable.

• The C3H try to help you to close an errorneous configuration directive and recover from the

error state.

Control Sequences

The End-of-file control sequence (ˆD, Control-D) can be used for quitting the CML. It works

silently only if the current configuration was not changed after the last loading/saving operation.

Otherwise it rejects the operation and the /quit ! command must be used.

The ˆR (Control-R) sequence is used for command history searching. You can type part of

some previous command (the part is displayed in the prompt) and C3H searches in the history

to the last command containing such a string. This command is then displayed on the command

line and you can tune the selection by adding more characters to the pattern, removing some

characters by the <Backspace> key or repeating the search by pressing the ˆR again. If your

selection is completed, press <Enter>, the selected command is placed into command line buffer

and you can edit it. The CML tool saves command history at the end of its work and restores it

at the beginning.

The ˆU (Control-U) sequence is used for clearing the command line.

1086

THE CML PROMPT

The CML prompts users with its own prompt. On the beginning, the text "CML> " is in the

prompt. Whenever user enter some section, item or variable definition, for-loop etc., name of

component occurs at the end of the prompt. Example:

CML> system BILOVICE {

CML.BILOVICE> routes {

CML.BILOVICE.routes> set VAR {

CML.BILOVICE.routes.set[VAR]> #{

CML.BILOVICE.routes.set[VAR].#> #}

CML.BILOVICE.routes.set[VAR]> }}}

CML>

If the configuration is in not a well defined state, a special appendix to the prompt occurs.

The appendices are:

[FAIL] Last operation failed, currently edited configuration directive will be later deleted, it is

time to immediately end it (you can try to let the C3H to advise you proper break-thru —

press the <TAB> and <Enter> keys).

[OPEN] Grammar parser is awaiting for the opening brace, type "{".

[NAME] Variable name is expected (in the for-loop or variable setting).

[TYPE] Variable type name (an equal sign or CDF context) is expected.

[LIST] For-looop iteration list is expected.

If the prompt is too long (the path is too deep), the path displayed in the prompt is stripped

from the left.

THE CML SEMANTICS

There are several configuration directives having a special meaning in the CML.

VERSION, ORIGIN and CML-ID Tags

The CML adds a special directive version to each saved configuration so that newer versions of

the software can indicate potential problems with understanding of an old configuration. This tag

cannot be entered by user and is invisible for him/her.

Another hidden directive cml-id keeps the current RCS version of the configuration for easier

detection of problems caused by some configuration changes done by the admin.

Also, the origin directive keeps track for the time and host name of configuration creation.

1087

APPENDIX D. KERNUN UTM REFERENCE (8)

Shared Files and Directories

On the global configuration level, two kinds of sections concerning shared files (across the whole

CML) can be defined. Both of them specify files/directories which primarily resides on the com-

puter where the CML is run. During generation process, all the files are copied to the output tree.

Sections shared-file and shared-dir are then copied to proxy configuration files, however,

paths are changed so that they are valid on the target system. Example:

shared-file MIME-SAMPLE {

path "samples/mime-types"; # path relative to the CML cfg file

}

system BILOVICE {

kernun-root "/usr/local/kernun";

ftp-proxy FTP-PROXY {

...

On the target system, the MIME sample file will be placed as

/usr/local/kernun/etc/shared/mime-types and the configuration file for the

ftp-proxy (i.e. /usr/local/kernun/etc/ftp-proxy.cfg) will contain

shared-file MIME-SAMPLE {

path "/usr/local/kernun/etc/shared/mime-types";

}

ftp-proxy FTP-PROXY {

...

Level 1 ACL

Kernun proxies use several levels of ACL to control access to their services (see access-control(7)).

Typically, the first level of ACL (called session-acl) decides according to the source and

destination addresses, transparency, time etc. All these data are common to all proxies. Higher

levels of ACL take in the count also some protocol specific information. In the CML, therefore

the first level of ACL is picked up from the proxies definition to the system one. This allows the

administrator to make general decisions and propagate them to particular proxies. At the proxy

level, some protocol specific directives can be appended to all or to concrete ACLs. Higher levels

of ACL are left fully to proxy specifications. Examples:

system BILOVICE {

acl IN-OUT {

from [1.0.0.0/8];

service { FTP-PROXY, HTTP-PROXY }; # target proxies

}

acl OUT-IN {

1088

from { ! [1.0.0.0/8]; * };

service { HTTP-PROXY }; # target proxies

}

ftp-proxy FTP-PROXY {

session-acl * { # add to all ACLs

data-port 20;

}

}

http-proxy HTTP-PROXY {

session-acl OUT-IN { # add only to named ACL

plug-to www.internal : 80;

}

}

Proxy configurations will look like:

ftp-proxy FTP-PROXY {

session-acl IN-OUT {

from [1.0.0.0/8]; # inherited from BILOVICE.IN-OUT

data-port 20; # added by FTP-PROXY.*

}

session-acl OUT-IN is not generated

}

http-proxy HTTP-PROXY {

session-acl IN-OUT {

from [1.0.0.0/8]; # inherited from BILOVICE.IN-OUT

nothing more added

}

session-acl OUT-IN {

from { ! [1.0.0.0/8]; * }; # inherited from BILOVICE.OUT-IN

plug-to www.internal : 80; # added by HTTP-PROXY.OUT-IN

}

}

GENERATED OUTPUT

Command /generate (see above Section D) creates in the configuration directory (i.e. directory

where the currently loaded the CML file resides, or the current working directory) a tree of

configuration files with root named SYSTEM-system-name. This tree is then copied into the

filesystem root onto target machine by the kat(8) apply command. Within this tree, following

files are generated:

/etc/rc.conf sources: system.hostname, system.domain,

system.interface(.alias), system.routes.default,

1089

APPENDIX D. KERNUN UTM REFERENCE (8)

system.routes.static, system.cluster.interface(.alias),

system.rc-conf

/etc/sysctl.conf sources: system.sysctl

/etc/pf.conf sources: system.packet-filter, system.pf-queue

/etc/passwd and other source: system.user and original /etc/passwd

/etc/services source: system.services

/etc/aliases source: system.admin (for root alias), original /etc/aliases

/etc/resolv.conf sources: system.domain, system.resolver,

system.use-resolver

/etc/hosts source: system.hosts-table

/etc/crontab source: system.crontab

/etc/ntp.conf source: system.ntp

/etc/sshd/sshd_NAME_config for each ssh-server section NAME

KERNUN_ROOT/etc/NAME.cfg for each proxy section NAME

KERNUN_ROOT/etc/shared/NAME for each shared-file and shared-dir section NAME

KERNUN_ROOT/etc/postfix.NAME/master.cf and main.cf for each smtp-forwarder

section NAME with agent (Postfix) and for local-mailer (if used).

KERNUN_ROOT/etc/namedb.NAME/ directory for each nameserver section NAME.

KERNUN_ROOT/etc/newsyslog.conf source: system.rotate-log and

/etc/newsyslog.conf

The KERNUN_ROOT denotes the value of the kernun-root configuration directive of the

particular system section (typically /usr/local/kernun).

ENVIRONMENT

KERNUN_LOG_FILE The file name where log messages will be redirected. If not set, system

logging is used.

SEE ALSO

Kernun: access-control(7), configuration(7), kernun(7), logging(7), kat(8)

FreeBSD: man(1), rcs(1), vi(1), editline(3)

1090

BUGS

The current version of the CML cannot process whole systems, level 1 ACLs and whole proxies

within for-loops or section variables.

1091

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

cwcatd — Clear Web automatic categorization daemon

SYNOPSIS

cwcatd [-hv] [-d dbglev] -f cfgfile

DESCRIPTION

The cwcatd daemon handles automatic categorization of WWW servers. If categories for a

requested URL are not found in the Clear Web database, the http-proxy(8) or the icap-server(8)

can optionally request automatic categorization of the URL. These requests are appended to a

queue that is processed by daemon cwcatd.

The daemon reads uncategorized URLs from the queue. For each URL, it tries to download

the referenced web page. The downloaded page is passed to an automatic categorizer, which tries

to assign categories according to a heuristic applied to the page content. If it succeeds, the result

is stored in a local database.

Future requests to a locally categorized server will get categories assigned according to the

local database. If categories of the server appear in the downloaded Clear Web database in its

periodic update, the result of the automatic local categorization will not be used any more.

OPTIONS

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

SEE ALSO

http-proxy(8) or the icap-server(8)

1092

NAME

dns-proxy, test-dns — Domain Name System (DNS) proxy

SYNOPSIS

dns-proxy [-hv] [-d dbglev] -f cfgfile

test-dns [-hv] [-d dbglev] -f cfgfile [-t test_expr]

DESCRIPTION

The dns-proxy provides proxying service for the Domain Name System (RFC 1034+1035 and

some of their extensions).

The proxy handles incoming requests in four basic modes:

Request is denied. Request is not processed at all. Administrator can choose from several ways

of request denial.

Request is faked. Request is responded without querying any other server. The faked response

is set by administrator.

Request is forwarded. Request is resent to one from group of servers defined by the adminis-

trator. This mode is typical for

• forwarding queries from host not fully connected to the internet

• forwarding queries to server hidden in private network

• forwarding zone transfers across the firewall.

Request is resolved. This is fully functional mode when the proxy tries to recursively resolve

the request form the scratch. It starts from the root servers and accepts only authoritative

answers until it gets the final authoritative answer.

The proxy is not designed as a server, neither for external queries to our domain, nor as a local

caching name server. Typical scenario is that all clients ask another server in the internal network

and this server queries the proxy (if needed) and caches the answers. That’s why the proxy does

not cache answers, there is only a small cache of name servers for internal purpose only.

The proxy behaves like a server for the client and vice versa, with full syntax and semantics

verification (see below, protection against cache-poisoning). When querying other servers, dns-

proxy uses random source port and ID (protection against reply-spoofing).

The proxy completely reconstructs answers from servers and limits the size of reply sent to

client (configurable by ptr-reply-size and adr-reply-size items). This feature protects

clients against to attack based on buggy resolver routines.

The proxy usually runs as two processes: the single child process manages all the sessions

and the parent process manages the child and restarts it after a failure. You can learn more in

1093

APPENDIX D. KERNUN UTM REFERENCE (8)

udpserver(7) manual page, although the dns-proxy does not use the udpserver library, in fact.

However, it uses the same operation logic.

Format of the proxy configuration file is described in dns-proxy.cfg(5). For the dns-proxy,

any host in configuration file must be specified by its address, not by its name.

Program test-dns tests syntax and partially semantics of configuration; for test expression

syntax, see test-expr(5).

Startup and Configuration

The proxy reads its configuration file and starts listening on specified IP sockets (address/port

couples), as specified in the listen-on configuration section (see listen-on(5)). Proxy listens for

both UDP and TCP protocols.

If support of transparent connections (see transparency(7)) is requested by item transparent

in section listen-on, the corresponding NAT redirections are established during proxy startup

and removed upon exit. However, transparent connections are in fact not supported by this proxy,

decisions about servers are made according to the proxy configuration, not by original destination.

Warning

In the case of UDP requests redirected to the proxy by more general NAT rules, the real

destination is neither being detected nor used in ACL selection.

In the resolve mode, the proxy checks each address being stored into cache whether it matches

to one of addresses, the proxy listens on. If it does, the record is not stored, so that this does not

lead to infinite loop. For this reason, listening addresses (for port 53) must be specified explicitly,

expression [0.0.0.0]:53 is not allowed.

DNS Subset

Current version of the dns-proxy implements following subset of protocol:

OPCODE s

QUERY RFC 1035

NOTIFY RFC 1996

Requests with unimplemented OPCODEs are replied with the NotImp response code. Re-

quests with unknown OPCODEs are replied with the FormErr response code.

CLASSes

IN RFC 1035

* RFC 1035

Requests with query resource record (RR) of unimplemented CLASS are replied with the

NotImp response code, unknown classes cause the FormErr response code. The ’*’ requests are

converted to IN, resolved and then sent to the client with authority flag set to 0.

TYPE s

A RFC 1035

AAAA RFC 3596

1094

AFSDB RFC 1183

AXFR RFC 1035

CNAME RFC 1035

DNSKEY RFC 4034

DS RFC 4034

HINFO RFC 1035

IXFR RFC 1995

MX RFC 1035

NS RFC 1035

NSEC RFC 4034

NSEC3 RFC 5155

NSEC3PARAM RFC 5155

OPT RFC 6891

PTR RFC 1035

RRSIG RFC 4034

SOA RFC 1035

SPF RFC 4408

SRV RFC 2782

SSHFP RFC 4255

TXT RFC 1035

* RFC 1035

Requests with query RR of unimplemented TYPE are by default replied with the NotImp

response code. This behavior can be changed in the configuration (ACL settings). Requests to

unknown TYPE are replied with the FormErr response code.

Requests

Every request is stored into a table item containing all necessary information. Size of this table

must be specified in configuration (requests-table-size item) and it is recommended to

reserve a little more items then estimated number of parallel requests. Some requests processed

in resolve mode can generate so called internal requests (see below) that occupy table items, too.

Besides number of requests, number of simultaneously opened sockets is monitored. The

maximum of sockets must be specified in the configuration (sockets-table-size item).

There are two kinds of internal requests:

CACHE requests If the proxy is to ask some server, address of which is not in the cache, it

generates an internal requests with A and AAAA query for the name of the server. This

request is handled in the same way as the original query with the exception that the result

is stored in the cache.

Choosing just IPv4 or IPv6 protocol when querying servers can be done by the

server-proto item. The default is using both of them, or using just the IPv4 when no

system interface has an IPv6 address defined.

1095

APPENDIX D. KERNUN UTM REFERENCE (8)

CNAME requests If the answer got from a server contains CNAME RR and no (trusted) RR for

the canonical name, proxy generates an internal request with the same query RR type and

query name equal to the canonical name received. This request is handled in the same way

as the original query with the exception that the result is added to the previously received

RRs. If the internal request fails to complete the resolution, the original request is replied

by the ServFail response code.

Both types of internal requests suspend processing of the original request (originator) until the

internal request is completed. If another request is to generate a new internal request of the same

subject as another running one, no new internal request is created and the originator is suspended

waiting for the first internal request, too. After (successful or unsuccessful) completion of internal

request, all originators are waked up.

Similar principle is used also for client requests. If a request with the same parameters (query

name, query type, EDNS UDP payload etc.) is already being processed, new request is also

suspended, waiting for the result of the previous request.

Both types of internal requests can also generate new internal requests. For instance, in

following definition:

domain1 IN NS ns.domain2

domain2 IN NS ns.domain3

a request to the domain1 will generate request to the ns.domain2 name and solution of this

will result to a new CACHE request to ns.domain3. Proxy detects an infinite loop, if occurs.

Proxy also limits number of internal requests generated by one internal request in the row (item

internal-request-depth) to prevent DoS attack by means of non-infinite but very long loop

of references.

Both types of internal requests respect the resolving policy according to the query name and

type given by the configuration. For every new request, the request-acl list (see below) is

searched through and the new ACL defines operation to be used.

If no free request table item is available,

• incoming UDP requests are replied with the ServFail response code

• incoming TCP requests are rejected by closing the connection

• internal requests of any type fail and these failures are propagated to all originators.

Access Control Lists

The proxy uses two layers of ACL (see access-control(7)) named session-acl and

request-acl.

When a request arrives, configuration is consulted, proper session-acl is selected and ac-

cording to it, request is served or not.

Subsequently, protocol-specific parameters of query is checked against set of request-acl

entry conditions and proper mode of operation is selected.

1096

Additionally to the general Kernun ACL concept, request-acl brings new entry condition

items:

query-name This item contains a set of regular expressions and/or strings describing names,

querying for which is to be dealt by this request-acl. When using the regexp form, you

have to respect the dot placed to the end of every name before request processing. The

queried name matches a member of the set if

• matches the regexp (regexp case) or

• is part of the domain (string case).

Examples:

• Regular expression /ˆ[ˆ.]*\.tns\.cz\.$/ matches queries to all hosts in the do-

main tns.cz.

• String kernun.com matches e.g. queries to www.cz.kernun.com, or kernun.com,

but not kernun.com.cz.

request-type This item can define subset of DNS operation codes and RR types that is to be

dealt by this request-acl.

By these two items, a detail selection of request-acl can be done to set special handling

for different tasks like regular queries, zone transfers, server notifications etc.

If no matching ACL is found, request is replied by the Refused response code. If ACL is

found, query type and class are checked. Requests with classes other than IN and * (ANY class)

are rejected with response code NotImp.

As we stated above, there are several possible proxy operations. The proxy decides among

them by matching query RR type against a set of special request-acl items query/notify.

The first matching item is used and the operation is executed. If no proper item is found, request

is rejected with the Refused response code.

In case of resolve and forward operations, request is resent (with a new, random ID) to a

new server. The set of possible responders is defined in a global section of ns-list type. Each

received reply RR is then checked against a set of special ACL items called reply in the same

manner as queried RR is checked. The reply items can tune handling of particular RR (permit,

remove), so as even predefine reaction to the whole request (abort, deny). If no proper reply

item is found, request is rejected with the Refused response code. If permit action is required

for non-implemented RR, record is removed.

After filtering the response from server, other proper RRs (given by special fake items) can

be added to the answer. The same set of items is used for reply construction in case of fake

operation. Fake RRs are placed into the answer in the order of appearance in the configuration.

After completing all answer RRs, reply is completely reconstructed and sent to the client. The

resolved requests will have the authority (AA) flag cleared while for the forwarded requests, the

admin can choose whether to preserve or clear the flag (see the request-acl.query.clear-aa

definition in dns-proxy(5)).

1097

APPENDIX D. KERNUN UTM REFERENCE (8)

If the response has the NXDomain response code, or the NoError response code with no

answer (AN) records, and if this status was caused by the proxy (e.g. due to denying query or

filtering response), the proxy will add, by default, a SOA record with proper TTL for successful

negative caching in clients. This behavior can be configured by the neg-resp-ttl item of the

particular request-acl.

Warning

If the authoritative answer in resolve operation is not available, request is replied with the

ServFail response code. There are some situations where this approach is not applicable.

For instance, queries to mail-abuse.org domain end by non-authoritative answer. We

recommend using a special request-acl for this case, forwarding requests of this type

directly to proper name servers.

Syntax and Semantics Verification

Besides Security Policy application, the proxy checks both queries and replies to correctness in

sense of relevant RFCs.

Names

Names can be at most 254 bytes long, every label can be at most 63 bytes long. Labels can contain

only alphanumerical characters and a hyphen (’-’). We allow also underscore (’_’) and slash (’/’)

because they are commonly used.

Consistency

Request ID of the answer is checked to be equal to the ID of query. Query (QD) section of the

answer is checked to be equal to the query. Every answer (AN) RR must be relevant to the query

or to the previous RR. Every authority (NS) RR must be relevant to the query or to the canonical

name of some AN RR. Every additional (AR) RR must be relevant to some AN or NS RR.

Trust

Every server is introduced into the cache as an authoritative name server for some domain. So,

all answer RRs received from this server are trusted only if they belong to this domain or some

subdomain. This criteria may cause an infinite loop when two or more domains refer each other

without having any regular glue record (i.e. nameserver in own domain or a subdomain). If you

need to accept such a domain, you must make an ACL for this domain forwarding requests directly

to proper nameservers.

Cache

Name server cache is used for increased efficiency, namely for repeated queries to the same domain

(TLDs, resending query via TCP, resolution of CNAMEs etc.). “Root servers” for different network

1098

zones are defined in ns-list configuration sections, each zone has a separated cache “zone” named

by the name of ns-list section. All other name servers and their addresses are introduced to the

cache as a result of authoritative answers. “Authoritative” server (in sense of dns-proxy) is either

a root server or a server delegated by some “authoritative” server for a parent domain (already

being in the cache). All new RRs are used with respect of their time to live (TTL) value. When

the minimal of TTLs of name servers (both their NS and address records) for a domain expires,

the domain item is unusable and it is removed from the cache at nearest cleanup. Similarly, when

the minimal of TTLs of addresses for a host expires, the host item is unusable and it is removed

from the cache at nearest cleanup.

Some properties of the cache are configurable in a special cache section:

cleanup-period sets the period (in seconds) of cache cleaning up. After the period, all items

that were not used within the period and all expired items are removed.

max-domains sets the maximum number of domains (not individual NS RRs) stored in the

cache. This value should be at least as large as requests-table-size.

max-hosts sets the maximum number of hosts (not individual address RRs) stored in the cache.

This value should be at least approximately five times larger than requests-table-size.

If any maximum is reached, a non-periodical cleanup is started. This cleanup removes all items

currently not used.

Server Selection Algorithm

When a domain name is to be resolved, the longest match search in the cache is done. After it,

the new best server for the domain found is chosen. Server comparison criteria:

1. Resolved, but never contacted servers.

2. Unresolved servers, never tried to be resolved.

3. Responding servers (sorted by response time rounded to entire seconds).

4. Non-resolved or non-responding servers (sorted by time of the last attempt).

This algorithm guarantees a primitive "load balancing" and error recovery of multiple servers.

When querying for an EDNS request, the EDNS servers have priority. If a server responds

FormErr to an EDNS query, the non-EDNS query is repeated immediately.

First of all, the selected server is queried with a very short (1 sec.) timeout. When this timeout

fires, the query is simply repeated to avoid errors caused by loosing UDP packets.

Then the queried server has a longer timeout for the response. Each server has its own timeout

stored in the cache. Starting value of this timeout is set by query-timeout configuration

directive. Each time the server does not respond within the timeout, the timeout doubles, up

to server-dead value. When the timeout reaches this value, server is marked as “dead” and

a new attempt to contact it cannot be done until server-retry seconds period. If the server

responds within the timeout, his timeout for the next attempt is set to his response time plus

query-timeout.

1099

APPENDIX D. KERNUN UTM REFERENCE (8)

The number of attempts per one query is hardcoded to eight (regardless of which servers were

queried). However, typically this number is not reached before firing the request-timeout (see

below).

The same mechanism is used for selection among forwarders. That’s why forwarders lists are

also stored in the cache (every list in its separated zone).

The timeout for the whole request processing (including resolving of generated internal requests

etc.) is also set in the configuration (request-timeout) and if reached, request is replied with

the ServFail response code.

Zone Transfers

Zone transfers need some more special handling. First of all, the requests are typically addressed

by originators directly to a conrete server. That’s why either the transparent mode (if public

addresses are used), or non-transparent mode to a dedicated address/port on firewall (in the case

of server on a private address) should be used. Also, besides QUERY operation, the NOTIFY

operation should be permitted.

Moreover, the own transfers (responses to the AXFR/IXFR queries) should be sent by servers

either separated (i.e. more DNS messages with one RR in each one) or aggregated (i.e. all RRs

in one DNS message). The proxy can force one of these methods, or keep the incoming format

according to the xfr-format configuration directive.

Configuration example:

ns-list MASTER {

server ns.x.y.z [10.1.1.1];

}

ns-list SLAVE {

server sns.x.y.z [20.2.2.2];

}

...

dns-proxy ZONE-TRANSFERS {

...

request-acl TO-MASTER {

to non-transparent [20.2.2.1]; # special external fw adr

query { axfr, ixfr } forward MASTER;

...

}

request-acl TO-SLAVE {

to transparent [20.2.2.2];

notify forward SLAVE;

...

}

1100

Common Kernun Features

The proxy uses common Kernun mechanism for listening on its sockets, optionally changing

root directory and running with alternative user privileges. For more detailed information, see

application(5) and listen-on(5).

The proxy uses common Kernun mechanism for network input/output operations. Configu-

ration allows for specifying several parameters like buffer sizes and timeouts, both for client and

server connections. They can be included in client-conn and server-conn configuration

sections, respectively. For more detailed information, see netio(7).

The proxy uses common Kernun mechanism for logging. For more detailed information, see

logging(7). For every request, one REQUEST (DNSP-860-I) message is logged (besides one or two

ACL messages - DNSP-810-I and DNSP-820-I). Every log message has process ID suffix equal to

the index of request being currently processed.

The proxy, in fact, does not use common Kernun mechanism for name resolving (see

resolving(7) manual page), because it does not use DNS names at all. In spite of that, the item

use-resolver remains in the dns-proxy configuration for compatibility with other proxies

(and thus e.g. ability to use common cml(8) variables).

Signals

The dns-proxy handles following signals:

SIGUSR1 Log level increasing.

SIGUSR2 Log level decreasing.

SIGINFO Operation status logging; parent process logs info about all children, child process

dumps cache content and requests table content.

SIGHUP, SIGINT, SIGQUIT, SIGTERM Immediate termination; proxy immediately closes all

connections and terminates.

Program options

The program options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-t test-expr Test configuration according to given expression. Format of the test-expr is

described in test-expr(5).

1101

APPENDIX D. KERNUN UTM REFERENCE (8)

BUGS

Currently, the dns-proxy doesn’t implement following features:

• more queries (QD RRs) in one request

• wildcard (’*’) queries.

SEE ALSO

Kernun: dns-proxy.cfg(5), listen-on(5), application(5), test-expr(5), DNSP-810(6),

DNSP-820(6), DNSP-860(6), access-control(7), configuration(7), logging(7), netio(7),

resolving(7), transparency(7), udpserver(7)

FreeBSD: named(8)

1102

NAME

ftp-proxy, test-ftp — File Transfer Protocol (FTP) proxy

SYNOPSIS

ftp-proxy [-hv] [-d dbglev] -f cfgfile

test-ftp [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The ftp-proxy provides proxying service for the File Transfer Protocol (RFC 959) and its exten-

sions. For crucial commands, it behaves like a server for the client and vice versa, with full syntax

and semantics verification, commands not impacting session state are only recognized and simply

forwarded to server.

Proxy reads its configuration file and starts listening on specified IP sockets (address/port

couples), as specified in the listen-on configuration section (see listen-on(5)).

Format of the configuration file is described in ftp-proxy.cfg(5).

Program test-ftp tests syntax and partially semantics of the configuration; for test expression

syntax, see test-expr(5).

Access Control Lists

FTP-proxy uses three layers ACL (see access-control(7)), namely session-acls,

command-acls and doc-acls.

session-acl

When a connection arrives, configuration is consulted, proper session-acl is selected and ac-

cording to it, connection is allowed or not.

When a transparent connection arrives (i.e., a connection destined for a real server, transpar-

ently redirected to the proxy by PF, see transparency(7) for details), the proxy will connect to

the original destination server.

When a non-transparent connection arrives (i.e., a connection destined directly for one of the

sockets the proxy is listening on) and is allowed by policy, either the proxy must be configured to

connect to a specific remote server with the plug-to configuration directive (see below) or user

must specify remote server (see below).

If a plug-to directive is used for a transparent connection, it has precedence over the original

destination. This means that the proxy will ignore the original destination and connect to the

plug-to server, instead.

Another possible operation mode is to forward all FTP traffic to another proxy in chain. In

this case, name or address of this hand-off proxy must be specified in configuration together

with a method used to introduce the remote server to the hand-off proxy. The current version

of Kernun ftp-proxy can use all methods that it understands, i.e.

1103

APPENDIX D. KERNUN UTM REFERENCE (8)

• appending server name to the first USER command

• using SITE command (or aliases of it).

Firewall administrator can choose any method described in auth(7) (except for NTLM) for

authenticating users on the proxy. If the method requires sending of proxy-username and proxy-

password, the client can use several methods of combination of USER and PASS commands (see

below).

command-acl

After successful proxy-authentication, proxy attempts to find a command-acl acceptable for this

session. When found, access is either denied or granted and ACL restrictions are applied. Then,

connection to the remote server (or hand-off proxy) is made and normal FTP operation starts.

At this point, the so called “initialization phase” is finished. Firewall administrator can limit, for

how long this phase can last at maximum, measured both in seconds and in number of commands.

ACL search is then repeated for each incoming user command.

There are three FTP specific restrictions in command-acl:

enable-port This item specifies that user can request connection to any port, not only to

standard FTP port (21).

command Set of these items specify restrictions for the FTP Protocol commands

(permitting/denying or data-transfer size limits). By default, all commands are denied. If

you use restrictive policy, be careful when allowing commands — some of them are used in

groups (e.g. PASV+RETR, RNFR+RNTO etc.).

feature Set of these items specify restrictions for the FTP Protocol extensions. When the proxy

forwards server reply to the FEAT command, all options are compared to the set of these

items and proper filtration is applied. The options unimplemented in the proxy are denied

and cannot be permited. Other options can be permited and/or denied, the default proxy

behavior is passing all known and removing all unknown ones.

doc-acl

When a data transfer (downloading or uploading a file), is initiated the list of doc-acls are

searched. Among standard layer 3 conditions, the foolowing should be used: direction

(incoming or outgoing data), size and mime-type. For the MIME type identification (see

doctype-identification(7)), only filename extension and magic number recognition should be used

in FTP. In adition, a FTP specific condition, the filename — matching the file name (without

path) can be applied.

Warning

Be careful when using both filename and mime-type entry conditions. As they are two

different item types, they are checked in conjunction, so the file must match both of them

to match the ACL.

1104

A doc-acl controls how the proxy handles the data. In addition to standard ACL actions

accept and deny, additional processing may be configured:

antivirus Specifies parameters and actions for checking data for viruses.

html-filter Specifies parameters for filtration of HTML documents. Details about HTML

filter configuration can be found in mod-html-filter(5).

Data Transfers

For data connections, proxy uses the same transfer initiation method as the client, by default.

If client uses active method, proxy uses PORT command, if client uses passive method, proxy

tries EPSV command and if it is rejected, PASV command. Forcing of active/passive method

for particular servers can be specified by data-transfer configuration directive. When con-

necting to a server, it is checked against all data-transfer lists (using MATCH-ANY style, see

host-matching(7) for details) and if it matches, proper data transfer method is used.

If client uses active data transfer, the proxy binds generic source-port for the data connection,

unless another port is forced by data-port configuration directive. Under normal circumstances,

the proxy runs under non-root user and cannot use reserved data ports (0..1023) this way.

User can choose data transfer method used from proxy to server by Kernun specific FTP

command BNB (see below).

If the proxy executes the antivirus check, it must receive the whole file content before sending

any data to destination. It can cause problems with some timeouts on peers. In such situations,

the admin can decide to use the antivirus keepalive feature (see antivirus(5)). In this case, proxy

sends some data to destination before it completes antivirus checking and (if a virus is found)

aborts the file transfer. However, on the destination side, an invalid fragment of transferred file

will occur.

Common Kernun Features

The proxy uses common Kernun mechanism for listening on its sockets, forking new processes as

needed and killing old redundant processes, optionally changing root directory and running with

alternative user privileges. For more detailed information, see application(5) and tcpserver(7).

The proxy uses common Kernun mechanism for network input/output operations. Configu-

ration allows for specifying several parameters like buffer sizes and timeouts, both for client and

server connections. They can be included in client-conn and server-conn configuration

sections, respectively. For more detailed information, see netio(7).

The proxy uses common Kernun mechanism for logging (see logging(7)). For every session, a

couple of SESSION-START (FTPP-808-I) and SESSION-END (FTPP-809-I) messages is logged

(besides one or two ACL messages - FTPS-810-I and FTPS-820-I). For every data transfer,

two DATA-INIT (FTPT-880-I) and one summarization DATA-END (FTPT-890-I) messages are

logged.

The proxy uses common Kernun mechanism for name resolving (see resolving(7)).

The proxy uses common Kernun mechanism for runtime monitoring. For more detailed infor-

mation, see monitoring(7).

1105

APPENDIX D. KERNUN UTM REFERENCE (8)

The proxy uses common Kernun mechanism for traffic shaping. For more detailed information,

see traffic-shaping(7).

Program Options

The program options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debug level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

KERNUN SPECIFIC COMMANDS

Kernun FTP Proxy recognizes several specific commands during session initialization and one

special command within FTP Protocol (’BNB’) for setting some options during normal operation.

Transparent/plug-to Case, No Authentication

In this case, no initialization commands are needed, because the proxy knows the targer server

either from socket destination IP address (see transparency(7)) or from configuration plug-to

directive (see ftp-proxy.cfg(5)).

Non-transparent/plug-to Case, No Authentication

In this case, the proxy must get to know name or address of the target server. The client can

specify it by two ways:

a) SITE server [port]

This command must be used as the first one in session. The proxy tries to connect to the given

server and port and if succeeds, the initialization phase is completed.

b) USER remote-user@server[:port]

or

1106

USER remote-user@server [port]

or

USER server!remote-user [port]

This command must be used as the first one in session. Proxy tries to connect to given server and

port and to apply a new USER command with the given user name to this server. If it succeeds,

the initialization phase is completed.

In both cases, the server can be specified by a host name or by an IP address, port can be

specified by a number or as a Well-Known Service (WKS, see /etc/services file and services(5)

system manual page).

Transparent/Plug-to Case, with Authentication

In this case, the proxy must get to know the name of proxy user. The client can specify it by two

ways:

a) USER proxy-user

PASS proxy-pasw

These commands must be used as the first ones in session. If the proxy receives the first USER

command with argument containing no ’@’s, it handles this command as proxy-authentication

command and expectsPASS command with proxy-user password. After successful authentication,

proxy tries to connect to target server and if succeeds, the initialization phase is completed.

b) USER proxy-user@remote-user

PASS proxy-pasw@remote-pasw

These commands must be used as the first ones in session. The proxy remembers both user names

and expects the PASS command. Then tries to authenticate the proxy-user and after connecting

to the target server applies both USER and PASS commands for the remote user, too. If it

succeeds, the initialization phase is completed.

Warning

For this case, the proxy-user password must not contain the ’@’ character.

Non-transparent, non plug-to Case, with Authentication

In this case, the proxy must get to know both the target server and the proxy-user name/password.

The client can specify it by many ways resulting as combination of methods described in the last

two sections, e.g.:

1107

APPENDIX D. KERNUN UTM REFERENCE (8)

a) USER proxy-user@remote-user@server[:port]

PASS proxy-pasw@remote-pasw

b) SITE server [port]

USER proxy-user@remote-user

PASS proxy-pasw@remote-pasw

c) USER proxy-user

PASS proxy-pasw

USER remote-user@server[:port]

d) SITE server [port]

USER proxy-user

PASS proxy-pasw

e) USER proxy-user

PASS proxy-pasw

SITE server [port]

BNB Command

BNB Command is intended to allow communication with the proxy not only during the initial-

ization phase, but within whole session. In current version, the communication language and data

transfer mode (active/passive) to server can be set using this command. Quick help on this com-

mand is available by using ’BNB HELP’ command. This command should be send from regular

ftp client by using the QUOTE command (see ftp(1) for details).

HTFTP Mode

The ftp-proxy is able to cooperate with the http-proxy. If an HTTP request with ftp:

scheme is received by the http-proxy, it is forwarded to the ftp-proxy according to the item

ftp-proxy in http-proxy configuration. Then the ftp-proxy handles the request using FTP

and returns the result back to the http-proxy. A Kernun-specific protocol called HTFTP is

used for communication between the two proxies. If the ftp-proxy should cooperate with the

http-proxy, it is necessary to set htftp-mode in one of its session-acls. Any connection

matching this session-acl is handled in HTFTP mode while other connections use normal

FTP. A typical configuration reserves a single non-transparent listening port accessible only from

localhost for HTFTP.

Note that it is possible to configure the HTML filter and antivirus checking both in the ftp-

proxy and in the http-proxy. Since double-checking the same data is redundant, it is recom-

mended to configure filtration and antivirus checking in only one proxy for data passing through

both proxies via HTFTP.

1108

BUGS

Currently, the ftp-proxy doesn’t implement RFC 1639 (LPSV and LPRT commands) and RFC

2228 (Authentication).

SEE ALSO

Kernun: antivirus(5), application(5), ftp-proxy.cfg(5), listen-on(5), mod-html-filter(5),

test-expr(5), FTPP-808(6), FTPS-810(6), FTPS-820(6), FTPP-809(6), FTPT-880(6),

FTPT-890(6), access-control(7), auth(7), configuration(7), doctype-identification(7),

host-matching(7), logging(7), monitoring(7), netio(7), resolving(7), tcpserver(7),

time-matching(7), traffic-shaping(7), transparency(7)

FreeBSD: ftp(1), services(5)

1109

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

gk-proxy, test-gk — H.323 Gatekeeper RAS proxy

SYNOPSIS

gk-proxy [-hv] [-d dbglev] -f cfgfile

test-gk [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The gk-proxy provides H.323 Registration, Admission and Status (RAS) proxying service. It

allows clients in local network to register at gatekeepers and to request them to manage H.323

connections.

Program test-gk tests syntax and partially semantics of the configuration; for test expression

syntax, see test-expr(5).

The gk-proxy reads its configuration file and starts receiving datagrams on UDP sockets

(address/port couples) specified by the listen-on configuration directive (see listen-on(5)). It

also maintains a list of active sessions with two connections (one from the client, the other to the

server). When a datagram arrives, the proxy checks its source and destination addresses and tries

to assign the datagram to an existing session. If a match is found, the datagram is passed to a

peer belonging to the session. If no session matches and ACL allow it, a new session is created.

Otherwise, the datagram is dropped.

The proxy usually runs as two processes (not counting the configuration resolving process - see

resolving(7)): the single child process manages all the sessions and the parent process manages

the child and restarts it after a failure, see also udpserver(7). Format of the proxy configuration

file is described in gk-proxy.cfg(5). The maximum number of concurrent active sessions is set by

the configuration directive max-sessions.

The proxy registers all clients in a special memory mapped file. Its name must be specified in

map-file configuration item. Contents of the file is used by the h323-proxy for decision about

H.323 connection destinations.

The gk-proxy uses single-phase ACLs which are checked at the moment of a session estab-

lishment. The ACL is named session-acl.

When a non-transparent session is created (i.e., a session initiated by a datagram destined

directly to one of the sockets the gk-proxy is listening on) and is allowed by policy, the proxy

must be configured to communicate to a specific remote server with the plug-to configuration

directive.

When a transparent session is created (i.e., a session initiated by a datagram destined to a real

server and transparently redirected to the gk-proxy (see transparency(7) for details), the proxy

either communicates with the destination server specified by the client or with the one defined by

the plug-to directive. If a plug-to is applicable for a transparent session, it has precedence

1110

over the original destination. This means that gk-proxy will ignore the original destination and

communicate with the plug-to server.

Common Kernun Features

The proxy uses common Kernun mechanism for name resolving (see resolving(7)).

The proxy uses common Kernun mechanism for logging (see logging(7)). When a RAS request

comes to the proxy, the SESSION-START (MMCG-810-I) and the ACL (MMCG-821-I) messages

are logged. If the request is accepted, a new ID is assigned to it and the SESSION-INIT (MMCG-

811-I) message is logged. After end of processing the set of requests from/for the client, the

SESSION-END (MMCG-812-I) message is logged.

The proxy uses common Kernun mechanism for traffic shaping. For more detailed information,

see traffic-shaping(7).

The proxy uses common Kernun mechanism for policy decisions about received and sent data-

grams. It is described in access-control(7) and host-matching(7). For example, it is possible for

gk-proxy to use the real client’s address or any specified address as source address for datagrams

forwarded to a server.

Special Configuration Topics

The gk-proxy adds many configuration directives to the session-acl:

register Type of client registration. For details, see h323-proxy(8).

h323-address Address to which announced H.323 sessions are redirected. For details, see

h323-proxy(8).

h323-session-timeout Timeout to establish the H.323 session. After receiving an ARQ or

ACF packet, the gk-proxy builds the NAT rule so that the following H.323 session will reach

running h323-proxy. This rule must be deleted by the originator — gk-proxy. However,

the gk-proxy has no information about success or failure of the H.323 session establishing.

That’s why there is a timeout to delete the rule. If the client starts the H.323 session within

the timeout, deleting the rule will not affect the session. Otherwise, the H.323 session will

not succeed. If there are problems with establishing H.323 sessions in your network, increase

this timeout.

timeout.session The session will be terminated if this number of seconds elapse since the

session establishment.

timeout.in Timeout for datagrams from the server. If so many seconds elapse without receiving

a datagram from the server, the session will be terminated.

timeout.out Timeout for datagrams from the client. If so many seconds elapse without receiv-

ing a datagram from the client, the session will be terminated.

timeout.both Timeout for datagrams regardless their direction. If no datagram belonging to

a session is received for so long time period, the session will be terminated.

1111

APPENDIX D. KERNUN UTM REFERENCE (8)

Program options

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

SEE ALSO

gk-proxy.cfg(5), listen-on(5), application(5), test-expr(5), MMCG-810(6), MMCG-811(6),

MMCG-812(6), MMCG-821(6), access-control(7), configuration(7), host-matching(7), logging(7),

netio(7), resolving(7), time-matching(7), traffic-shaping(7), transparency(7), udpserver(7),

h323-proxy(8)

1112

NAME

h323-proxy, test-h323 — H.323 Protocol Family proxy

SYNOPSIS

h323-proxy [-hv] [-d dbglev] -f cfgfile

test-h323 [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The h323-proxy provides proxying service for the set of multimedia communication protocols

called H.323 protocols. Current version covers many popular applications like Voice-over-IP

(VOIP), Microsoft Netmeeting or GnomeMeeting. Proxy handles protocol extensions like H.245

tunneling or Fast Start processing and can co-operate with the gk-proxy(8) — proxying clients’

registration requests to gatekeepers. Proxy controls H.225 and H.245 sessions and manages logical

data channels opened according to H.245 commands.

Program test-h323 tests syntax and partially semantics of the configuration; for test expres-

sion syntax, see test-expr(5).

Proxy reads its configuration file and starts listening on specified IP sockets (address/port

couples), as specified in the listen-on configuration section (see listen-on(5)).

Format of the configuration file is described in h323-proxy.cfg(5).

Access Control Lists

The h323-proxy uses only single layer ACL (see access-control(7)) called session-acl.

When a connection arrives, configuration is consulted, proper session-acl is selected and

according to it, connection is allowed or not.

When a transparent connection arrives (i.e., a connection destined for another server is trans-

parently redirected to h323-proxy — see transparency(7) for details), the proxy will connect to

the original destination server.

When a non-transparent connection arrives (i.e., a connection destined directly for one of the

sockets h323-proxy is listening on) and is allowed by policy, either the proxy must be configured

to connect to a specific remote server by the plug-to configuration directive (see below) or the

caller must identify destination in H.245 Setup packet.

If a plug-to directive is used for a transparent connection, it has precedence over the original

destination. This means that h323-proxy will ignore the original destination and connect to the

plug-to server.

Common Kernun Features

The proxy uses common Kernun mechanism for listening on its sockets, forking new processes as

needed and killing old redundant processes, optionally changing root directory and running with

1113

APPENDIX D. KERNUN UTM REFERENCE (8)

alternative user privileges. For more detailed information, see application(5) and tcpserver(7).

The proxy uses common Kernun mechanism for network input/output operations. Config-

uration allows for specifying several parameters like buffer sizes and timeouts, for client and

server connections and multimedia data channels. They can be included in client-ctrl,

server-ctrl and data-channel configuration sections, respectively. For more detailed in-

formation, see netio(7).

The proxy uses common Kernun mechanism for name resolving (see resolving(7)).

The proxy uses common Kernun mechanism for logging (see logging(7)). When a connection

comes to the proxy, the SESSION-START (MMCP-808-I) and the ACL (MMCP-810-I) mes-

sages are logged. After successfull decision about the server being connected, the SESSION-INIT

(MMCC-808-I) message is logged. After closing the session, the SESSION-END (MMCP-809-I)

message is logged.

The proxy uses common Kernun mechanism for traffic shaping. For more detailed information,

see traffic-shaping(7).

Program Options

The program options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debug level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

GATEKEEPER MODES

Kernun H.323 Proxy supports two modes how clients can use gatekeepers. In both cases, the

gk-proxy(8) must be run and two special configuration items must be set:

map-file Specifies the name of the file, where gk-proxy stores information about registered

clients.

client-block Specifies what address and port block is to be used for incoming connections.

The proxy must listen on the port specified and all other ports from consequent block of

given size are redirected by the proxy by means of NAT.

Open gatekeeper mode

In this case, clients use a gatekeeper without authentication and the gk-proxy can modify content

of RAS packets so that instead of clients’ private addresses only firewall’s public address appears

on the net. The gk-proxy uses for each client separate port from the dedicated block and the

h323-proxy must manage NAT rules for these ports. This is the meaning of the client-block

1114

configuration item. Address must be set identically in both proxies and size defined for h323-

proxy must be at least as large as gk-proxy connection table size. Additionally, the h323-proxy

must listen also on one special port, to which gk-proxy redirects sessions requested by local clients

and destined to outside world.

Example:

gk-proxy open-gk {

listen-on {

transparent fw-int : 1719;

}

udpserver { max-sessions 10; }

map-file "/tmp/ras.yp";

session-acl open-gk {

to transparent open-gk.abc.com;

register fw-ext : 40000;

h323-address loopback : 3420;

}

}

h323-proxy mm-proxy {

listen-on {

non-transparent loopback : 3420;

non-transparent fw-ext : 40000;

}

map-file "/tmp/ras.yp";

client-block fw-ext : 40000 10;

session-acl outgoing {

from [192.168.0.0/16];

to transparent *;

}

session-acl gk-served {

to non-transparent *;

source-address client;

}

}

Authenticated gatekeeper mode

When clients use a gatekeeper with authentication the gk-proxy cannot modify content of RAS

packets because authentication would fail. That’s why it uses client mode of registration (unfortu-

1115

APPENDIX D. KERNUN UTM REFERENCE (8)

nately, private addresses occur on the net). In this case, an H.323 connection is always initiated by

local client, so only the h323-proxy special port is needed, to which the gk-proxy redirects (by

means of NAT) all connections. That’s the reason for apparent discrepancy between listen-on

(non-transparent) and session-acl (transparent) directives.

Example:

gk-proxy auth-gk {

listen-on {

transparent fw-int : 1719;

}

udpserver { max-sessions 10; }

map-file "/tmp/ras.yp";

session-acl auth-gk {

to transparent auth-gk.abc.com;

register client;

h323-address loopback : 3420;

}

}

h323-proxy mm-proxy {

listen-on {

non-transparent loopback : 3420;

}

session-acl outgoing {

from [192.168.0.0/16];

to transparent *;

}

}

SEE ALSO

h323-proxy.cfg(5), gk-proxy.cfg(5), listen-on(5), application(5), test-expr(5), MMCP-808(6),

MMCP-810(6), MMCC-808(6), MMCP-809(6), access-control(7), configuration(7),

host-matching(7), logging(7), netio(7), resolving(7), tcpserver(7), time-matching(7),

traffic-shaping(7), transparency(7), gk-proxy(8)

1116

NAME

http-proxy, test-http — HyperText Transfer Protocol (HTTP) proxy

SYNOPSIS

http-proxy [-hv] [-d dbglev] -f cfgfile

test-http [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

Program http-proxy is the proxy daemon for HyperText Transfer Protocol (RFCs 1945, 2616).

It supports HTTP versions 0.9, 1.0, and 1.1 clients and HTTP 1.0 and 1.1 servers. The proxy

supports secure communication via SSL/TLS protocols, see ssl(5).

Startup and Configuration

The proxy reads its configuration and starts listening on TCP sockets (address/port couples) spec-

ified by listen-on configuration section, see listen-on(5). If support of transparent connections

(i.e., connections made directly to a HTTP server and redirected to the proxy by IP Filter as

described in transparency(7)) is requested by item transparent in section listen-on, the

corresponding NAT redirections are established during proxy startup and removed upon exit.

Format of the configuration file is described in http-proxy.cfg(5). General syntax of Kernun

configuration files is explained in configuration(7). Program test-http tests syntax and partially

semantics of configuration; for test expression syntax, see test-expr(5).

Access Control

Http-proxy uses three-phase ACLs, see access-control(7). The first phase, session-acl is

checked once for each client connection. It permits or denies client access and sets some connection

parameters. The second phase, request-acl is checked for each HTTP request after the request

headers are received from the client, but before anything is sent to the server. It decides about

permitting/denying the request and it can also set some request parameters. Note that there can

be several requests per connection if persistent connections are used. The third phase, doc-acl

is checked for each HTTP request after the response headers are received from the server, but

before the response is sent to the client.

Connection Establishment

When a connection from an HTTP client arrives, the configuration is searched for a matching

session-acl. If the ACL says that the connection should be denied or there is no matching

ACL, the proxy does not communicate with the client and closes the connection immediately. In

addition to the generic ACL conditions and actions described in access-control(7), some Http-

proxy-specific conditions and parameters can be set.

1117

APPENDIX D. KERNUN UTM REFERENCE (8)

If the proxy sends a response to the client, but the client is still sending some data, it may

be necessary not to close the read side of the connection for some time (see RFC2616 sect. 10.4

for details). Configuration item linger-time sets the time which the proxy should wait before

closing the read side of the client connection.

It is possible to set idle timeouts for request and response by item idle-timeout. If no data

are received from the client or the server for more than idle-timeout seconds, the request fails.

Items client-keepalive and server-keepalive define whether persistent connections

are to be used on the client and server sides of the proxy. It is possible to limit the number of

requests per connection or to disable persistent connections entirely. Timeouts for closing an idle

connection can be set too.

The language used by the proxy in error messages sent to the client is defined by item

language.

It is possible to forward all requests to some other proxy instead of sending them directly to

origin servers. The next-hop proxy is set by hand-off.

Item ssl switches on SSL/TLS on the client connection and sets various SSL/TLS parameters.

If the connection from the client uses SSL/TLS, item client-cert-match defines the acceptable

client certificates. If the client certificate does not pass the test, SSL/TLS connection establishment

fails and the connection is closed.

When http-proxy is used as an authentication proxy for accessing protected HTTP servers,

parameters of the client authentication are set by item aproxy.

Request Processing

For each request from the client, the proxy reads the request line and headers. Then it finds the

appropriate request-acl. If the ACL says that the request should be denied, the user should

authorize, or there is no matching ACL, the proxy sends back a reply informing the user that

the request has been denied. In addition to the generic ACL conditions and actions described in

access-control(7), many Http-proxy-specific conditions and parameters can be set.

Items request-uri, request-method, request-scheme, request-path, and

request-version match values from the first line of the request. Note that the server

hostname and port is matched by the standard ACL condition server. In a non-transparent

proxy, the server hostname and port for matching both request-uri and server are taken

from the request URI received from the client. If request-acl.host-hdr-transp is

set, the Host header is used instead. This allows a request URI without a server name in a

non-transparent request, which can occur if a request is transparently redirected differently than

by the Kernun’s own transparency. In a transparent proxy, the server hostname and port are

taken from the Host request header. If Host is missing in the request (possible in HTTP/1.0)

then the original destination IP address and port of the connection from the client is used

instead. The server address and port used for matching is also the address where the proxy

connects to. Especially, in a transparent proxy this may differ from the original destination

address used by the client. Combination of a server and an initial part of path can be matched

against a blacklist using blacklist item. The name of the blacklist database file is specified by

blacklist-db. Utilities for working with blacklists are mkblacklist(1), printblacklist(1), and

1118

resolveblacklist(1). The set of categories assigned to the request URI can be matched by item

clear-web-db.

Sometimes different settings are needed for some types of clients due to various errors and

incompatibilities in web browsers. Therefore, the value of User-Agent HTTP header may be used

for ACL matching (item user-agent).

If the client connection uses SSL/TLS, the values from the client certificate are compared

to item client-cert-match during ACL matching. An ACL with client-cert-match is

never used for plaintext HTTP connections.

If aproxy is configured in the session-acl, it is possible to use item aproxy-user in

order to match the user and the group authenticated by AProxy. If aproxy is not configured,

aproxy-user none matches.

It is possible to change the whole request URI (e.g., http://www.tns.cz/index.html). The URI

is matched with a regular expression. A matching URI can be rewritten to some other string,

as defined by item rewrite. The request processing continues with the current ACL, even if

the new URI does not satisfy the conditions of this ACL, because request-acl matching is

done only once and with the original URI. It is possible to specify a redirect permanent or

redirect temporary in a rewrite. Then the proxy will not fetch the rewritten URI, but it

will return a HTTP redirect response (status code 301 or 302) to the client.

Item plug-to changes the server address which the proxy connects to, but it does not change

the content of Host header. It is possible to change Host header (and also the server in request

URI in the case of hand-off) by http-host.

Items hand-off and language allow to overwrite the values from session-acl for a single

request.

Items file-response and program-response generate a response locally by the proxy.

Unlike the replace-response item in doc-acl described below, the proxy does not contact

the origin server and generates the response immediately. See Section D for details about the

proxy-to-program interface.

Item select-optimization influences internal handling of network communication. The

proxy repeatedly checks its client and server network connections for a possibility to read or write

data. When a connection is ready, a piece of data is sent or received. It is more efficient to try sev-

eral send or receive operations on the connections that have been ready recently before checking all

existing connections again. The number of such retries is controlled by select-optimization.

It may improve the proxy performance if set to a small positive value, for example 10.

Request and response headers may be filtered by items allow-req-hdr and

allow-resp-hdr. These items define names of headers that will be passed by the proxy. All

other headers will be deleted from the request or response. It is also possible to reject requests

with request, status, and header lines not matching items req-line-check, req-hdr-check,

status-line-check, and resp-hdr-check.

The proxy may add Via HTTP headers to requests and responses. These headers inform about

proxies which the request or response passed through. It may be useful to track problems with

a proxy, but sometimes the administrator wants to hide information that the proxy is present.

Hence the use of Via headers may be configured by items request-via and response-via.

Item request-time places an upper limit on the request handling time. It eliminates stuck

1119

APPENDIX D. KERNUN UTM REFERENCE (8)

clients and servers and help against some DoS attacks.

Item auth-req causes that the proxy responds with 407 Proxy Authentication Required and

sets the authentication realm sent to the client.

Maximum amount of data transferred between the client and the server may be limited by item

max-bytes separately for each direction (client to server and server to client). Data filtration

can change the size of data significantly, therefore the limits are set separately for client and server

connections.

In some situations, e.g., when chunked transfer encoding is in use, the proxy buffers incoming

data and sends them only when the buffer is full. There are applications which require all data to

be forwarded immediately. For such situations, item flush switches buffering off.

Item ssl switches on SSL/TLS on the server connection and sets various SSL/TLS param-

eters. If the connection to the server uses SSL/TLS, item server-cert-match defines the

acceptable server certificates. If the server certificate does not pass the test, SSL/TLS connection

establishment fails and the request terminates with an error.

After request-acl is processed, the request is forwarded to a server. When the servers

answers with a status line and response headers, the proxy finds the appropriate doc-acl. In

addition to the generic ACL conditions and actions described in access-control(7), some Http-

proxy-specific conditions and parameters can be set.

Items request-scheme, request-path, and blacklist have the same meaning as in

request-acl. Item mime-type provides matching of response document content type. The

proxy provides three methods of detecting the content type: content-type (from the Content-

Type response header), extension (matching request URI suffix with information from mime-

types), and magic (guessing the type from an initial part of response data, using the same

algorithm as in the standard utility file). Selection and priorities of the methods are defined

by http-proxy.doctype-identification, session-acl.doctype-ident-order, and

request-acl.doctype-ident-order. The first successful method defines the type. If no

method succeeds, the type will be represented by an empty string. Maximum size of data scanned

by magic method can be changed by http-proxy.doctype-identification.magic.

The content type, i.e., the Content-Type header sent to the client, can be forced

by set-mime-type, or set to the content type discovered for mime-type matching by

force-doctype-ident. Otherwise, the header is left unchanged.

It is possible to discard some responses and to replace them with a local file. Item

replace-response defines this replacement.

GIF, JPEG, and PNG images may be filtered according to the image dimensions. A local

image is returned to the client instead. The image substitution is defined by filter-images.

This feature can be used, for example, to filter advertisement banners, because thy often have

known characteristic dimensions. Dimensions of GIF and PNG images are stored at fixed offset

near the beginning of the respective files, but JPG dimensions may be far from the file beginning.

Item jpeg-scan-sz restrict the size of initial part of JPEG files scanned for dimensions.

Http-proxy can filter data through an antivirus. Antivirus checking is defined by item

antivirus which selects a top-level antivirus section. See antivirus(5) for details about

configuration of virus checking.

Http-proxy provides HTML filtering. It is usually used to delete potentially dangerous

1120

parts of HTML data passed to client, e.g., scripts or Java applets. Features of the HTML fil-

ter are controlled by item html-filter, which selects a top-level html-filter section. See

mod-html-filter(5) for details about configuration of HTML filtration.

HTTP request and response data can be processed and actions can be taken accordingly.

Matching in request data is configured by item request-acl.request-body-match, response

data matching is controlled by doc-acl.response-body-match. See data-matching(7) for

detailed description of the data matching and processing feature.

The maximum size of the HTTP request body can be limited by setting

request-acl.request-body-max-size.

If the request URI is categorized by clear-web-db, Bypass function can be enabled by

clear-web-db-bypass. When accessing a matching page, the user gets an error page. By

clicking a link on the page, access is enabled for a limited time to the blocked web server, or all

servers belonging to the categories specified by clear-web-db-match.

Using CONNECT Method

HTTP method CONNECT is reserved for tunneling other protocols through http-proxy. It is

usually utilized for SSL/TLS access to HTTPS servers. When a user sets its browser to use the

proxy in the nontransparent mode, an HTTPS request causes a CONNECT request to be sent to

the proxy. The proxy then creates a tunnel between the client and the server.

Note that data passed through the tunnel are encrypted and thus inaccessible to the proxy.

After the tunnel is established, it is not possible to deny any HTTPS requests nor to perform data

checking like HTML filtering or antivirus testing. It is therefore appropriate to limit the servers

accessible via CONNECT.

In a transparent proxy configuration and HTTPS, the client does not use CONNECT, but it

starts SSL/TLS immediately after establishing a TCP connection. Although it is possible to utilize

http-proxy in this case (see the description of session-acl.simulate-connect below), it is

usually easier to use tcp-proxy(8). An exception that requires http-proxy is when some HTTPS

connections should be just passed via a TCP tunnel, but other should be decrypted by the proxy.

An alternative to a simple HTTPS tunneling is to use SSL/TLS decryption/encryption func-

tionality of the proxy. A transparent http-proxy — which does not use CONNECT — can

be configured to decrypt the connection from a client (by session-acl.ssl), process the en-

capsulated HTTP, and encrypt the connection to a server (by request-acl.ssl). A more

complicated situation arises in the non-transparent mode. As mentioned above, the browser tries

to establish a TCP tunnel through the proxy using the CONNECT method. If the request-acl

contains item capture-connect, the proxy captures the CONNECT request, that is, it responds

to the request as if the tunnel was established, but does not open the connection to the server.

Instead, it restarts the session in transparent mode. End of the CONNECT request and session is

logged, and a new session is started, which behaves as a transparent session to the server specified

in the CONNECT. New session-acl and request-acl are selected that can, among other

things, enable SSL/TLS decryption and encryption, in the same way as in a normal transparent

http-proxy configuration. To be chosen for a new session emerged from a captured CONNECT

request, a session-acl must contain item captured-connect. The session-acl selection

1121

APPENDIX D. KERNUN UTM REFERENCE (8)

can be based on the ACLs used for handling the CONNECT. Those ACLs are specified by items

connect-session-acl and connect-request-acl.

If some connections should be decrypted and re-encrypted, but other ones are to be just passed,

it is possible to set simulate-connect in a session-acl matching connection that will not

be decrypted. This option behaves as if the data from the client were preceded by a CONNECT

request to the destination address of the TCP connection from the client. That is, the proxy just

establishes a tunnel and passes data unmodified between the client and the server. The proxy

must learn the server address somehow, hence simulate-connect requires either a transparent

proxy mode, or a plug-to item specifying the server address explicitly in an ACL.

The last option is to perform full inspection of the HTTPS. In this case, the http-proxy

interrupts the initial phase of establishing the SSL connection from the client, it tries to contact

the server and to get its certificate. If it fails, the connection to client will be reset. If the server

is connected and its certificate is verified, the proxy generates a new certificate with all attributes

(except some unwanted ones) from the original server’s one, subscribes it by own certifiate author-

ity and uses this new certificate for completing the connection to the client. If the original server

certificate cannot be verified, then several options are available:

error The new certificate is signed by proper Kernun CA certificate and after establishing the

client connection, an error message is sent as a reply.

pass The new certificate is signed by a special Kernun CA certificate which is intended not to

be added among client’s trusted key ring. Thus, the user gets a warning from the browser

and he or she can decide how to continue.

fail The connection establishing fails.

ignore The verification failure is ignored. Highly unrecommended option!

The new certificate is stored in the cache (a file in the /data/fake-cert directory) for later

re-using. Correct certificates have names starting by the C letter followed by the certificate hash

and distinguishing number. Wrong certificates (used in the pass case) have the F letter on the

beginning, instead. See the ssl(5) manual page for further details.

Using FTP Scheme

When the client uses the proxy in the nontrasparent mode and the user requests data from an FTP

server by entering a URL starting with ftp:, the client sends an HTTP request with that URL to

the proxy. The proxy is then expected to fetch the document from an FTP server and return it as

an HTTP response to the client. Http-proxy does not communicate directly with FTP servers.

Instead, it asks ftp-proxy(8) for doing the work. Communication between http-proxy and ftp-

proxy is done in a private protocol created specially for Kernun firewall. Parameters needed for

connecting to ftp-proxy are specified by item ftp-proxy.

When the firewall works in the transparent mode, HTTP clients talk directly to FTP servers.

Appropriately configured ftp-proxy is needed in such situation.

1122

User Authentication

User authentication on proxies works in HTTP in a similar way as authentication on origin servers.

The difference is in status codes (407 instead of 401) and headers (Proxy-Authenticate and Proxy-

Authorization instead of WWW-Authenticate and Authorization). When the proxy requires au-

thentication and a request does not contain valid credentials, the proxy replies with 407 and sends

an authentication method and a realm to the client in header Proxy-Authenticate. The client then

obtains user’s credentials and repeats the request with them in header Proxy-Authorization. The

credentials are sent automatically in all subsequent requests. Only the Basic, Kerberos (Negotiate),

and NTLM authentication schemes are supported by http-proxy. The proxy can be configured

for one or both of them. If both authentication schemes are enabled, a client can choose which

scheme it will use. Typically, Kerberos/NTLM-capable web browsers will use Kerberos/NTLM,

other browsers will use Basic.

Basic Authentication

In order to enable user authentication, item auth must be present in session-acl, see auth(5)

and auth(7). It defines authentication database (for example, a file or a RADIUS server) which will

verify credentials from users. All of the authentication methods mentioned in the man page auth(7)

are supported in Http-proxy. The item user is used to match user names in request-acl

and doc-acl. A user name is matched if it is present with a valid password and is successfully

verified. Otherwise, user none is matched.

A typical setting of user authentication involves at least two request ACLs. One is for permit-

ting access to the authenticated users, the other one denies access, sends a realm, and asks for

credentials. Example:

Switch checking credentials on and choose user database.

session-acl SET-AUTH {

auth passwd "/usr/local/kernun/etc/passwd";

}

Permit any successfully authenticated user.

request-acl OK {

user *;

}

Not authenticated, ask for credentials.

request-acl ASK-AUTH {

user none;

auth-req "Kernun http-proxy";

}

Kerberos Authentication

Kerberos authentication is intended primarily for Active Directory environment, although it can

be used with any Kerberos server. When using Kerberos authentication, the proxy obtains the user

name from the Kerberos ticket received from the client, but the ticket does not contain information

1123

APPENDIX D. KERNUN UTM REFERENCE (8)

about group membership. The list of groups, which is usable in request-acl.user matching,

can be obtained via LDAP.

Kerberos authentication is enabled by item kerberos-auth in a session-acl. It references

a section kerberos-auth on the system level. The section specifies the Active Directory domain

name and the domain controller address. In the case of a generic Kerberos, not being in an Active

Directory environment, the Kerberos realm is defined by domain and the Kerberos ticket granting

server by ad-controller. The kerberos-auth section can reference an LDAP server by item

ldap. As the Active Directory controller contains group membership data and provides LDAP

access, it is typically used also as the LDAP server.

Kerberos can be also utilized to authenticate LDAP requests by adding kerberos instead of

bindinfo into an ldap-client-auth section. Then the proxy authenticates itself (obtains

a TGT) upon startup using the machine account of the Kernun system in the Active Directory.

Hence the machine account must have enough rights to read user group information from the

Active Directory database.

As in Basic authentication, at least two request ACLs are used for Kerberos authentication.

One of them permits access to authenticated users, the other one denies access and requests

authentication. Example:

system ... {

Active Directory controller used as an LDAP server

ldap-client-auth LDAP-AD {

server "ldap://ad.tns.cz";

Authenticate to LDAP using Kerberos

kerberos;

active-directory "tns.cz";

}

Kerberos authentication by the Active Directory Controller

kerberos-auth KERBEROS {

domain "TNS.CZ";

ad-controller "ad.tns.cz";

ldap LDAP-AD;

}

http-proxy HTTP {

...

session-acl AUTH {

accept;

auth none;

kerberos-auth KERBEROS;

}

...

request-acl KERBEROS-OK {

user *;

accept;

}

1124

request-acl KERBEROS-ASK {

user none;

accept;

auth-req "Kernun http-proxy";

}

...

}

}

After applying the Kerberos authentication configuration for the first time, the Kernun system

must become a member of the Active Directory domain. Its machine account is created by the

shell command

kinit user

msktutil -c –computer-name ‘hostname -s‘ -s HTTP/‘hostname‘ \

–server ADC –no-pac

chown kernun /etc/krb5.keytab

where user is a user with Domain Admins rights and ADC is the address of the Active

Directory Controller. If the system is to be removed from the domain later (when Kerberos

authentication is no more required or if the system will be moved to another domain), remove file

/etc/krb5.keytab and delete the machine account on the Active Directory Controller.

A proxy with Kerberos authentication enabled needs access to the Kerberos configuration files

/etc/krb5.conf and /etc/krb5.keytab. Hence, the proxy cannot be run chrooted unless

the chroot environment is appropriately extended.

Group membership information of users authenticated by Kerberos can be cached in

order to decrease load of the LDAP server. Configuration of caching consists of adding the

global section oob-auth OOB and referencing it by item http-proxy.oob-auth-srv.

Cached group membership information for a user name expires after a timeout controlled

by items kerberos-auth.timeout-idle (expiration after a period of inactivity) and

kerberos-auth.timeout-unauth (unconditional expiration).

More details about Kerberos authentication can be found in the Kernun Handbook.

NTLM Authentication

The NTLM authentication is enabled by item ntlm-auth in a session-acl. It references

a section ntlm-auth on the system level. The section specifies the Active Directory domain

name and the domain controller address. The proxy obtains the user name from the NTLM

authentication process, but it does not get any information about group membership. The list

of groups, which is usable in request-acl.user matching, can be obtained via LDAP. The

ntlm-auth section can therefore reference a LDAP server by item ldap. As the Active Directory

controller contains group membership data and provides LDAP access, it is typically used also as

the LDAP server.

As in Basic authentication, at least two request ACLs are used for NTLM authentication.

One of them permits access to authenticated users, the other one denies access and requests

authentication. Example:

system ... {

1125

APPENDIX D. KERNUN UTM REFERENCE (8)

Active Directory controller used as a LDAP server

ldap-client-auth LDAP-AD {

server "ldap://ad.tns.cz";

bindinfo "cn=ADUser,dc=tns,dc=cz" "ldap-password";

active-directory "tns.cz";

}

NTLM authentication by the Active Directory Controller

ntlm-auth NTLM {

domain "tns.cz";

ad-controller "ad.tns.cz";

ldap LDAP-AD;

}

http-proxy HTTP {

...

session-acl AUTH {

accept;

auth none;

ntlm-auth NTLM;

}

...

request-acl NTLM-OK {

user *;

accept;

}

request-acl NTLM-ASK {

user none;

accept;

auth-req "Kernun http-proxy";

}

...

}

}

After applying the NTLM authentication configuration for the first time, the Kernun system

must become a member of the Active Directory domain. It is done by issuing the shell command

net ads join -U user

where user is a user with Domain Admins rights, and rebooting the system. If the system

is to be removed from the domain later (when NTLM authentication is no more required or if the

system will be moved to another domain), it can be done by the command

net ads leave -U user

A proxy with NTLM authentication enabled needs access to the utility ntlm_auth(1), which

in turn accesses contents of directory /var/db/samba/winbindd_privileged. Hence, the

proxy cannot be run chrooted unless the chroot environment is appropriately extended.

1126

Results of NTLM authentication can be cached by out-of-band authentication, in order to

decrease load of Active Directory and LDAP servers. Each new client is authenticated by NTLM.

The combination of the client IP address, the user name and the list of groups is remembered in

the OOB session table. Following requests from the same IP address will be authenticated as the

same user and groups, without contacting the AD controller and the LDAP server.

Configuration of NTLM caching consists of adding the global section oob-auth OOB,

referencing it by item http-proxy.oob-auth-srv, and adding auth oob OOB to each

session-acl that contains item ntlm-auth. Cached user and group information for a client

IP address expires after a timeout controlled by items ntlm-auth.timeout-idle (expiration

after a period of inactivity) and ntlm-auth.timeout-unauth (unconditional expiration).

Combined Authentication Methods

In order to support clients incapable of NTLM authentication, it is possible to enable both authen-

tication schemes by configuring the NTLM authentication and simultaneously using item auth in

session-acl with a method other than none. The above NTLM example can be modified by

simply changing auth none to auth passwd "...".

Cookie Modification

The proxy can be cofigured to perform modification of cookies passed between a client and a

server. The value of a cookie received from a server is replaced by a new value and passed to the

client. If the client sends the cookie back to the server, the proxy restores its original value before

passing it to the server.

This feature reduces exploitability of stolen cookies, especially session-identification cookies in

various web applications. A cookie stolen from the client is useless outside the network protected

by Kernun, because its value is not that expected by the server. Even inside the protected network,

a stolen cookie has only limited potential of misuse, because after the proxy sends a cookie to a

client, it accepts it back only from the same client IP address.

The proxy maintains a cookie table that is use for restoring modified values of cookies passed

from a client to a server. To increase security, neither the modified cookie value passed to the

client, nor the related record in the cookie table suffices for restoring the original cookie value.

The two pieces of information must be put together in order to reverse the cookie modification

operation.

Properties of the cookie table (file name, size, expiration, and cleaning rule) are

set in section cookie-table. Rules for cookie modification are defined by items

request-acl.modify-cookies. It is possible to modify only some cookies, selected by

name, disable checking of client IP address by flag any-client, and decide whether cookie

values sent by a client to a server and not found in the cookie table should be passed unchanged

(flag keep-not-found) or replaced with an empty value. A request that uses a request-acl

with item delete-cookies causes deleting all cookies related to a single IP address. Either

the IP address of the requesting client, or the IP address contained (in standard textual

notation) in the query part of the request URI, is used, according to flag ip-from-query.

1127

APPENDIX D. KERNUN UTM REFERENCE (8)

Authentication Proxy (AProxy)

It is possible to configure http-proxy for providing access from an external network to some web

server in the internal protected network. Often requirements in such configuration are encryption of

the communication between the client and the proxy and using challenge-response authentication.

Module AProxy of http-proxy provides this functionality. If a user is not authenticated, the

proxy returns an authentication form instead of a normal response. When the user authenticates,

the response for the original request is returned and further requests are processed normally until

the user logs out or a timeout expires.

AProxy mode is switched on by item aproxy in session-acl. It is advisable to turn on

SSL/TLS between clients and the proxy by item ssl in session-acl. Configuration section

aproxy sets various AProxy parameters. Section auth defines AProxy authentication database.

Username/password authentication is supported for both passwd and radius, challenge/response

authentication may be used only with radius. User and group names obtained during AProxy

authentication are matched against request-acl.aproxy-user condition.

The proxy identifies sessions belonging to authenticated users by cookies. It is necessary to

choose a cookie-name so that it does not collide with cookies used by the origin server. The

maximum number of simultaneously active user sessions is specified by max-aproxy-sessions.

If insecure-cookie is not set, the client is asked not to send the session cookie across an

unencrypted connection. It prevents possible revealing of the cookie when the user inadvertently

enters http: instead https: into the browser.

Out of Band Authentication Server

Http-proxy is used also as an OOB authentication server, see auth(7). In this mode, the proxy

manages the list of OOB authenticated users and provides the list to other proxies. OOB authen-

tication server is turned on by a section aproxy containing item oob-auth. Parameters of the

OOB authentication are set by a section oob-auth referenced by http-proxy.oob-auth-srv.

OOB authentication uses either the html-form method (users authenticate themselves by filling

the same form as in AProxy authentication) or the external method (the list of users is pro-

vided by an external program, e.g., ooba-samba(1), which passes it via HTTP to the authentication

server).

Web Filter

The request URI can be processed by an external web filter. Interface to IBM Proventia Web

Filter is implemented in the proxy. The web filter has a regularly updated database of web

servers. It takes a request URI from http-proxy and assigns a set of categories to it (for example,

pornography, games, lifestyle, criminal activities). Then it processes the categories together with

client IP address and user name (if proxy authentication is enabled) and decides according to its

ruleset whether the URI should be accepted or rejected. If the web filter accepts the URI, request

processing continues in http-proxy. Otherwise, the proxy returns an error page to the client.

In the web filter configuration, ICAP Integration must be enabled (in Proxy Integration dialog

of the management console). Also select User Profile Support in this dialog. In the Kernun

1128

configuration, section web-filter contains parameters of a connection to a web filter. Processing

a request URI by the web filter is enabled by item request-acl.web-filter.

IBM Proventia Web Filter requires user names in the form domain\user. The http-proxy

uses always domain name kernun. Therefore, user names in web filter configuration must be

entered as kernun\user.

Program-Generated Responses

If item request-acl.program-response is set in the configuration, HTTP requests from

clients are processed by an external program specified in this configuration item. A new instance

of the program is started for each request. The complete HTTP request as received from the

client is passed to the standard input of the program. The program must reply with a valid

HTTP response written to its standard output and terminate. The proxy then sends the response

back to the client. If the program does not terminate until a configured timeout or the request

processing is interrupted before the program terminates, the proxy sends the SIGTERM signal to

the running program.

In addition to the HTTP request on the standard input, the program is also provided with a

set of environment variables:

APROXY_USER User name from the AProxy authentication

CONTENT_LENGTH Size in bytes of the request body. Word chunked means that request body

uses the chunked transfer encoding.

CONTEXT Context which the program is executed in. It can be program-response

for a program executed via request-acl.program-response, or one of

request-end-program-ACCEPTED, request-end-program-REJECTED,

request-end-program-FAILED for a program executed by

request-acl.request-end-program (as described in the next section).

DOC_ACL Name of the doc-acl used for this request or the empty string if no doc-acl has

been selected. Note that in the case of a program-response, no doc-acl is used.

HTML_REPLACE_HASH If request data have been matched by a

request-acl.request-body-match rule with type html-replace, this variable

contains a hash value computed fro the matching HTML form values. Otherwise, the

variable contains the empty string. In fact, this variable can be also set by response data

mtching a doc-acl.response-body-match rule with type html-replace, but

HTML form data are usually not sent and matched in HTTP responses.

LOG_FILE The name of the file used by the proxy for logging, or the empty string if the proxy

logs via syslog.

LOG_LEVEL The current numeric log level of the proxy.

PATH_INFO This is the path part of the request URI, without the query part.

PROXY_NAME The name of the proxy as specified in the configuration.

1129

APPENDIX D. KERNUN UTM REFERENCE (8)

QUERY_STRING Contains the query part of the request URI, without the initial question mark

delimiting it from the path.

REMOTE_ADDR IP address of the client

REMOTE_HOST Host name of the client if known, empty otherwise

REMOTE_USER User name if the user was authenticated by the proxy.

REQUEST_ACL Name of the request-acl used for this request.

REQUEST_HOST The host part of the request URI.

REQUEST_METHOD The HTTP request method as specified by the client in the request

REQUEST_URI The complete request URI.

SESSION-ACL Name of the session-acl used for this request.

Note that although this program interface resembles the CGI commonly used byWWW servers,

it does not comply to the CGI definition in RFC 3875.

Running a Program at the End of Request

Item request-acl.request-end-program enables running an external program at the end

of each request. The proxy does not wait for termination of the program. The program gets

information about the request in the same set of environment variables as a program for generating

responses described in the previous section. The suffix of the CONTEXT variable value corresponds

to the request processing result as reported in the REQUEST-END log message.

Logging

As all other Kernun proxies, http-proxy generates many log messages during its operation.

Meaning of the messages may be found in section 6 of the manual pages. Details about Kernun

logging can be found in logging(7).

The proxy logs statistical messages about each client connection and each request. When a

connection arrives, SESSION-START is logged. Then ACL message informs about the session ACL

selected for this connection. Each request generates REQUEST-START (when the request line

and headers are received from the client), ACL (selection of a request ACL), and REQUEST-END

(at the end of request processing). Finally, SESSION-END is logged when the client connection

is closed. If AProxy is enabled, login and logout of each user is reported as an APROXY-AUTH

message.

Common Kernun Features

Http-proxy uses common Kernun mechanisms for listening on its sockets, accepting client con-

nections, and managing its processes. It can also run in a chrooted environment and change its

user identity upon startup. See also application(5), tcpserver(5), and tcpserver(7).

1130

The proxy uses a common Kernun mechanism for network input/output. The configuration

allows to specify several parameters like buffer sizes and timeouts, both for client and server

connections. The parameters are set in configuration sections client-conn and server-conn.

See netio(7) for details.

The proxy uses common Kernun mechanism for name resolving (see resolving(7) manual page).

Http-proxy uses common Kernun mechanism for runtime monitoring. For more detailed

information, see monitoring(7).

Http-proxy uses common Kernun mechanism for traffic shaping. For more detailed informa-

tion, see traffic-shaping(7).

OPTIONS

-h Display usage information and exit.

-v Print version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read configuration from cfgfile.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

DOCUMENT TEMPLATES

Two kinds of errors are generated by the http-proxy: hard and soft. A hard error is such a

state of the proxy when the only possible reaction is to close (reset) the connection to the client

immediately. A soft error means that the state of the protocol and the nature of the error allow to

send an error response describing the error to the client. If a soft error occurs, the proxy sends a

response (an error document) describing the error. The same mechanism is used for other responses

generated locally by the proxy, e.g., FTP response for PUT method, AProxy authentication form

and AProxy logout page.

The content type of a response document is text/html. The response document

can be in various languages (UTF-8 charset), depending on the proxy configuration

and client’s preferences. Templates of response documents are stored in files named

document-root/class.html.language where document-root is the root directory of error

documents set in the proxy configuration file, class is a class of a response, and language

distinguishes documents in various languages. Possible values for language are:

EN language English (en)

CZ language Czech (cs)

1131

APPENDIX D. KERNUN UTM REFERENCE (8)

For each pair of response class and language there a is template file in the document root

directory. The template is merely an HTML document possibly containing $$, $-$, and n

(where n is a non-negative integer) directives. Each $$ or 0 is substituted by a single $

character. Directives $-$, 1, 2, etc. are replaced by substitution strings generated by the

proxy. The substitution strings contain variable parts of a response document, which are specific

for each response of a given class. Some substitution strings are common to all response classes.

Additional ones may be defined for a particular class. The substitution strings are:

common for all classes

1 the HTTP status code of the response

2 the reason phrase corresponding to the status code

3 the request URI of the request (if the URI does not contain host, it is added from the Host

header and if there is no Host header and the request is transparent, the real destination

address is used)

4 the firewall administrator address taken from configuration (item admin)

5 the Kernun product type (UTM / Clear Web / Firewall+)

6 the session id in log format (altname[pid.session])

7 the request start date/time (%Y/%m/%d %H:%M:%S)

acl-deny

Error response when the request is denied by request-acl or doc-acl.

8 name of the ACL that denied access

9 the message specified by item request-acl.deny-msg or doc-acl.deny-msg

10 the client IP address and/or domain name

11 the user name (if authenticated)

12 the AProxy user name (if AProxy authentication used)

13 the list of categories assigned to the request URI by the Clear Web DataBase

14 the Clear Web DataBase categories assigned to the request URI matched by the

clear-web-db-match item, that is, the intersection of 13 and 15

15 the Clear Web DataBase categories specified in the selected request-acl by item

clear-web-db-match

The same set of substitution string is used also by the response classes clear-web-db-deny

and by responses defined by request-acl.deny-msg and doc-acl.deny-msg.

1132

clear-web-db-deny

Error response used when a request is denied by the Clear Web DataBase, that is, if a

request-acl contains both items clear-web-db-match and deny.

bypass

The Clear Web DataBase Bypass activation page, returned if a request-acl contains both items

clear-web-db-match and clear-web-db-bypass, and bypass has not been activated yet.

8 the list of categories assigned to the request URI by the Clear Web DataBase

9 bypass duration as set by clear-web-db-bypass.duration

10 the Clear Web DataBase categories specified in the selected request-acl by item

clear-web-db-match

generic-error

Error response used when a soft error occurs. Description of the error is substituted for 8.

cert-error

Error response used when a server presents an invalid certificate.

8 the certificate common name

9 the certificate issuer name

10 the certificate serial number

redirect

The response used when request-acl.rewrite contains a redirect. The redirection target

URI is substituted for 8.

ftp-response-put

Response for a PUT request with ftp: scheme. Result returned by ftp-proxy is substituted for

8.

aproxy-password-form

AProxy form for entering user name and password.

8 error message generated by AProxy

10 AProxy cookie name

11 AProxy cookie value

1133

APPENDIX D. KERNUN UTM REFERENCE (8)

12 original request method

13 encoded original request headers

$-$ encoded original request body

aproxy-response-form

AProxy form which displays a challenge and asks for a response.

8 error message generated by AProxy

9 AProxy authentication challenge

10 AProxy cookie name

11 AProxy cookie value

12 original request method

13 encoded original request headers

$-$ encoded original request body

aproxy-logout

A page with information that the user has been logged out by AProxy.

FILES

error_documents Directory containing templates of error responses, FTP responses, AProxy

forms, and local replacement documents; its real name and location is specified by configu-

ration item document-root.

BUGS

The Kernun http-proxy is a security proxy, not a caching proxy. If caching of HTTP responses

is needed, some caching HTTP proxy server can be chained using hand-off configuration directive

or using a transparent redirection of requests.

HTTP/1.1 request pipelining is not supported. If the client sends pipelined requests, they are

processed sequentially, as in the non-pipelined case.

SEE ALSO

Kernun: mkblacklist(1), ooba-samba(1), printblacklist(1), resolveblacklist(1), antivirus(5),

application(5), auth(5), http-proxy.cfg(5), listen-on(5), mod-html-filter(5), ssl(5), tcpserver(5),

test-expr(5), access-control(7), auth(7), configuration(7), data-matching(7), logging(7),

1134

monitoring(7), netio(7), tcpserver(7), traffic-shaping(7), transparency(7), resolving(7),

doctype-identification(7), ftp-proxy(8), tcp-proxy(8)

FreeBSD: ntlm_auth(1)

1135

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

icamd — Intra Cluster Accessibility Master Daemon

SYNOPSIS

service icamd { start| stop| restart| reload| status| hash }

DESCRIPTION

This daemon allows one or more Kernun system (slaves) to be controlled from one Kernun system

(master). Each slave starts the complementary daemon icasd(8). The relation is asymetric: the

master can control the slave(s). If two systems should be able to control each other, each of them

must start both master daemon (icamd) and slave daemon (icasd).

When running, the icamd daemon waits for slaves to connect. When a slave connects, a back-

ward SSH connection to the slave is established, which can be used for controlling the slave. The

slave remains accessible until the slave icasd daemon is stopped or the connection is interrupted.

The icasd tries to reconnect after interruption.

The ssh rsa key pair is used for icamd authentication. The icamd private key is the part of the

icamd configuration. The icamd public key is part of the slave(s) configuration. Use ssh-keygen(1)

for creating the ssh key pair.

Each slave is given a name in the icamd configuration. The ssh_config file is provided which

defines a host section for each configured slave. The ssh(1) can be used for connecting to the slave.

For instance, for running the kat(8) the following command can be used:

ssh -t slave-name kat

Kernun GUI takes advantage of the connected slaves. It is possible to controll all connected

slaves.

kat(8) takes advantage of the connected slaves. It is possible to apply the configuration remotely

through the established icamd/icasd connection. If the name of the system being applied equals

to the name of a connected slave, that slave connection is used for applying the configuration.

Commands

service icamd start Starts the daemon. The daemon listens for slave(s) connection from

other systems according to the configuration.

service icamd stop Stops the daemon. The connected slave(s) (icasd) are disconnected.

The default behavior of the slave is to retry the connection periodically. Therefore, they

eventually connect automatically, when the icamd becomes started again.

service icamd restart

service icamd reload Stops and starts the icamd daemon.

1136

service icamd status Prints the status of the icamd daemon. If running, all the configured

slaves are listed with the information whether they are currently connected or not.

service icamd hash Prints the configuration hash.

Configuration

The icamd daemon is enabled in rc.conf with variable icamd_enable="YES".

The configuration of the icamd daemon is in /usr/local/kernun/etc/icamd.conf. The

following variables can be set in the configuration file:

MASTER_PORT The port for icamd to listen. This TCP port must be visible for the icasd slave

for connection. The SSH protocol is used.

MASTER_ID_RSA

FN_MASTER_ID_RSA The private SSH key of the icamd daemon. Either the contents of the file,

or the file name.

WRITE_CFG_HASH The file name where the hash should be written upon start (including restart,

reload).

SLAVE_NAMES The list of slaves (space separated). For each slave SL, the following variables

define each icasd slave:

SLAVE_ID_RSA_PUB_SL

FN_SLAVE_ID_RSA_PUB_SL The public SSH key of the icasd slave. When more than one

isasd slave is configured for the master, they are distinguiseh by the SSH key each of

them uses.

SLAVE_CFG_NAME_SL Optional. Defines the name for the slave SL. Use this, if the icasd

name should differ from SL (SL may not contaion hypens (-)).

See ica(5) for the high level configuration in CML Kernun configuration.

SEE ALSO

Kernun: icasd(8), ica(5), cluster(7), configuration(7),

1137

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

icap-server, test-icap — ICAP server for document inspection

SYNOPSIS

icap-server [-hv] [-d dbglev] -f cfgfile

test-icap [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The icap-server is a server of the Internet Content Adaptation Protocol (RFC 3507) implementing

the security policy for the access control and the document inspection based on the Kernun

configuration logic.

The test-icap program checks the syntax and partially the semantics of the configuration; for

test expression syntax, see test-expr(5).

Startup and Configuration

The server reads its configuration and starts listening on TCP sockets (address/port couples)

specified by listen-on configuration section, see listen-on(5).

Format of the configuration file is described in icap-server.cfg(5). General syntax of Kernun

configuration files is explained in configuration(7).

Access Control

The icap-server uses standard Kernun access control (see access-control(7)) with four types of

ACLs on three levels:

1. session-acl (level 1) is checked once for each client connection and defines general pro-

tocol behavior, or rejecting the connection. In addition to the generic ACL conditions and

actions, some icap-server-specific conditions and parameters can be set (see icap-server(5)).

2. service-acl (level 2I) is checked once for each ICAP request received and defines the

service(s) and attributes used for the request. All entry conditions of this level are related to

the ICAP request line and ICAP headers. Accepting ACLs cause 2xx ICAP response codes

while denying ACLs cause 4xx and 5xx codes.

3. request-acl (level 2H) is checked once for each encapsulated (HTTP) request and/or

document inspected and defines the behavior variation according to the HTTP request URI.

All entry conditions of this level are related to the encapsulated HTTP request line, or client

data sent by special ICAP headers X-Client-IP and X-Client-Username.

4. doc-acl (level 3) is checked once for each encapsulated (HTTP) document inspected and

defines document processing mode (e.g. document type identification, filtering, replacing

etc.).

1138

The only exception from this rule is the case of antivirus checking with the keepalive

option (see antivirus(7)). In this case the doc-acl is checked once more after the antivirus

check is finished. If the doc-acl contains the virus-status item which corresponds with

the final result, session continues. If the doc-acl contains the virus-status item which

does not correspond with the final result, or it does not contain any virus-status ites,

connection is reset.

Firewall administrator can choose any method described in auth(7) (except for NTLM) for

authenticating users on the proxy.

Protocol Features

The recognized file type (see doctype-identification(7)) is returned to the client via the ICAP

response header (“X-Kernun-Content-Type”).

If the request URI is categorized by clear-web-db, the set of categories found are sent to

the client via the ICAP response header (“X-Kernun-Categories”).

In the case of request/document allowed by the policy and processed without any modification,

the Kernun icap-server can return either the 200 response code (together with the original

document) or the 204 response code (without data, if client permits it by the Allow header).

In the case of request/document refused by the policy (e.g. due to HTTP request attributes,

file extension, recognized file type, virus found etc.), the ICAP response code has value 201 and

either a standard or an own error web page is returned.

The “Preview” mode is supported. In this case, the client sends only a part of the docu-

ment to the server, the server makes a decision and responds by the 100 Continue, or some

error response. After the 100 Continue response, the client continues sending the rest of the

document. The size of the preview block is recommended by the server to the client via the OP-

TIONS request response according to the services (antivirus, doctype recognition etc.) offered

by corresponding service-acl. The admin can force another recommendation by the preview

item.

Authentication

On the ICAP layer, the server uses similar authentication methods as the http-proxy. However,

the HTTP layer of authentication is more important, here. This can be applied if ICAP clients use

the X-Client-IP and X-Client-Username headers. The server expects authentication being done

by the ICAP client and the resulting username is told to the server. Very often, the username

contains also the domain name and the server can use also this piece of information.

The Kernun authentication methods concludes also checking of group membership. For ob-

taining the list of groups, to which particular user belongs, a LDAP server can be used (see the

service-acl.ldap-groups item). For increasing of throughput, the icap-server can store

received group memberships to a cache (the single one for all potential domains). Parameters of

the cache are defined in the ldap-cache section and they have the same meaning as the ones

from the oob-auth section. The only exception is the timeout item defining the lifetime of a

record in the cache. If the section is omitted, no caching takes place.

1139

APPENDIX D. KERNUN UTM REFERENCE (8)

OPTIONS

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

SEE ALSO

antivirus(5), application(5), icap-server(5), icap-server.cfg(5), listen-on(5), mod-html-filter(5),

ssl(5), tcpserver(5), test-expr(5), access-control(7), configuration(7), doctype-identification(7),

host-matching(7), logging(7), netio(7), resolving(7), tcpserver(7), time-matching(7),

traffic-shaping(7)

1140

NAME

icasd — Intra Cluster Accessibility Slave Daemon

SYNOPSIS

service icasd { start| stop| restart| reload| status| hash }

DESCRIPTION

This daemon allows one or more Kernun system (masters) to control this Kernun system (slave).

Each master starts the complementary daemon icamd(8). The relation is asymetric: the master

can control the slave(s). If two systems should be able to control each other, each of them must

start both master daemon (icamd) and slave daemon (icasd).

When started, the icasd daemon tries to connect to all the configured masters. If the connection

to some master fails, the daemon retries to connect. The daemon tries to keep the connections to

the masters established. When the connection to the master is established, the master can control

the slave system.

The ssh rsa key pair is used for icasd authentication. The icasd private key is the part of the

icasd configuration. The icasd public key is part of the master(s) configuration. Use ssh-keygen(1)

for creating the ssh key pair.

Commands

service icasd start Starts the daemon. The daemon connects to the master(s), and possi-

bly reconnects to them when the connection fails.

service icasd stop Stops the daemon. The connected master(s) are disconnected.

service icasd restart

service icasd reload Stops and starts the icasd daemon.

service icasd status Prints the status of the icasd daemon. If running, all the configured

masters are listed with the information whether they are currently connected or not.

service icasd hash Prints the configuration hash.

Configuration

The icasd daemon is enabled in rc.conf with variable icasd_enable="YES".

The configuration of the icasd daemon is in /usr/local/kernun/etc/icasd.conf. The

following variables can be set in the configuration file:

SLAVE_ID_RSA

FN_SLAVE_ID_RSA The private SSH key of the icasd daemon. Either the contents of the file, or

the file name.

1141

APPENDIX D. KERNUN UTM REFERENCE (8)

WRITE_CFG_HASH The file name where the hash should be written upon start (including restart,

reload).

MASTER_NAMES The list of masters (space separated). For each master MA, the following vari-

ables define each icamd master:

MASTER_ADDR_MA The address of the master MA. Either IP address or hostname. Slave

connects to this address using ssh protocol.

MASTER_PORT_MA The port of the master MA. Slave connects to this port using ssh pro-

tocol.

MASTER_ID_RSA_PUB_MA

FN_MASTER_ID_RSA_PUB_MA The public SSH key of the icamd master. The authenticity

of the master is checked against the ssh key.

MASTER_CFG_NAME_MA Optional. Defines the name for the master MA. Use this, if the

icamd name should differ from MA (MA may not contaion hypens (-)).

See ica(5) for the high level configuration in CML Kernun configuration.

SEE ALSO

Kernun: icamd(8), ica(5), cluster(7), configuration(7),

1142

NAME

imap4-proxy, test-imap4 — Internet Message Action Protocol v. 4 (IMAP4) proxy

SYNOPSIS

imap4-proxy [-hv] [-d dbglev] -f cfgfile

test-imap4 [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

Program imap4-proxy is the proxy daemon for the Internet Message Access Protocol ver-

sion 4rev1 (IMAP4rev1), defined by RFC 3501. The proxy supports secure communication via

SSL/TLS protocols, see ssl(5).

STARTUP AND CONFIGURATION

The proxy reads its configuration and starts listening on TCP sockets (address/port couples)

specified by listen-on configuration section, see listen-on(5). If support of transparent connec-

tions (i.e., connections made directly from an IMAP4 client to an IMAP4 server and redirected

to the proxy by NAT as described in transparency(7)) is requested by item transparent in sec-

tion listen-on, the corresponding NAT redirections are established during proxy startup and

removed upon exit.

Format of the configuration file is described in imap4-proxy.cfg(5). General syntax of Ker-

nun configuration files is explained in configuration(7). Program test-imap4 tests syntax and

partially semantics of configuration; for test expression syntax, see test-expr(5).

Access Control

Imap4-proxy uses three-phase ACLs, see access-control(7). The first phase, session-acl is

checked once for each client connection. It permits or denies client access and sets some connection

parameters. The second phase, command-acl is also checked once for each connection, but it

can be selected according to the client certificate in case of SSL/TLS enabled by session-acl.

Various parameters can be set in command-acl, e.g., permitted sets of IMAP4 commands and

capabilities, timeouts, SSL/TLS on the server connection. The third phase ACLs are used only if

mail processing is enabled in command-acl.

There are two types of them. Mail-acl is checked once for each transferred mail. It defines

rules for accepting or rejecting the mail according to its content and antivirus/antispam test

results. Doc-acl is checked once for each document (MIME part) of a mail. It defines document

processing, e.g., filtration or replacement by a fixed file. See mod-mail-doc(5) for more details.

1143

APPENDIX D. KERNUN UTM REFERENCE (8)

Connection Establishment

When a connection from a IMAP4 client arrives, the configuration is searched for a matching

session-acl. If the ACL says that the connection should be denied or there is no matching

ACL, the proxy does not communicate with the client and closes the connection immediately. In

addition to the generic ACL conditions and actions described in access-control(7), some Imap4-

proxy-specific conditions and parameters can be set. It is possible to set language of protocol

response messages generated by the proxy.

Item client-ssl-params switches on SSL/TLS on the client connection and sets

various SSL/TLS parameters. If the connection from the client uses SSL/TLS then item

client-cert-match defines the acceptable client certificates. If the client certificate does not

pass the test, SSL/TLS connection establishment fails and the connection is closed. SSL/TLS

handshake must complete until idle-timeout expires, otherwise the proxy closes the

connection.

If the client connection is transparent (arriving to a transparent listening port), the original

destination address is detected by the proxy and used as the server address for the server connec-

tion. Otherwise, the server must be specified by item plug-to. It is also possible to override a

transparent destination address by plug-to.

Firewall administrator can choose the out-of-band method described in auth(7) for authenti-

cating users on the proxy.

In the next step, the configuration is searched for a matching command-acl. It is possible

to use values from a client certificate as a search condition. There are many options settable in

command-acl. Language of protocol response messages generated by the proxy can be changed

by language. This item overrides language setting from session-acl.

It is possible to turn on SSL/TLS on the server connection by server-ssl-params and

to set requirements for the server certificate by server-cert-match. SSL/TLS can be used

independently on the client and the server connection, hence the proxy may provide translation

between unencrypted and encrypted communication.

Many limits can be set for a session. If any of the limits is exceeded, the proxy terminates

the session. Total number of bytes transferred during a session is limited separately for client-to-

server (max-bytes-out) and server-to-client (max-bytes-in) directions. No single mail may

be larger than max-mail-in (server-to-client) or max-mail-out (client-to-server) bytes. Total

time of the session is bounded by max-time. The session is terminated if it is idle longer than

idle-timeout.

When a matching command-acl is found and it does not deny the session, the proxy connects

to the server.

Protocol Processing

The proxy passes IMAP4 communication between the client and the server. It performs

basic checks of the protocol. It is possible to permit only a subset of command by

command-acl.commands. A forbidden command is not sent to the server and the proxy

returns an error response. Item command-acl.capabilities selects an allowed subset of

capabilities (returned by server in response to CAPABILITY command). A forbidden capability

1144

is discarded by the proxy and not sent to the client. IMAP4 command LOGOUT or connection

close by either the client or the server terminates the session.

Mail can be transferred to the client or to the server in one of two modes. In the first mode, the

mail is first stored by the proxy, processed, and the result is sent to the client/server. In the second

mode, turned on by item no-mail-scanning in command-acl, the mail is not processed by the

proxy and data from the server are immediately passed to the client and vice versa. In the second

mode without mail processing, antivirus and antispam checking is not performed. No conditions

on mail contents and no mail modification options in mail-acl and doc-acl work, because

mail-acl and doc-acl are not consulted at all (they can be even missing).

Mail Processing

Mail processing is controlled separately for mail transferred from the client to the server

(section command-acl.upload) and for mail transferred from the server to the client (section

command-acl.download). Mail processing is performed for each mail if the active

command-acl does not contain no-mail-scanning. Mail processing options can

be set by mail-filter which contains options specifying corrections of mails violating

RFCs. In command-acl, there are also settings for antivirus and antispam checks (items

use-antivirus and use-antispam, respectively). After a mail is read and stored by the

proxy, it is checked by antivirus and antispam and its structure is analyzed.

Mail-acl (only one) and doc-acl (one for every MIME part of the mail) are found according

to the conditions like direction of mail transfer (download or upload), results returned by the

antispam and the antivirus, size, or MIME type. If any of the selected ACLs contains item deny,

the mail is discarded and an error response is returned to the client. According to doc-acl, each

document (MIME part) may be left unchanged, passed to the HTML filter, or replaced by a file.

Actions defined by mail-acl for the whole mail include adding text to the subject and replacing

the mail body by content of a file. See mod-mail-doc(5) for more details.

Logging

As all other Kernun proxies, imap4-proxy generates many log messages during its operation.

Meaning of the messages may be found in section 6 of the manual pages. Details about Kernun

logging can be found in logging(7).

The proxy logs statistical messages about each client connection and each request. When a

connection arrives, SESSION-START is logged. Then ACL messages inform about the session

and command ACLs selected for this connection. If mail processing is enabled, ACL messages

are logged for each mail and doc ACL. Finally, SESSION-END is logged when the session is

terminated.

Common Kernun Features

Imap4-proxy uses common Kernun mechanisms for listening on its sockets, accepting client

connections, and managing its processes. It can also run in a chrooted environment and change

its user identity upon startup. See also application(5), tcpserver(5), and tcpserver(7).

1145

APPENDIX D. KERNUN UTM REFERENCE (8)

The proxy uses a common Kernun mechanism for network input/output. The configuration

allows to specify several parameters like buffer sizes and timeouts, both for client and server

connections. The parameters are set in configuration sections client-conn and server-conn.

See netio(7) for details.

The proxy uses common Kernun mechanism for name resolving (see resolving(7) manual page).

Imap4-proxy uses common Kernun mechanism for runtime monitoring. For more detailed

information, see monitoring(7).

Imap4-proxy uses common Kernun mechanism for traffic shaping. For more detailed infor-

mation, see traffic-shaping(7).

The proxy uses common Kernun mechanism for document type identification (see

doctype-identification(7) manual page).

OPTIONS

-h Display usage information and exit.

-v Print version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read configuration from cfgfile.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

SEE ALSO

listen-on(5), imap4-proxy.cfg(5), application(5), ssl(5), tcpserver(5), test-expr(5),

access-control(7), configuration(7), logging(7), monitoring(7), netio(7), tcpserver(7),

traffic-shaping(7), transparency(7), resolving(7), doctype-identification(7)

1146

NAME

kat — Kernun Admin Tool

SYNOPSIS

kat [-hv]

kat [-d dbglev] [-f cfgfile]

kat [-d dbglev] [-f cfgfile] command [params ...]

DESCRIPTION

The kat is a complex tool for the Kernun Firewall Administrator to facilitate his/her work (con-

figuration, process management, log inspection etc.). It can be used in two modes:

• When no command is used, the KAT will start interactive mode and prompts user for

commands (see Section D below).

• When a command is used, the KAT executes only given command (see Section D below)

and exits.

The KAT tool uses standard Kernun logging library for displaying messages (see logging(7)),

the messages are written both to the standard error output (i.e. sent to the terminal, typically)

and to the system log (as configured in /etc/syslog.conf file). This behavior can be changed

by setting the environment variable KERNUN_LOG_FILE to a file name willing to be the log

target. As usual, every message (produced by the KAT, not by other system programs called by

the KAT) has a log-id prefix (e.g. CMLK-872-E) that can be found in Kernun section 6 manual

pages (CMLK-720(6) in above example).

Options

The KAT options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debugging level to a specific number. Permitted values are 3 through to 9, 3

being the least and 9 the most verbose. See logging(7) for details.

-f cfgfile Define the default configuration filename for the KAT cml command (see

Section D below) when issued without parameter.

1147

APPENDIX D. KERNUN UTM REFERENCE (8)

KAT COMMANDS

The command line length must be at most 512 characters and at most 50 arguments are allowed.

Command names can be prefixed by a slash (’/’) or dot-slash (’./’) characters for the cml(8)

commands compatibility. Command names are case insensitive.

There are several groups of KAT commands:

configuration cml, apply, rlog, rcsdiff

component management showapp, start, stop, restart, reload

process management ps, kill

other admin tools interface af, cluster, monitor, quarc, router, triplicator

miscellaneous help, man, dbg, !, quit

If the KAT runs in read-only mode (due to current user type), it allows only commands they

do not change the firewall functions. Other commands are disabled.

Configuration commands

One of the essential functions of the KAT is to support the configuration task. The cml command

starts the Configuration Meta Language (CML) tool, while the apply command distributes the

configuration files (generated by the CML) onto proper places of filesystem so that operating sys-

tem and Kernun applications can run according to the settings made by the Kernun administrator.

cml [-g] [-r revision] [filename] Start the CML tool with filename as the configu-

ration file name. For detail information about the tool, see cml(8).

If the filename is omitted, the configuration file is set according to the following rules:

1. the same configuration file as the last cml command used

2. value of the -f option (if given when kat started)

3. value of environment variable $KERNUN_CONF

4. value of C preprocessor macro KERNUN_CONF (in compile time)

5. "conf/kernun.cml".

In the last three cases, if the filename has a relative pathname, it is relative to the kernun-root

directory defined during the installation process. If you want to choose another directory,

you can set the environment variable $KERNUN_ROOT to the directory pathname (w/o the

final slash).

The directory where the configuration file resides becomes the configuration directory used

also in subsequent apply command (see below).

Typically, the /generate command of the cml(8) tool is used at the end of the configuration

process to prepare a full set of configuration files to be applied in the system (see the apply

1148

command below). The “generate-only” mode of the CML run can be requested by using the

-g option — the CML only loads the configuration, generates the output and exits.

The -r option allows user to request loading of a particular revision from RCS file

filename,v. The acceptable forms for revision are major.minor, ’0’ for the last version

stored in RCS, or -n for the n-th version preceding the last version stored in RCS.

apply system-name [host [port]] Copy files generated by the CML tool to the tar-

get system. The files are expected to be in the configuration directory of the last cml

command. If no such command was executed yet, the directory is determined by the same

way as specified above in the cml command description.

In the configuration directory, subdirectories named SYSTEM-name are searched

for. If some of them matches the argument given to this command, the

$KERNUN_ROOT/bin/apply.sh shell-script is executed to distribute the file tree.

The command will operate locally (i.e. copy the files into filesystem root on local host) unless

the apply-host directive is specified in the particular system section. In this case, the

generated output tree is first copied by the ssh(1) to the target machine and then, the kat

apply is run there. The last two parameters can be used to redefine the address and port

where the ssh daemon on the target host listens on.

Besides copying files onto proper place in the filesystem, the command typically does some

other work, like modifying operating system user set, creation of chroot-directories including

all necessary files, mounting device filesystem etc.

Warning

The names of system sections in the CML are case-insensitive, but after generating

the file tree, they becomes the regular UNIX file names that are case sensitive, of course.

If you have changed the system name capitalisation not changing the spelling, you will

have to remove the old configuration output tree by hand.

rlog [[-r] rev [[-r] rev] [file]]

Display RCS log of given file (kernun.cml by default).

Without -r options, the command shows the complete log. When some rev arguments used,

only these revision logs are displayed.

For the rev specification, the following forms are allowed:

revision number For instance, “2.13”.

0 The current revision.

-1, ... The previous and older revisions.

If the rev starts with a digit, the “-r” text should be omitted.

rcsdiff [[-r] rev [[-r] rev] [file]]

1149

APPENDIX D. KERNUN UTM REFERENCE (8)

Display differences (the diff(1) output) between two versions of given file (kernun.cml by

default).

Without -r options, the command compares the file with the last revision in the RCS file.

With a single -r option, the command compares the file with the given revision. With two

-r options, the command compares the two given revisions.

For the rev specification, the same forms as in the rlog command are allowed.

Component management commands

The KAT tool facilitates managing of Kernun firewall components, i.e. Kernun applications (Ker-

nun proxies, SSH servers, nameservers, DHCP server, NTP daemon, postfix SMTP forwarders,

PIKE monitor) and networking components (packet filter, network interfaces and routing) config-

ured in the configuration file. All networking components are started by operating system itself.

All applications are started after operation system boot by means of the kernun.sh rc-script

placed into the directory /usr/local/etc/rc.d during the installation process.

All components write a hash of their configuration into the file /var/run/name during the

startup process. Commands of this group can then detect components running with outdated

configuration and needed to be restarted.

All commands of this group primarily look for component names in the

$KERNUN_ROOT/etc/component.lst file generated by the cml.generate command. They

do not respect the running applications (except for displaying their status etc.), they can be

managed by Process management commands (see Section D below).

showapp [-n] [-tT tag [-o format]]

Display all configured components.

Options:

-n Display only “new” components, i.e. such ones with changed configuration.

-o format Display columns in order given by the format string. The string consists from

heading names separated by commas. By default, command behaves like with the

NAME,PROG,TYPE,PARM,TAGS,STAT,PRTY format.

-tT tag Display all components with (-t) or without (-T) given tag. Use the asterisk

(*) value for “any tag”. For the list of the tags, use the C3H support.

start options params Start the component(s).

Prior to starting any application, the KAT checks, whether requested applications are not

already running, in which case the KAT rejects to start it.

stop options params Immediately stop component(s).

This command is not effectual to unconfigured or exiting proxies. Those must be killed by

the kill command (see below).

restart options params Immediately stop component(s).

1150

reload options params Gracefully stop component(s).

This command should be preferred in the normal circumstances. Use it rather than the

restart command. All particular proxies are switched to an exiting state in which they do

not accept new incoming requests awaiting to the end of all established connections.

All the control commands (start, stop, restart and reload) have following parameter speci-

fication possibilities:

command name Start/stop/restart/reload a component referenced in the configuration by the

name.

command -a type Start/stop/restart/reload all components of given type. For the list of the

types, use the C3H support. Generally, proxy type names (like http-proxy) and compo-

nent types (like proxy, sshd, postfix, cluster.monitor, interface and routing)

can be used.

command -tT tag Start/stop/restart/reload all components with (-t) or without (-T) given

tag. Use the asterisk (*) value for “any tag”. For the list of the tags, use the C3H support.

command Start/stop/restart/reload all Kernun applications (i.e. all components except net-

work interfaces and routing). Before execution, the KAT tool asks the user to confirm it.

All the control commands recognize following options:

-n Start/stop/restart/reload only “new” components, i.e. such ones with changed configuration.

-y Answer “yes” to confirmation when starting all Kernun applications.

If there are more components to start, the KAT tool tries to repeat attempts to start them

until all components succeed, or two consecutive loop iterations do not improve the state.

Process management commands

In the contrary to previous group of commands, process management commands does not deal

with applications (proxies/ssh servers) according to the way how they are configured. Instead,

current running processes are dealt with. The name of the proxy or ssh server is read from the

ps(1) system command output.

ps [-abdS] [-tT tag { name[=parent-pid] | [-p program-name] }]

Display information (using the system ps(1) command) about

all Kernun applications (proxy and server parents) if used without parameter.

all Kernun applications of given program type if used with the program-name pa-

rameter.

all processes (including children) of all Kernun applications given by name if

used with the name parameter.

all processes (including children) of a single Kernun application if used with the

name and the parent-pid parameters.

1151

APPENDIX D. KERNUN UTM REFERENCE (8)

Option -a causes displaying information about all processes (including children) in any form

of command.

Option -b forces brief output format.

Option -d restricts information to only such applications that are still running although

they have been unconfigured (dead).

Option -t restricts information only to applications with given tag. If the asterisk (*) value

is used, applications with any tag are displayed.

Option -T restricts information only to applications without given tag. If the asterisk (*)

value is used, applications without any tag are displayed.

Option -S shortens output lines up to the terminal width.

kill [-signal name[=parent-pid] [child-pid]]

Send a signal to

a non-proxy component process The component is identified by its name.

a single proxy-parent The proxy is identified by its name and it must be the only live

(not counting exiting processes) parent of given proxy.

a selected proxy-parent The proxy is identified by its name and parent-pid. This form

of command acts to the exiting processes, too.

all proxy-parents The proxy is identified by its name and an asterisk (*) is used instead

of the parent-pid. This form of command acts to the exiting processes, too.

all components The asterisk (*) is used both for the name and the parent-pid. This form

of command acts to the exiting processes, too.

a selected proxy-child The proxy is identified by its name and eventually parent-pid,

child process is identified by its child-pid.

all proxy-children The proxy is identified by its name and eventually parent-pid, the signal

is sent to all children of given parent(s) if the asterisk (*) is used instead of the child-pid

parameter.

If no signal is specified, the default signal is used (15, or TERM). When sending the TERM or

the HUP (1) signal to a proxy parent, the KAT repeats sending of it until killing succeeds.

If the retry limit (10x) is reached, the KILL (9) signal is sent (to parent and all children),

instead.

kill -d name[=parent-pid [child-pid]]

Send the TERM signal to all unconfigured (dead) components.

Log control and management

The KAT tool facilitates log level control, log rotation and log inspection.

1152

log { incr | decr | restart | rotate } [proxy]

Control proxy logging. Subcommands incr and decr increases/decreases proxy logging

level. Subcommand restart forces proxy to reopen the log file. Subcommand rotate

rotates particular proxy log file (i.e. renames the file and restarts proxy logging). If used

without proxy name, rotates all proxies.

Other admin tools interface

There are some other administrator tools in the Kernun Firewall. Commands in this group facili-

tate using of them.

cluster { take | drop } [VCID]

Take or drop Master role for all virtual clusters, or just the one with number VCID.

af blacklist { show | count | flush | add ... | del ... | unblock IP-address | upload | refresh }

Adaptive Firewall autonomous blocking module control.

show Show the current blacklist set in the packet filter.

count Print number of addresses in the current blacklist in the packet filter.

flush Flush all addresses of the current blacklist in the packet filter.

add IP-address Add an IP address to the current blacklist in the packet filter.

Warning

The table remains changed only until the next table refresh interval. Do not use

this command to block an IP address. Use the BLOCK command instead.

del IP-address Delete an IP address from the current blacklist in the packet filter.

Warning

The table remains changed only until the next table refresh interval. Do not use

this command to unblock an IP address. Use the UNBLOCK command instead.

block IP-address Adds given address to the PF blacklist table and the AKBL database

table.

unblock IP-address Removes given address from the PF blacklist table and all IDS

database tables.

upload Upload the Adaptive Firewall IDS database to central server.

refresh Fetch a new Adaptive Firewall IPS database (according to the configuration either

feed it from the local IDS database, or download it from the central server) and install

it to the packet filter.

af pf { find IP-address | show table-name } Works with AF packet filter tables.

find IP-address Search for an IP address in all Adaptive Firewall packet filter blocking

tables.

1153

APPENDIX D. KERNUN UTM REFERENCE (8)

show table-name Show table content.

af download ids-agent-rules Downloads IDS agent rules and install them.

af download adaptive-database Downloads the Adaptive database install the data into PF

tables.

af ... Calls af-db.sh(8) tool.

monitor ... Monitor proxies activity, see monitor(1).

quarc ... Control mail quarantine, see quarc.sh(1).

router name ... Provides additional routing protocol daemon commands:

show route [all] Show routing table.

show ospf Show OSPF configuration information.

show ospf state[all] Show OSPF status information.

triplicator proxy command [params] Display or change data in grey-list triplet database,

see triplicator(1).

Miscellaneous commands

dbg level [{ con | log [filename] }]

Change amount of displayed messages to the level (see logging(7) for possible values and

their meaning).

If you want to change the level only for console or log, you can specify the con or log

keyword respectively. In the case of log, you can also change the target file name.

help command Get help about the KAT command.

man [section] topic Interface to the man(1) command with the priority of the Kernun

manual pages.

[!] command... Execute shell command.

If the command name does not collide with any KAT command, the ’!’ prefix should be

omitted.

quit Quit the KAT tool.

C

3

H SUPPORT

The Command Completion and Context Help (C3H) support helps you to write correct commands

or proper parameters a bit faster. The simple basic rule is: “If you don’t know what to do now, press

<TAB>!”. Of course, it does not work absolutely perfectly in all situations, but it works e.g. when

selecting a configuration file (cml, quarc), a system name (apply), a proxy name (application

management, process management, showlog, monitor), a manual page name (man), a signal

name (kill) etc.

1154

Control Sequences

The End-of-file control sequence (ˆD, Control-D) can be used for quitting the KAT tool.

The ˆR (Control-R) sequence is used for command history searching. You can type part of

some previous command (the part is displayed in the prompt) and C3H searches in the history

to the last command containing such a string. This command is then displayed on the command

line and you can tune the selection by adding more characters to the pattern, removing some

characters by the Backspace key or repeating the search by pressing ˆR again. If your selection

is completed, press Enter, the selected command is placed into the command line buffer and you

can edit it. The KAT tool saves command history at the end of its work and restores it at the

beginning.

The ˆU (Control-U) sequence is used for clearing the command line.

ENVIRONMENT

KERNUN_LOG_FILE The file name where log messages will be redirected. If not set, system

logging is used.

SEE ALSO

Kernun: af-db.sh(1), monitor(1), quarc.sh(1), triplicator(1), kernun.cml(5), adaptive-firewall(7),

configuration(7), logging(7), tcpserver(7), transparency(7), cml(8), pf-control(8)

FreeBSD: bzip2(1), diff(1), kill(1), man(1), ps(1), ssh(1), tail(1), pf(4), pfctl(8)

1155

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

kavhttpd — Kaspersky AV in HTTP mode integrated in Kernun UTM

SYNOPSIS

service kavhttpd { bases_being_updated| bases_check| bases_date|

bases_last_update| bases_redownload| bases_update| bases_update_slp|

hash| keyinfo| kill_orphans| licinfo| reload| restart| start| status|

stop| test| version }

DESCRIPTION

Kavhttpd is controlled by this RC script. This page describes the special configuration parameters

and commands for the RC script.

Configuration

The kavhttpd is configured by rc.conf(5).

The working configuration file for kavhttpd is created by this script from the

configuration parameters. The working configuration file for kavhttpd is located at

/usr/local/kav_httpd/etc/kavhttpd.xml.

The working configuration file for keepup2date8 (the bases update program) is created by

this script from the configuration parameters. The working configuration file for keepup2date8

is located at /usr/local/kav_httpd/etc/keepup2date8.xml.

The following special variables can be set:

kavhttpd_port The TCP port the kavhttpd should listen for connections.

kavhttpd_addr The IP address or hostname the kavhttpd should listen for connections.

kavhttpd_maxhttpsessionsnum The maximum number of active HTTP sessions that are

handled by KAV HTTPD simultaneously. Extra connections are queued by the system.

The queue size is defined by kavhttpd_acceptqueuelen.

kavhttpd_acceptqueuelen The length of the queue of pending connections to the kavhttpd

(the backlog argument to the listen(2) syscall). 0 means the system default.

kavhttpd_maxtcpfilesize The maximum size (in bytes) of the file contents which can be

passed to KAV HTTPD.

kavhttpd_sessiontimeout The timeout for processing the request and sending the response,

in milliseconds. To use an infinite timeout, set this value to 0.

kavhttpd_scannerscount The number of scanning processes. The maximum permissible

number of scanning processes is 256. Note that in out-of-process mode every scanner process

uses its own copy of anti-malware database. Thus initializing with a large number of scanner

1156

processes consumes considerable time and memory resources. It is recommended to use

kavhttpd_scannerscount equal to the number of CPU cores.

kavhttpd_threadscount The maximum number of simultaneously running scanning threads.

The scanning threads are distributed among scanning processes. The maximum permissible

number of scanning threads is 256.

kavhttpd_queuelen The maximum length of the scanning task queue. The queue is used in

asynchronous scanning. All the scanning processes take the scanning tasks from a single

queue.

kavhttpd_loglevel 0 disables logging. 1 enables full logging mode. Use this mode for debug-

ging purposes.

RC-script commands

The following extra commands can be used.

bases_being_updated Checks whether the bases update is being performed at the moment.

Returns 1 if yes. Returns 0 if not.

bases_check Runs the kav internal program for checking the bases consistence.

bases_date Prins the bases release timestamp.

bases_last_update Prints the timestamp when the last succesful bases update has finished

(either the bases were updated or they were already up-to-date).

bases_redownload Deletes the bases and downloads it from a scratch.

bases_update Updates the bases now. The progress is printed to log and to stderr. Eventual

errors are printed to stdout. Return 0 if the update was succcessfull.

bases_update_slp Sleeps random time (0..1800 sec) and updates the bases. The progress is

printed to log and stderr. Eventual errors are printed to stdout. Return 0 if the update was

succesful.

hash Prints the configuration hash.

keyinfo Prints the information on the KAV KEY file.

kill_orphans Kills the eventual ’kavscanner’ orphans. They may occur, when the ’kavscanner’

is inappropriately killed.

licinfo Prints the information on the KERNUN-KAV license file. Returns 0 if the license is

valid.

reload Same as restart.

restart Restarts the kavhttpd.

start Starts the kavhttpd.

1157

APPENDIX D. KERNUN UTM REFERENCE (8)

status Whethe the kavhttpd is running.

stop Stops the kavhttpd.

test [filename ...] Performs a basic AV test: CLEAN and EICAR files are tested. Returns

0 upon success. If files are given, they are tested instead of CLEAN and EICAR. If files are

given, the return code is always 0.

version Prins the version of kavhttpd.

SEE ALSO

Kernun: configuration(7),

System: rc.conf(5),

1158

NAME

pf-control — Packet filter control daemon

SYNOPSIS

pf-control [-hv] [-d dbglev] -f cfgfile

DESCRIPTION

The packet filter function of Kernun is configured by the packet-filter CML section and controlled

by a special component PF of type pf-control.

When started, this application tries to resolve all domain names in the configuration, prepares

PF tables and schedules itself to make necessary changes if the configuration contains time-limited

rules. Then it enables the PF in the system (see pfctl(8)) and starts logging of PF events and

monitoring of changes due to DNS resolution or time contraints. When stopped, the program

disables the PF in the system.

The daemon runs in fact as three processes, like Kernun proxies do. The main process just

controls run of its children. The Asynchronous Configuration Resolver provides for DNS resolution

refreshing. The regular child process handles PF tables and reads pflog(4) and pfsync(4) devices

as a source of PF event information to log it to both log-debug and log-stats logs.

LOGGING

The pf-control daemon uses the same principles for configuration of logging like other Kernun

components (see logging(7)). However, some aspects of its logging are a bit special. Every ACL

from the packet-filter configuration controls some events that are logged according their nature

and the same is true for raw rules configured manually. The extent of logging can be also changed

by using a special ACL item or PF rule attribute log.

The ACL item has four possible values (some are not valid for some types):

default Default way of logging according to the event type.

off Logging is suppressed to the minimum extent. It corresponds to raw rules with no log

option.

on Logging is switched on. It corresponds to raw rules with log option.

all Logging is switched to the maximum extent (all packets). It corresponds to raw rules with

log(all) option.

The event types behaves according to this schema:

Blocking rules By default, an event is logged to both log-debug and log-stats logs with

the I-level. No modification of this mode is allowed.

1159

APPENDIX D. KERNUN UTM REFERENCE (8)

Stateful PASS rules By default, an event is logged to the log-stats log at the end with

the I-level, and to the log-debug log also at the start with the D-level. Values off and

all can be used for varying the quantity of log-debug messages.

Stateless PASS rules By default, an event is logged only to the log-debug log with the

D-level. Value off can be used for switching off the logging at all.

NAT and RDR rules By default, an event is logged to the log-stats log at the end with the

I-level. No modification of this mode is allowed.

SIGNALS

The pf-control daemon handles following signals:

SIGUSR1 Log level increasing.

SIGUSR2 Log level decreasing.

SIGINFO Operation status logging; parent process logs info about all children, child process logs

current rule map.

SIGHUP Service termination; the daemon keeps the PF tables, rules and states.

SIGINT, SIGQUIT, SIGTERM Immediate termination; the daemon flushes the PF states and

disables PF at all.

OPTIONS

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

SEE ALSO

Kernun: application(5), pf-control.cfg(5), configuration(7), logging(7), resolving(7)

FreeBSD: pf.conf(5), pfctl(8)

1160

NAME

pikemon — PIKE cluster protocol control daemon

SYNOPSIS

pikemon [-hv]

pikemon [-d dbglev] -f cfgfile

pikemon [-d dbglev] -f cfgfile -c command

test-pikemon [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The redundancy cluster feature of Kernun firewall needs a daemon monitoring the status of clus-

ter members and operation ability using the PIKE protocol. This is the task of the pikemon

application. The second task of the application is to execute special commands for controling the

cluster. For this purpose, the application is called in non-daemon mode.

When started as the PIKE protocol monitor, pikemon reads the status-file and sets

the (Master or Backup) role of the node according to the content of the file. Then it starts to

check its health status by sending ICMP ECHO messages to all configured targets (ping groups)

and monitoring status of interfaces defined in the configuration. It also starts to send HELLO

messages from the PIKE protocol over the heart-beat interface to the cluster peer. The health

status and the result of the dialogue with the partner in the cluster can lead to taking or dropping

the Master role of the node.

Taking the Master role means stealing the shared virtual IP and MAC addresses of all controlled

interfaces i.e. sending proper gratuitous ARP packets. Thus, all bridge interfaces must have the

IP address assigned in the configuration. The MAC address is assigned as 02:IP address:00 by

default, but it can be changed. The Backup node keeps the IP address assigned unless marked as

nomadic in the pike item.

The daemon runs in fact as three processes, like Kernun proxies do. The main process just

controls run of its children. The Asynchronous Configuration Resolver provides for DNS resolution

refreshing. The regular child process handles the real operation and in its process information

(shown by the ps), the current status of all virtual clusters is figured out. There is a group of

three letters for each virtual cluster with following meaning:

P This node wants to act as the primary node.

S This node wants to act as the secondary node.

M This node currently plays the Master role.

B This node currently plays the Backup role.

U This node has responses from all ping groups (“up” state).

1161

APPENDIX D. KERNUN UTM REFERENCE (8)

D This node did not get response from at least one ping group (“down” state).

The current status of this host and the cluster peer as well as results of pinging to the target

hosts can be watched by the monitor(1) tool avaliable also as a command of the kat(8) tool.

When started with the -c option, pikemon reads the status file and the configuration, executes

command requested and exits.

SIGNALS

The pikemon daemon handles following signals:

SIGUSR1 Log level increasing.

SIGUSR2 Log level decreasing.

SIGINFO Operation status logging; parent process logs info about all children, child process logs

current status of all ping groups.

SIGHUP Service termination; the daemon keeps the state until a new instance is started which

kills it.

SIGINT, SIGQUIT, SIGTERM Immediate termination; the daemon immediately closes the service

and drops Master role.

OPTIONS

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-c command Execute command (see below) and exit.

COMMANDS

take [VCID]

Takes Master role in all virtual clusters, or just in the virtual cluster with number VCID.

drop [VCID]

Drops Master role in all virtual clusters, or just in the virtual cluster with number VCID.

1162

SEE ALSO

Kernun: monitor(1), application(5), pikemon.cfg(5), cluster(7), configuration(7), logging(7),

resolving(7), kat(8)

1163

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

pop3-proxy, test-pop3 — Post Office Protocol v. 3 (POP3) proxy

SYNOPSIS

pop3-proxy [-hv] [-d dbglev] -f cfgfile

test-pop3 [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

Program pop3-proxy is the proxy daemon for Post Office Protocol version 3 (RFCs 1939, 2449,

1734). The proxy supports secure communication via SSL/TLS protocols, see ssl(5).

STARTUP AND CONFIGURATION

The proxy reads its configuration and starts listening on TCP sockets (address/port couples)

specified by listen-on configuration section, see listen-on(5). If support of transparent con-

nections (i.e., connections made directly from a POP3 client to a POP3 server and redirected to

the proxy by NAT as described in transparency(7)) is requested by item transparent in sec-

tion listen-on, the corresponding NAT redirections are established during proxy startup and

removed upon exit.

Format of the configuration file is described in pop3-proxy.cfg(5). General syntax of Kernun

configuration files is explained in configuration(7). Program test-pop3 tests syntax and partially

semantics of configuration; for test expression syntax, see test-expr(5).

Access Control

Pop3-proxy uses three-phase ACLs, see access-control(7). The first phase, session-acl is

checked once for each client connection. It permits or denies client access and sets some connection

parameters. The second phase, command-acl is also checked once for each connection, but it

can be selected according to the client certificate in case of SSL/TLS enabled by session-acl.

Various parameters can be set in command-acl, e.g., permitted sets of POP3 commands and

capabilities, timeouts, SSL/TLS on the server connection.

The third phase ACLs are used only if mail processing is enabled in command-acl. There

are two types of them. Mail-acl is checked once for each mail transferred from the server

to the client. It defines rules for accepting or rejecting the mail according to its content and an-

tivirus/antispam test results. Doc-acl is checked once for each document (MIME part) of a mail.

It defines document processing, e.g., filtration or replacement by a fixed file. See mod-mail-doc(5)

for more details.

1164

Connection Establishment

When a connection from a POP3 client arrives, the configuration is searched for a matching

session-acl. If the ACL says that the connection should be denied or there is no matching

ACL, the proxy does not communicate with the client and closes the connection immediately. In

addition to the generic ACL conditions and actions described in access-control(7), some Pop3-

proxy-specific conditions and parameters can be set. It is possible to set language of protocol

response messages generated by the proxy.

Item client-ssl-params switches on SSL/TLS on the client connection and sets

various SSL/TLS parameters. If the connection from the client uses SSL/TLS then item

client-cert-match defines the acceptable client certificates. If the client certificate does not

pass the test, SSL/TLS connection establishment fails and the connection is closed. SSL/TLS

handshake must complete until idle-timeout expires, otherwise the proxy closes the

connection.

If the client connection is transparent (arriving to a transparent listening port), the original

destination address is detected by the proxy and used as the server address for the server connec-

tion. Otherwise, the server must be specified by item plug-to. It is also possible to override a

transparent destination address by plug-to.

Firewall administrator can choose the out-of-band method described in auth(7) for authenti-

cating users on the proxy.

In the next step, the configuration is searched for a matching command-acl. It is possible

to use values from a client certificate as a search condition. There are many options settable in

command-acl. Language of protocol response messages generated by the proxy can be changed

by language. This item overrides language setting from session-acl.

It is possible to turn on SSL/TLS on the server connection by server-ssl-params and

to set requirements for the server certificate by server-cert-match. SSL/TLS can be used

independently on the client and the server connection, hence the proxy may provide translation

between unencrypted and encrypted communication.

Many limits can be set for a session. If any of the limits is exceeded, the proxy terminates the

session. Total number of bytes transferred during a session is limited separately for client-to-server

(max-bytes-out) and server-to-client (max-bytes-in) directions. No single mail may be

larger than max-mail-in bytes. Total time of the session is bounded by max-time. The session

is terminated if it is idle longer than idle-timeout. POP3 is a line-oriented protocol. The proxy

checks length of each line and terminates the session if a line exceeds a limit: cmd-line-len

for command lines sent by the client, resp-line-len for response lines sent by the server, or

mail-line-len for mails received from the server.

When a matching command-acl is found and it does not deny the session, the proxy connects

to the server.

Protocol Processing

The proxy passes POP3 communication between the client and the server. It performs basic

checks of the protocol. Line lengths are compared to limits from command-acl. It is possible to

permit only a subset of command by command-acl.commands. A forbidden command is not

1165

APPENDIX D. KERNUN UTM REFERENCE (8)

sent to the server and the proxy returns an error response. Item command-acl.capabilities

selects an allowed subset of capabilities (returned by server in response to CAPA command). A

forbidden capability is discarded by the proxy and not sent to the client. POP3 command QUIT

or connection close by either the client or the server terminates the session.

Retrieved mail can be transferred to the client in one of two modes. In the first mode, the

mail is first stored by the proxy, processed, and the result is sent to the client. In the second

mode, turned on by item no-mail-scanning in command-acl, the mail is not processed by

the proxy and each line from the server is immediately passed to the client. In the second mode

without mail processing, antivirus and antispam checking is not performed. No conditions on mail

contents and no mail modification options in mail-acl and doc-acl work, because mail-acl

and doc-acl are not consulted at all (they can be even missing).

Mail Processing

Mail processing is performed for each mail if the active command-acl does not contain

no-mail-scanning. Mail processing options may be set by command-acl.mail-filter.

In command-acl, there are also settings for antivirus and antispam checks (items

use-antivirus and use-antispam, respectively). Section mail-filter contains options

mainly specifying corrections of mails violating RFCs. After a mail is read from a server and

stored by the proxy, it is checked by antivirus and antispam and its structure is analyzed.

Mail-acl (only one) and doc-acl (one for every MIME part of the mail) are found according

to the conditions like results returned by the antispam and the antivirus, size, or MIME type. If any

of the selected ACLs contains item deny, the mail is discarded and an error response is returned

to the client. According to doc-acl, each document (MIME part) may be left unchanged, passed

to the HTML filter, or replaced by a file. Actions defined by mail-acl for the whole mail include

adding text to the subject and replacing the mail body by content of a file. See mod-mail-doc(5)

for more details.

Logging

As all other Kernun proxies, pop3-proxy generates many log messages during its operation.

Meaning of the messages may be found in section 6 of the manual pages. Details about Kernun

logging can be found in logging(7).

The proxy logs statistical messages about each client connection and each request. When a

connection arrives, SESSION-START is logged. Then ACL messages inform about the session

and command ACLs selected for this connection. If mail processing is enabled, ACL messages

are logged for each mail and doc ACL. Finally, SESSION-END is logged when the session is

terminated.

Common Kernun Features

Pop3-proxy uses common Kernun mechanisms for listening on its sockets, accepting client con-

nections, and managing its processes. It can also run in a chrooted environment and change its

user identity upon startup. See also application(5), tcpserver(5), and tcpserver(7).

1166

The proxy uses a common Kernun mechanism for network input/output. The configuration

allows to specify several parameters like buffer sizes and timeouts, both for client and server

connections. The parameters are set in configuration sections client-conn and server-conn.

See netio(7) for details.

The proxy uses common Kernun mechanism for name resolving (see resolving(7) manual page).

Pop3-proxy uses common Kernun mechanism for runtime monitoring. For more detailed

information, see monitoring(7).

Pop3-proxy uses common Kernun mechanism for traffic shaping. For more detailed informa-

tion, see traffic-shaping(7).

The proxy uses common Kernun mechanism for document type identification (see

doctype-identification(7) manual page).

OPTIONS

-h Display usage information and exit.

-v Print version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read configuration from cfgfile.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

SEE ALSO

listen-on(5), pop3-proxy.cfg(5), application(5), ssl(5), tcpserver(5), test-expr(5), mod-mail-doc(5),

access-control(7), configuration(7), doctype-identification(7), logging(7), monitoring(7), netio(7),

resolving(7), tcpserver(7), traffic-shaping(7), transparency(7)

1167

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

sip-proxy, test-sip — Session Initiation Protocol (SIP) proxy

SYNOPSIS

sip-proxy [-hv] [-d dbglev] -f cfgfile

test-sip [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The sip-proxy provides proxying service for the Session Initiation Protocol (RFC 3261 et al.).

This is the first version implemented in the Kernun firewall and as such it supports mainly Internet

telephone calls and related services.

Program test-sip tests syntax and partially semantics of the configuration; for test expres-

sion syntax, see test-expr(5).

Format of the proxy configuration file is described in sip-proxy.cfg(5).

RFC describes two modes of proxy operation, stateful and stateless. The Kernun firewall

SIP proxy behaves something in between of them. It provides almost full control of security

aspects (allowing and denying requests, checking messages format, watching time spent and data

transferred etc.). On the other hand, it does not take the control of application-level aspects (like

resending requests and responses, acknowledging sessions etc.), these remain completely on the

UAs responsibility.

In normal circumstances, clients register themselves via the proxy and after it they can either

invoke or accept calls. In the case of using of public addresses or controlling via the configuration,

clients can accept calls without registration. Data of all registered clients are stored into a special

file (see the map-file configuration item desciption).

The proxy works both in transparent (see transparency(7)) and in non-transparent mode. The

latter is recommended, however it requires to configure the outbound proxy on all clients and the

plug-to configuration item in the proxy configuration. In the transparent case, the proxy hides

its role in the communication process and it can cause problems in some cases.

The proxy remembers transparency mode for every registration and subsequent incoming calls

are forwarded according to it. Thus, if a client (phone) has registered transparently, the data sent

from the proxy to it in future incoming calls will use the caller address as the IP source address

(like if the source-address client mode used). The proxy assumes that responses will be

sent transparently to caller address and so they will reach the proxy again.

In all other cases, the proxy forwards messages using its own address. It tries to find a proper

route, takes the corresponding interface address and checks whether it also listens on this address.

Then, it uses this address (and the first bound port) as the source address. If some of these

cheks fail, the session is rejected. Specially, for every outgoing direction, you must have proper

non-transparent listening socket opened to be able to receive responses and incoming calls. The

1168

source-address is kept in the configuration for special cases, but in normal circumstances, it

is not needed.

For the security reason, the proxy allows the administrator to hide some important data (e.g.

internal addresses) usually stored into SIP messages headers. This can be done via the hide

configuration item of the session-acl configuration sections. In this case, the proxy hashes

(using the hash-salt) private data and presents itself to outer world, instead of real client or

server. The session identification (carried in the Call-ID header) is rewritten always, so the

proxy acts as a terminal UAC/UAS of the call, from the Call-ID point of view.

The proxy usually runs as two processes (not counting the configuration resolving process - see

resolving(7)): the single child process manages all the sessions and the parent process manages

the child and restarts it after a failure. You can learn more in udpserver(7) manual page, although

the sip-proxy does not use the udpserver library, in fact. However, it uses the same operation

logic.

Common Kernun Features

The proxy uses common Kernun mechanism for network input/output operations. Configuration

allows for specifying several parameters like buffer sizes and timeouts, both for control and data

connections. They can be included in the ctrl-conn and data-conn configuration sections,

respectively. For more detailed information, see netio(7).

The proxy uses common Kernun mechanism for logging (see logging(7)). For every session,

the SESSION-START (SIPS-800-I), the ACL (SIPS-821-I and SIPS-822-I), the SESSION-INIT

(SIPS-801-I) and the SESSION-END (SIPS-809-I) messages are logged. For every request, the

SIPR-800-N message is logged, reporting both the request and the response. For every used data

channel, a couple of DATA-END (SDPC-800-N) messages are logged, reporting amount of data

and termination time of both sides of the channel.

Startup and Configuration

The proxy reads its configuration file and starts listening on specified IP sockets (address/port

couples), as specified in the listen-on configuration section (see listen-on(5)). Proxy listens for

both UDP and TCP protocols.

If support of transparent connections (see transparency(7)) is requested by item transparent

in section listen-on, the corresponding NAT redirections are established during proxy startup

and removed upon exit.

Access Control Lists

The proxy uses two layers of ACL (see access-control(7)) named session-acl and

request-acl.

When the first request of a session arrives, configuration is consulted, proper session-acl is

selected and according to it, the session is served or not. In the latter case, the request is ignored,

by default. This feature can prevent against DoS attacks caused by sending lots of unauthorized

packets. Regular termination of session according to the RFC (i.e. with replying and waiting

1169

APPENDIX D. KERNUN UTM REFERENCE (8)

for specified time, client deresolving, etc.) can be forced by the reject-gracefully item of

particular session-acl section.

Subsequently, protocol-specific parameters of the request is checked against set of

request-acl entry conditions and proper mode of operation is selected.

Additionally to the general Kernun ACL concept, request-acl brings a new entry condition

item:

request-uri This item contains a set of regular expressions and/or strings describing URIs

used in request that is to be dealt by this request-acl. By this item, the administrator

can switch traffic to different plug-to servers according to the Request URI format.

Subsequent requests within the same session are not checked again, in this version.

Signals

The sip-proxy handles following signals:

SIGUSR1 Log level increasing.

SIGUSR2 Log level decreasing.

SIGINFO Operation status logging; parent process logs info about all children, child process

dumps registration map and all tables content.

SIGHUP, SIGINT, SIGQUIT, SIGTERM Immediate termination; proxy immediately closes all

connections and terminates.

SIGWINCH Reopen logfile; if the proxy logs into a file, sending this signal causes the file will be

reopened. This feature helps admin to rotate logfiles.

Program options

The program options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-r Resolve names in configuration prior to testing.

-t test-expr Test configuration according to given expression. Format of the test-expr is

described in test-expr(5).

1170

BUGS

Currently, the sip-proxy doesn’t resolve domain names used in SIP messages and UA addresses.

The DNS querying should slow down the proxy, too much.

SEE ALSO

Kernun: sip-proxy.cfg(5), listen-on(5), application(5), test-expr(5), SIPS-800(6), SIPS-801(6),

SIPS-809(6), SIPS-821(6), SIPS-822(6), SIPR-800(6), SDPC-800(6), access-control(7),

configuration(7), logging(7), netio(7), resolving(7), transparency(7), udpserver(7)

1171

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

smtp-proxy, test-smtp — Simple Mail Transfer Protocol (SMTP) proxy

SYNOPSIS

smtp-proxy [-hv] [-d dbglev] -f cfgfile

test-smtp [-hv] [-d dbglev] -f cfgfile [-r] [-t test-expr]

DESCRIPTION

Program smtp-proxy is the proxy daemon for the Simple Mail Transfer Protocol (RFCs 2821,

2822, 2045 etc.). The proxy is not a final delivery server, so it indeed supports the SMTP com-

mands like VRFY and EXPN but responds by the SMTP defined negative response.

Startup and Configuration

The proxy reads its configuration and starts listening on TCP sockets (address/port couples)

specified by listen-on configuration section, see listen-on(5). If support of transparent con-

nections (see transparency(7)) is requested by item transparent in section listen-on, the

corresponding NAT redirections are established during proxy startup and removed upon exit.

However, transparent connections are in fact not supported by this proxy, decisions about servers

are made according to the proxy configuration, not by original destination.

Format of the configuration file is described in smtp-proxy.cfg(5). General syntax of Kernun

configuration files is explained in configuration(7).

Program test-smtp tests syntax and partially semantics of configuration; for test expression

syntax, see test-expr(5).

Access Control

The smtp-proxy uses standard Kernun access control (see access-control(7)) with four types of

ACLs on three levels:

1. session-acl (level 1) is checked once for each client connection and defines general proto-

col behavior, or rejecting the connection. In addition to the generic ACL conditions and ac-

tions, some smtp-proxy-specific conditions and parameters can be set (see smtp-proxy(5)).

2. delivery-acl (level 2) is checked once for each mail recipient and defines the response

to the RCPT TO command, i.e. way of delivery, or rejecting particular addressee. During

this phase, the correctness of all the commands (HELO, MAIL FROM and RCPT TO)

and its arguments is checked and proper decision is made.

1172

Warning

When resolving domain names, the current resolver section setting is applied. It

means that the search list (if present) is tried when some resolution fails. If this

search-list contains some domain having the *.domain MX record set, then every

resolution will succeed and errors like unknown-perm will never occur. This is proba-

bly not what you want. To solve this problem you can define a new resolver section

without the search item and then use this resolver in the particular smtp-proxy only

by the use-resolver item in the proxy configuration section.

3. mail-acl (level 3M) is checked once for each mail recipient and it defines rules whether to

reject/accept forwarding the mail to him/her.

4. doc-acl (level 3D) is checked once for each recipient and document (MIME part) and it

defines document processing mode (e.g. filtering, replacing etc.).

Warning

The proxy uses the same approach to the complexity of ACL set as any other Kernun

proxy. However, there is a special feature of the SMTP protocol that within a single session,

data for many users can be transported. An incomplex ACL set leading to the ACL search

failure will cause (comparably to other proxies) an abort of the whole session. Thus, it

is highly recommended to add a single denial ACL to the end of every layer ACL set (i.e.

delivery-acl, mail-acl and doc-acl). These “sentinel” ACLs should cover “the rest

of the world”, i.e. they will typically have no entry conditions and a proper denial operation

included.

For detail description of mail processing, see below Section D.

Client verification

The Kernun smtp-proxy provides some configurable client identity checking to protect against

unsolicited mails.

• The client address can be deresolved to check whether it is a known station (see

unknown-client item in session-acl). If the client deresolution fails, the session is

rejected.

• The client address can be cross-resolved to check whether its name is not faked (see

unmatching-client item in session-acl). Every name got by deresolution is

resolved back and the resulting addresses are checked against the client IP address. If no

one address matches, client session is rejected.

• The client address can be queried at any black-list database that uses the DNS based query-

ing model (like http://www.spamhaus.org or http://www.ordb.org). The list of

databases used can be specified in session-acl.blacklisted-client configuration

1173

APPENDIX D. KERNUN UTM REFERENCE (8)

directives. If the client address is found in any of the configured databases, client session is

rejected.

• After receiving the MAIL FROM command, the client can be checked according to the Sender

Policy Framework (http://www.openspf.org) of domain presented by the client as the

mail return path (see white-listing item in session-acl). The result of this check

can be used for matching during delivery-acl selection (see spf item).

Warning

This feature has some weaknesses. SPF is unusable in case of forwarding mails from

a foreign mailserver outside our domain to a target mailserver in our domain. Such

cases should be handled specially in your configuration. In case of server-to-server

forwarding (e.g. from your secondary MX) you will probably deny white-listing in

particular session-acl, in case of individual forwarding (between users’ mailboxes)

you can handle it in per-user delivery-acl.

• The smtp-proxy provides possibility of the grey-listing method

(http://projects.puremagic.com/greylisting) if configured by grey-listing

section in the delivery-acl. For more details, see the triplicator(1) tool description.

Forwarding

The Kernun smtp-proxy is a security proxy, not a regular MTA (Mail Transfer Agent). Its task

is to apply security policy, check incoming mails for correctness and then use some mail-forwarder

to queue and distribute the mails. For this purpose, several smtp-forwarder global sections

can be defined in the configuration. Every section specifies internet domain which the forwarder

is to be used for and connection parameters of forwarding channels (e.g. addresses, timeouts etc.).

Warning

You can omit the domain settings in smtp-forwarder sections and postpone forwarders

selection to the delivery-acl sections using the via element of the deliver item. For

the original recipients of a mail, this solution is sufficient. However, if you will use sending a

copy of a mail to another address by the copy-to item, you have to use the domain setting

because for such recipients there are no other way how to select proper SMTP forwarder

channel.

Forwarders can be instances of common UNIX MTA daemons (e.g. postfix distributed to-

gether with Kernun) running on the firewall machine, or some external MTAs (e.g. the central

site mailserver for incoming mails and the ISP mailserver for outgoing ones). In the former case,

the configuration of the postfix forwarder can be entered directly in smtp-proxy configuration

(in the agent section within the smtp-forwarder one) and the proper configuration files for

postfix are generated automatically.

1174

Kernun smtp-proxy does not provide any queuing service. If the mail is not deliverable to

forwarders for all recipients, mail is rejected and resending is in clients’ responsibility. If at least

one delivery succeeds, mail is accepted and the DSN (Delivery Status Notification) message is

constructed and sent to the original sender (if not null).

SSL support

The proxy supports secure communication via SSL/TLS protocols, see ssl(5).

Item session-acl.client-ssl switches on SSL/TLS on the client connection and

sets various SSL/TLS parameters. If the connection from the client uses SSL/TLS, item

client-cert-match defines the acceptable client certificates. If the client certificate does not

pass the test, SSL/TLS connection establishment fails and the connection is closed. There are

three possible modes of SSL/TLS usage:

immediate The SSL/TLS handshake is started immediately after accepting the client connection.

This mode is configured by

ssl name connection; or simply ssl name;

Such a mode of SSL is typically configured on a special port different from the SMTP port

25 (usually 465).

mandatory The session is started in normal way. However, the STARTTLS command is ex-

pected to be used by the client. Without using it, only a subset of SMTP commands is

accepted (e.g. the MAIL command is not allowed). This mode is configured by

ssl name command required;

optional The session is started in normal way. The STARTTLS command is offered to the

client and the decision whether to use SSL/TLS or not is left to it. This mode is configured

by

ssl name command allowed; or simply ssl name command;

If the client does not issue the STARTTLS command, session continues. If the client uses

the command, proxy responds by the 220 response code and starts the SSL/TLS handshake.

If it succeeds, the session is reset according to RFC 3207. If it fails, the connection is closed.

Item smtp-forwarder.server-ssl switches on SSL/TLS on the server connection

and sets various SSL/TLS parameters. If the connection to the server uses SSL/TLS, item

server-cert-match defines the acceptable server certificates. If the server certificate does not

pass the test, SSL/TLS connection establishment fails and the request terminates with an error.

There are again the three possible modes of SSL/TLS usage listed above:

immediate The SSL/TLS handshake is started immediately after connecting to the server. This

mode is configured by

ssl name connection; or simply ssl name;

mandatory The session is started in normal way. However, if the STARTTLS command is not

offered by the server, or its issuing fails, session is closed. This mode is configured by

1175

APPENDIX D. KERNUN UTM REFERENCE (8)

ssl name command required;

optional The session is started in normal way. If the STARTTLS command is not offered by

the server, session continues without trying to issue it. If the server supports SSL/TLS, the

STARTTLS command is issued immediately. This mode is configured by

ssl name command allowed; or simply ssl name command;

Common Kernun Features

The proxy uses common Kernun mechanisms for listening on its sockets, accepting client connec-

tions, and managing its processes. It can also run in a chrooted environment and change its user

identity upon startup. See also application(5), tcpserver(5) and tcpserver(7).

The proxy uses a common Kernun mechanism for network input/output. The configuration

allows to specify several parameters like buffer sizes and timeouts, both for client and server

connections. The parameters are set in configuration sections client-conn and server-conn.

See netio(7) for details.

The proxy uses common Kernun mechanism for name resolving (see resolving(7)).

The proxy uses common Kernun mechanism for logging (see logging(7)).

• For every session, the SESSION-START (SMTP-801-I), the session-acl decision (SMTR-

801-I) and the SESSION-END (SMTP-809-I) messages are logged.

• For every mail, a couple of MAIL-START (SMTR-811-I) and MAIL-END (SMTR-819-I)

messages is logged.

• For every mail recipient, the delivery-acl decision message (SMTR-802-I), the

mail-acl decision message (SMTR-803-I), the doc-acl decision messages (one

SMTD-803-I for each MIME document) and the RCPT-RESULT (SMTS-815-I) messages

are logged.

The proxy uses common Kernun mechanism for runtime monitoring. For more detailed infor-

mation, see monitoring(7).

The proxy uses common Kernun mechanism for traffic shaping. For more detailed information,

see traffic-shaping(7).

Program options

-h Display usage information and exit.

-v Print version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read configuration from cfgfile.

-r Resolve names in configuration prior to testing.

1176

-t test-expr Test configuration according to given expression. Format of the test-expr is

described in test-expr(5).

MAIL PROCESSING

Following steps are gone through when processing incoming mails:

1. When a connection from an SMTP client arrives, the configuration is searched for a matching

session-acl. If the ACL says that the connection should be denied or there is no matching

ACL, the proxy closes regularly the session.

2. According to the session-acl settings, the client identity is verified (see the Client veri-

fication section above). If the verification fails, the proxy closes regularly the session.

3. Proxy reads the HELO/EHLO command, checks it according to the RFC 2821, tries to

resolve its argument (A DNS RR) in case of domain name and stores all results for further

processing. The command is always responded by 250 OK reply.

4. Proxy reads the MAIL command, checks it according to the RFC 2821, tries to resolve

domain part of sender’s email address, checks client identity according to the SPF (if con-

figured, see above Section D) and stores all results for further processing. The command is

always responded by 250 OK reply.

The domain name resolution proceeds as follows: The proxy tries to find MX DNS RRs

for the domain name. If it succeedes, each mail exchanger is resolved again until at least

one A DNS RR is found. If no MX DNS RR exists, the proxy tries to get an A DNS

RR for the domain name. If no A DNS RR is found by either way, the sender name is

treated as unknown for further processing (in delivery-acl.sender items). The whole

resolution process has a single total timeout equal to the conn-timeout value in the sense

of resolver(5) settings.

For every mail, a unique internal message identification is generated. This MSGID is then

used for identifying log messages, mail documents etc.

5. Proxy repeatedly reads RCPT commands, checks them according to the RFC 2821, tries to

resolve domain part of recipient’s email address (in the same manner as the sender’s one) and

then finds the appropriate delivery-acl taking paricular recipient and also HELO/MAIL

check results into account. According to the delivery-acl settings, proxy responds to

the command.

Warning

If no delivery-acl is found, the session is aborted and the mail is not delivered to

any addressee. The ACL set should be closed by an ACL with no entry conditions and

a proper denial operation.

There are several ways how to deny service for particular recipient:

1177

APPENDIX D. KERNUN UTM REFERENCE (8)

abort TheRCPT command is responded by given reply code and text and then the session

is ended with 421 response code.

reject The RCPT command is responded by given reply, so as all following ones till the

DATA command (if issued by client).

refuse The RCPT command is responded by given reply and processing of the mail

regularly continues.

discard The RCPT command is responded by 250 OK, but mail will not be sent to the

recipient. This action has no impact to other recipients.

If the recipient is accepted, the default behavior is to deliver the mail to him/her via proper

smtp-forwarder. The list of forwarders is searched for the first one who serves domain

of particular recipient. The item deliver can be used to choose another forwarder (via

elem) or even another recipient (to elem).

If the response code was 250 (accept or deny+discard used), a copy of this mail can be

sent to another person. This person’s email address is given as a parameter of the copy-to

item. This address is added to the set of recipients for further processing (searching for proper

ACLs of phase 3) with the same delivery-acl as the originator has (no new search for it

is done). The smtp-forwarder for the delivery will be determined by searching through

forwarders’ domains regardless of the deliver item of the original delivery-acl.

Under the same condition, the mail can be stored into the quarantine by the quarantine

item. For easy controlling the mails in the quarantine, use the quarc.sh(1) tool.

6. When the DATA command comes, proxy checkes the number of accepted recipients and,

if not zero, responds by 354 response code and starts receiving the mail. Otherwise, the

proxy responds by 554 response code and waits for the next MAIL command.

7. The mail is read into the mail-pool directory under a name derived from the MSGID. It

is stored as-is, without any changes, checking only the RFC 2821 rules (line length, leading

dot dubbing etc.).

By default, the proxy checks every line, whether its normalized length (line length not

counting the leading dot duplicated for transparency and the CR+LF line separators)

fits the 998 chars limitation. This check can be changed or switched off by the

session-acl.mail-line-len configuration item. Even in this case, mail line length

(unnormalized) cannot be greater than the client-conn.recv-bufsize and the

server-conn.send-bufsize value.

The mail size-limit is also checked during mail reading. Every line is counted in its

normalized length plus two bytes (for the standard CR+LF line separator). This normalized

size is then used in “statistical” log messages (SMTS-815-I and SMTR-819-I), too.

8. The mail MIME structure is decoded according to the RFC 2822, 2045 and others. All

MIME documents are stored into the mail-pool and several checks are done. For detail

configuration description, see mod-mail-doc(5).

1178

The smtp-proxy can check mail documents by an antivirus. Antivirus checking is defined

by item use-antivirus which selects a global antivirus section. See antivirus(5) for

details about configuration of virus checking.

The smtp-proxy can check the whole mail by an antispam. In the current version of

Kernun firewall, SpamAssassin is supported. Antispam checking is defined by item

use-antispam which selects a global antispam section. See mod-antispam(5) for details

about configuration of spam checking.

The smtp-proxy can check particular MIME types of mail body documents according to

the rules defined in configuration, see doctype-identification(7) for details.

The smtp-proxy checks correctness of the mail headers and the MIME structure. Mails

not conforming the RFCs are rejected. However, many clients do not respect RFC and if the

security policy allows sending such mails you can enforce proxy to correct or even to pass

them.

Warning

Read carefully the mail-filter section description in the mod-mail-doc(5) and set

only really necessary exceptions to the RFC and preferably only in direction inside

your organisation where you can check, in some extent, ability of mailservers to accept

incorrect mails.

If a document header folded line is longer than the internal buffer size, the header is not

processed and the mail is rejected. The buffer size is 16kB, by default, and it can be increased

by the client-conn.recv-bufsize and server-conn.send-bufsize configuration

directives.

If smtp-proxy forwards delivery error report, it checks (and corrects, if required) also the

reported mail (if included). If the correction fails, it rejects whole mail. You can switch

off this behavior by setting the treat-rfc822-as-text configuration directive that tells

proxy to read included mails as regular texts.

9. After receiving the whole mail data, proxy finds the appropriate mail-acl taking all checks

from previous steps into account. After that, for each MIME document, the appropriate

doc-acl is searched for. These steps are repeated for every recipient (including the ones

added by copy-to items), because mail processing can vary for different addressee (level 3

ACLs can use also sender’s and recipient’s email addresses as entry condition). In the case

of changing the final recipient (by deliver+to item), the original recipient’s address is

used for this search.

Warning

If no mail-acl or no doc-acl is found, the session is aborted and the mail is not

delivered to any addressee. The ACL sets should be closed by two ACLs with no entry

conditions and a proper denial operation.

1179

APPENDIX D. KERNUN UTM REFERENCE (8)

In phase 3 ACL, following actions are available to deny the service for particular recipient:

abort The mail final CRLF.CRLF is responded by given reply and then the session is ended

with the 421 response code.

reject The mail final CRLF.CRLF is responded by given reply, the session continues.

cancel The mail will not be sent to this recipient, given reply is stored as the mail for-

warding result for this recipient and processing of the mail regularly continues.

discard The mail will not be sent to this recipient, but no failure is registered for this

recipient so the client will assume successfull delivery.

Among all denial actions for one recipient ordered by all mail-acl and delivery-acl

sections, the one with the highest severity is chosen to use.

If the mail/document is accepted, there are several modifications that can be done: HTML

filtering, document replacement, header modifications etc., see mod-mail-doc(5) for more

details.

If the mail is not aborted, it can be stored into the quarantine by the quarantine item.

Warning

If you configure mail denial and some further processing (storing to quarantine, sending

a copy etc.), be careful because without special handling, a repeated mail processing

(when resent from quarantine or when sending to a copy-to address) will fall to

the same level 3 ACL set. That’s why you have to handle these cases by individual

mail-acls and/or doc-acls prepended before the regular ACLs to avoid the denial.

10. If the mail is accepted to delivery, all forwarder channels are opened and the mail is forwarded

to all recipients. While sending copies, the recipients are grouped together according to the

set of phase 3 ACL used.

For every such a group, the mail is reassembled from parts (excluding the case of signed

documents) using the filtering operations specified in level 3 ACLs (see mod-mail-doc(5)).

Moreover, some header modifications are done in following steps:

(a) The Return-Path header (if any) is removed.

(b) If the stamp-filter directive is used, all Received headers are removed and re-

placed by the X-Kernun-Loop-Info header to preserve the function of "Too many

hops" checking (controlled by the stamp-limit directive).

(c) If the antivirus check was completed, the result of it is reported by adding/replacing

the X-Kernun-Virus-Status header. Notice that replacement of the

X-Kernun-Spam-* headers (antispam check result) is done already in the phase of

mail reading.

(d) The Content-Type header is changed according to the value recognized by the

doctype-identification tool (see doctype-identification(7)), if requested by the

configuration directive force-doctype-ident.

1180

(e) The header modifications ordered by the configuration directives modify-header are

realized.

Warning

No check for correctness of changes requested is done. The resulting state is in

administrator’s responsibility.

(f) The header modifications required by the RFCs for given types, character sets etc. are

realized.

(g) The Subject header is modified according to the configuration directive

prefix-subject.

During mail reassembly, the RFC 2821 and 2045 rules are respected. Every line longer than

998 bytes (in the sense of normalized length — see above) is splitted into parts (converting the

subdocument into MIME quoted-printable transfer encoding, if necessary). Subdocuments

being encoded by some MIME encoding (quoted-printable or base64) are re-encoded

using 76 chars long lines.

If smtp-proxy forwards signed document, it must not alter its content. That’s why the

standard way of processing mails (decomposition and reconstruction) cannot be used. Thus,

the proxy uses original mail image saved on the beginning of processing, except two cases:

• Some changes were forced by the configuration (e.g. filtering or replacing some docu-

ments).

• The mail violates RFC in such extent that cannot be ignored by itself (e.g. wrong line

length, incorrect header format etc.) and passing of such mails is not explicitly allowed

by the administrator (see the mail-filter description in mod-mail-doc(5)).

In these cases the proxy does reconstruct mail (because site security has priority) and sig-

nature becomes not valid.

11. In the case of transient failure during forwarding, all servers available for particular forwarder

channel are tried. In the case of permanent failure, or when all servers have failed, sending

the copy is given up. If any forwarding server does not support 8bit transfer, the mail is

converted to 7bit stream. If this is not possible, mail forwarding is rejected.

The result of forwarding is stored for every recipient and in the case of failure of mail coming

from a non-null sender, the DSN (Delivery Status Notification) message is constructed and

sent to the original sender. This behavior and the content of the message can be partially

controlled by the dsn-mail-copy and omit-dsn configuration items. In the case of

forwarding mail to a forwarder without ESMTP DSN extension, the proxy sends also DSN

RELAYED messages if requested by the clients.

12. If the mail was ordered to be stored into the quarantine, the image of it, stored at the

beginning of processing, is moved or copied to the quarantine directory. Together with

this copy, the quarantine control file is stored. It contains all available information about

1181

APPENDIX D. KERNUN UTM REFERENCE (8)

sender, recipient, MIME structure, viruses etc. and also reasons for storing the mail into the

quarantine.

13. The final response code is sent to the client and the proxy is waiting for a new mail, or the

QUIT command.

BUGS

The Kernun smtp-proxy is a security proxy, not a regular MTA (Mail Transfer Agent), it does

not provide for queuing facility, so it requires some regular MTA to be used as mail-forwarder.

The proxy does not support some obsoleted features (e.g. source routes).

The proxy does not support caching of SSL/TLS sessions.

If an excerpt of original mail is sent as part of the DSN (Delivery Status Notification) message,

the excerpt is sent as-is (e.g. with only LF as end-of-line separator). The statistical messages then

contain “real” sizes, not the normalized ones.

SEE ALSO

quarc.sh(1), triplicator(1), antivirus(5), application(5), listen-on(5), mod-antispam(5),

mod-html-filter(5), mod-mail-doc(5), smtp-proxy(5), smtp-proxy.cfg(5), ssl(5), tcpserver(5),

test-expr(5), SMTR-801(6), SMTR-811(6), SMTR-802(6), SMTR-803(6), SMTD-803(6),

SMTS-815(6), SMTR-819(6), SMTP-809(6), SMTS-815(6), SMTR-819(6), SMTP-801(6),

access-control(7), configuration(7), doctype-identification(7), host-matching(7), logging(7),

monitoring(7), netio(7), resolving(7), tcpserver(7), time-matching(7), traffic-shaping(7),

transparency(7)

1182

NAME

sqlnet-proxy, test-sqlnet — Oracle SQL*Net Proxy

SYNOPSIS

sqlnet-proxy [-hv] [-d dbglev] -f cfgfile

test-sqlnet [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The sqlnet-proxy provides proxying service for the Oracle SQL*Net Protocol. The proxy rec-

ognizes the initial Transparent Network Substrate (TNS — do not mistake this abbreviation for

Trusted Network Solutions, a.s.) handshaking, after successful intialisation, it forwards requests

and responses between client and server (checking TNS Layer). During this phase, the proxy

checks database login attempts so that effective limitation of allowed users can be done.

The proxy reads its configuration file and starts listening on specified IP sockets (address/port

couples), as specified in the listen-on configuration section (see listen-on(5)).

Format of the configuration file is described in sqlnet-proxy.cfg(5).

Program test-sqlnet tests syntax and partially semantics of configuration; for test expression

syntax, see test-expr(5).

Access Control Lists

The current version of SQL*Net proxy uses two layers of ACL (see access-control(7)) named

session-acl and service-acl.

When a connection (either transparent or non-transparent) arrives, proxy decides according

to the first level of ACL whether to accept it or not. Then proxy waits for the connect (CN)

packet. The total time until whole CN packet is received is limited to the init-timeout. After

completing the CN packet, the configuration is consulted, proper service-acl is selected and

according to it, connection is allowed or not. In addition to the general Kernun ACL criteria, the

set of acceptable service names can be specified (service-name item, see sqlnet-proxy.cfg(5)).

Target server/port/service can be coded by the client in the CONNECT_DATA.SERVICE_NAME

(or CONNECT_DATA.SID) aatributes by the following syntax service_name@server[:port].

Another way to do it is to code it directly to ADDRESS.HOST and ADDRESS.PORT attributes.

The default port can be set in configuration (the default-port item).

If a plug-to directive is used in session-acl found, its value has precedence over the server

used in the CN string. This means that the sqlnet-proxy will ignore the server given in the CN

string and connect to the plug-to server.

Firewall administrator can choose the out-of-band method described in auth(7) for authenti-

cating users on the proxy.

1183

APPENDIX D. KERNUN UTM REFERENCE (8)

Redirections

If the remote server replies by the RD (redirect) string, the proxy itself tries to connect the advised

server without co-operation with the client. Of course, the new connection is again checked against

the session-acl set. The client is notified by the final response — accept (AC) or refuse (RF).

The sqlnet-proxy protects against the risc of an infinite loop in RD packets. The admin can

set the maximal number of RD packets in one session (the session-acl.redirections item).

Special care should be taken in case of using the plug-to directive. If remote (plug-to) server

uses RD string, result of session-acl checking can lead to re-connecting this server (and infinite

loop, too). If intention of RD answer is only port switching, the port number of the plug-to

directive value should be zero (“let port untouched”).

TNS Listenner Protection

Several versions of TNS Listenner (lower layer of SQL*Net Server) have weak protection against

intrusion attacks. The Kernun sqlnet-proxy can avoid some of them by configuring additional

security attributes in the configuration:

max-service-name-len Several versions of TNS Listenner crash by the buffer overrun

error when reading too long names. This item specifies the maximal length of the

SID/SERVICE_NAME attribute of the CN string allowed by the proxy.

check-reserved-bits Some versions of TNS Listenner crashes when the initial TNS hand-

shaking packet has reserved bits filled with non-zero values. This item switches on/off

checking of the reserved bits.

Database User Check

The sqlnet-proxy allows administrators to restrict which database users can use its service for

particular ACL. However, the protocol is not freely published and there can be some problems

with unknown versions of it. Thus, full support of this feature is provided for TNS (Transparent

Network Substrate) versions 3.07 and 3.10 through 3.13. Proxying of other versions must be

permitted by the protocol-version configuration item, however, database user checking is

switched off in this case.

For known protocol versions, set of permitted database user can be specified by the db-user

configuration item.

Common Kernun Features

The proxy uses common Kernun mechanism for listening on its sockets, forking new processes as

needed and killing old redundant processes, optionally changing root directory and running with

alternative user privileges. For more detailed information, see application(5) and tcpserver(7).

The proxy uses common Kernun mechanism for network input/output operations. Configu-

ration allows for specifying several parameters like buffer sizes and timeouts, both for client and

server connections. They can be included in the client-conn and server-conn configuration

sections, respectively. For more detailed information, see netio(7).

1184

The proxy uses common Kernun mechanism for name resolving (see resolving(7)).

The proxy uses common Kernun mechanism for logging (see logging(7)). For every session,

the SESSION-START (SQLP-801-I), the ACL (SQLS-810-I and SQLS-820-I), the SESSION-INIT

(SQLS-840-I) and the SESSION-END (SQLP-809-I) messages are logged.

Program Options

The program options are as follows:

-h Print usage information and exit.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

BUGS

Currently, the sqlnet-proxy doesn’t implement SQL Server user restrictions in its ACL criteria.

SEE ALSO

listen-on(5), application(5), sqlnet-proxy.cfg(5), test-expr(5), SQLP-801(6), SQLS-810(6),

SQLS-820(6), SQLS-840(6), SQLP-809(6), access-control(7), configuration(7), host-matching(7),

logging(7), netio(7), resolving(7), tcpserver(7), time-matching(7), transparency(7)

1185

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

sysmgr — tool for Kernun installation, upgrade, backup, and restore

SYNOPSIS

Products Other than Kernun Branch Access

sysmgr [-b] applycfg partition

sysmgr [-b] backup [partition]

sysmgr [-b] backups

sysmgr [-b] checkcfg

sysmgr [-b] delimg buildnum

sysmgr [-b] images

sysmgr [-b] install [-n] partition buildnum

sysmgr [-b] resolve

sysmgr [-b] restore partition backup

sysmgr [-b] upgrade partition backup

sysmgr [-b] upgradecfg [partition]

Kernun Branch Access

sysmgr [-b] cancel

sysmgr [-b] commitcfg

sysmgr [-b] install

sysmgr [-b] loadcfg [copy]

sysmgr [-b] savecfg

sysmgr [-b] saveimg

DESCRIPTION

Program sysmgr is a command line tool for installing, upgrading, backing up, and restoring Ker-

nun. It must be run from a running Kernun with standard disk partitioning (one disk containing

1186

three system partitions and a data partition on the same or another disk). Operation of the

program is controlled by a command specified as the first argument after the optional -b.

Commands (Except on Kernun Branch Access)

Applying Configuration (applycfg)

Generates and applies the configuration in a selected partition. Detects the system section used in

the currently running system in order to select the system to apply in the target partition. This

command is usually used during Kernun upgrade process.

Creating a Backup (backup)

Creates a backup of a selected partition and stores it in /data/backup. The backup file name

contains the build number of the backed up installation, the system partition number, and the date

and time of backup creation. The backup file contains all modifications (file creations, deletions,

and changes) since Kernun was last installed on the selected partition. If a partition is not specified,

the partition containing the currently running system is backed up.

A backup contains only selected files from a single system partition. The list of files to back up

is in file /etc/kernun-fsdb-include. Other partitions, especially /data, should be backed

up separately according to the local policy, for example, a daily backup of logs executed by cron.

Listing Backups (backups)

Lists all backup files in /data/backup.

Checking and Normalizing Configuration (checkcfg)

Checks that the configuration is valid. If the configuration is successfully loaded, it will be saved.

Loading and saving normalizes the configuration, that is, it fixes parts of configuration that,

although syntactically correct, could confuse the configuration upgrade process during a system

upgrade.

Deleting Installation Images (delimg)

Deletes all installation images in /data/dist that have older build numbers than the build

number specified by parameter buildnum.

Listing Installation Images (images)

Lists all installation images in /data/dist. Images that can be installed are marked by ’*’.

Installation (install)

Installs Kernun. Parameters are number of a target system partition and build number of the

image to install. The image must exist in /data/dist and must be installable (marked by ’*’

in the output of command images). An installable image is either a full image, or a patch image

with an installable base image.

1187

APPENDIX D. KERNUN UTM REFERENCE (8)

The target partition must be different from the partition that contains the currently running

system. Booting from the target partition is enabled. The partition is made the default choice in

the boot manager unless option -n is set. Label of the partition is changed to a standard label

containing Kernun version, date and time of installation, and the build number.

Conflict Resolution (resolve)

Resolves restore conflicts according to file /data/restore/resolve. When restoring a backup

on a Kernun build different from the one used for creating the backup, conflicts may occur. A

conflict is a file that was changed in two ways: first between the builds used for creating and

restoring the backup, and second after installation and before creating the backup. Conflicting

files from the backups are not restored to the main file system, but are stored in respective

places in the directory tree rooted at /data/restore/conflicts. List of conflicts is saved in

/data/restore/resolve.

Before running sysmgr resolve, the list of conflicts should be edited. The first character

on each line defines what to do with the file named on that line. Possibilities are:

• ’+’ — uses the file from the backup

• ’-’ — deletes the file

• ’.’ — keeps the existing file

• ’!’ — retains the conflict and postpones it to the next iteration of conflict resolution

Restore from a Backup (restore)

Restores data from a backup. Each backup should be restored to a newly installed Kernun with

the same build number as was used for creating the backup. This build number is a part of the

backup file name. Trying to unpack a backup on a different build fails in batch mode and asks for

confirmation in interactive mode.

Upgrade (upgrade)

This is similar to restore, but but build number identity is not checked. Command upgrade

is usually used during upgrading to a new version of Kernun. The standard upgrade procedure

is backing up the current installation (backup), installing the new version to a free partition

(install), restoring the backup to the new installation (upgrade), resolving eventual conflicts

(resolve), converting configuration for the new version (upgradecfg), applying the converted

configuration (applycfg), and reboot to the new installation.

Upgrade of Configuration (upgradecfg)

This command is usually invoked after upgrading to a new version of Kernun. It tries to convert

an old Kernun configuration file to a valid configuration of the currently installed version. After

conversion, the administrator should review the modified configuration file and then apply the

configuration. If a partition is not specified, the configuration file in the partition containing the

currently running system is upgraded.

1188

Commands (Only on Kernun Branch Access)

Cancel Installation (cancel)

Cancels any previous install command. That is, a new system image will not be installed after

reboot to the service system.

Commit the Configuration (commitcfg)

Reconfiguring a Kernun Branch Access stores configuration changes only to ramdisk. In order to

retain the changes after reboot, they must be stored into persistent storage. It is done by this

command.

Schedule Installation (install)

After the next reboot to the service system, the main system will be reinstalled. There is a

factory-preloaded installation image for this purpose. It can be replaced (for system upgrade) by

command sysmgr saveimg.

Obtain Configuration for Backup (loadcfg)

Outputs the configuration archive from persistent storage to the standard output. The archive

file is in the tbz format. Output of this command can be stored as the backup of the complete

system configuration.

There are two copies of configuration. They should be always identical. For the rare cases

when they are different (after a system failure during committing the configuration), it is possible

to select which copy to use (default is 1).

Save Configuration from Backup (savecfg)

Reads a configuration archive from the standard input and stores it to persistent storage. The

input archive file should be a result of a previous sysmgr loadcfg command.

Prepare Installation Image (saveing)

Reads an installation image from the standard input and stores it for later command sysmgr in-

stall).

Options

-b If set, the command runs in the batch mode. No user interaction is done. If the command

would asked the user for confirmation in the interactive mode, it terminates instead in the

batch mode. This option is intended primarily for calling sysmgr from other programs

(GUI) that handle user interaction themselves.

partition Number of a system partition, must be 1, 2, or 3.

buildnum A Kernun build number.

1189

APPENDIX D. KERNUN UTM REFERENCE (8)

backup A name of a backup file. If a name without path is specified, the file is searched in

directory /data/backup.

FILES

/1 /2 /3 Directories used to mount system partitions other than the partition containing the

currently running system.

/data Mount point for the data partition

/data/backup Directory for storing backups.

/data/dist Directory for storing installation images

/data/log Directory for storing log files

/data/restore Directory for restoring data from backups and solving conflicts

/data/restore/conflicts Directory containing onflicting files unpacked from a backup

/data/restore/resolve List of conflicts and instructions how to resolve them

/etc/kernun-fsdb-include List of files contained in backups

SEE ALSO

diskdb(1), bootmgr(8)

1190

NAME

tcp-proxy, test-tcp — transparent generic TCP proxy

SYNOPSIS

tcp-proxy [-hv] [-d dbglev] -f cfgfile

test-tcp [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The tcp-proxy is a generic TCP proxy that provides proxying protocols behaving according

to standard TCP client/server model. The tcp-proxy assumes that servers are listening on a

fixed TCP port number, clients connect to them using arbitrary source TCP port numbers and

each session takes place within a single TCP connection; no other connections are involved in the

session. The tcp-proxy is able to mediate either transparent connections to any number of servers

according to the original destination address or to a fixed server, given its address in configuration.

The tcp-proxy reads its configuration file and starts listening on specified TCP sockets (ad-

dress/port couples), as specified in the listen-on configuration directive. When a connection

arrives, configuration is consulted and based on it, a decision is made whether this connection will

be permitted. If permitted, several parameters of that connection may be set.

Format of the configuration file is described in tcp-proxy.cfg(5). Program test-tcp tests

syntax and partially semantics of configuration; for test expression syntax, see test-expr(5).

Tcp-proxy uses single phase ACL (see access-control(7) manual page) named session-acl.

When a non-transparent connection arrives (i.e., a connection destined directly for one of the

sockets tcp-proxy is listening on) and is allowed by policy, the proxy must be configured to

connect to a specific remote server with plug-to configuration directive (see below).

When a transparent connection arrives (i.e., a connection destined for a real server transpar-

ently redirected to tcp-proxy, see transparency(7) for details), the proxy may decide to connect

to the original destination server or to the plug-to given in configuration. If a plug-to directive

is applicable for a transparent connection, it has precedence over the original destination. This

means that tcp-proxy will ignore the original destination and connect to the plug-to server.

The tcp-proxy uses common Kernun mechanism for listening on its sockets, forking new

processes as needed and killing old redundant processes, optionally changing root directory and

running with alternative user privileges. For more detailed information, see application(5),

tcpserver(5), and tcpserver(7).

The tcp-proxy uses common Kernun mechanism for network input/output operations. Con-

figuration allows for specifying several parameters like buffer sizes and timeouts, both for client

and server connections. They can be included in client-conn and server-conn configuration

sections, respectively. For more detailed information, see netio(7).

The tcp-proxy uses common Kernun mechanism for logging. For more detailed information,

see logging(7). For each connection, three statistical messages are logged: SESSION-START

1191

APPENDIX D. KERNUN UTM REFERENCE (8)

(when the connection is established), ACL (informs about ACL selected for the connection), and

SESSION-END (when the connection is closed).

The tcp-proxy uses common Kernun mechanism for policy decisions on arriving connections.

It is described in access-control(7) and host-matching(7). For example, it is possible for tcp-proxy

to use the real client’s address or any specified address as source address for connection to server.

The tcp-proxy uses common Kernun mechanism for runtime monitoring. For more detailed

information, see monitoring(7).

The tcp-proxy uses common Kernun mechanism for traffic shaping. For more detailed infor-

mation, see traffic-shaping(7).

Firewall administrator can choose the out-of-band method described in auth(7) for authenti-

cating users on the proxy.

The tcp-proxy allows to set several parameters in session-acl:

plug-to addr; Specify server socket address to connect to. This applies both for transparent

and non-transparent connections (in the latter case, it is even mandatory).

max-bytes number number; Maximum number of octets transferred from server to client

(first number) and from client to server (second number). The numbers are optional but

they default to zero which has a special meaning “no limit to transfer size”. When either of

the limits gets exceeded, both client and server connections are closed by the proxy.

max-time seconds; Maximum duration of a session. When this time elapses since the connec-

tion establishment, both client and server connections are closed by the proxy.

cl2srv-idle-timeout seconds; Maximum idle time for client-to-server data. When no data

are received from the client for this time interval, both client and server connections are closed

by the proxy.

srv2cl-idle-timeout seconds; Maximum idle time for server-to-client data. When no data

are received from the server for this time interval, both client and server connections are

closed by the proxy.

The tcp-proxy provides encryption and authentication using SSL/TLS protocols. SSL/TLS

can be configured separately for the connection from the client and the connection to the server.

Four variants are possible: either no connection uses SSL/TLS, or both connections use SSL/TLS,

or only one of them uses SSL/TLS. The SSL/TLS mode can be used for building secure tunnels.

A client communicates using plain TCP with tcp-proxy. The proxy connects via an SSL/TLS

encrypted channel to another proxy across an untrusted network. The second proxy opens a plain

TCP connection to a remote server.

SSL/TLS communication with clients can be turned on globally by client-ssl-params

configuration directive. Parameter client-ssl-timeout limits the time interval

between TCP connection establishent and finishing SSL/TLS handshake. When SSL/TLS

is used, session-acl can be selected according to the values from the client certificate

(client-cert-match). Enabling SSL/TLS is done by server-ssl-params in

session-acl. Item server-cert-match defines requirements for the server certificate. If

the certificate does not satisfy the requirements, the proxy terminates the session.

1192

Options

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

SEE ALSO

listen-on(5), application(5), tcp-proxy.cfg(5), tcpserver(5), test-expr(5), access-control(7),

configuration(7), host-matching(7), logging(7), monitoring(7), netio(7), tcpserver(7),

time-matching(7), traffic-shaping(7), transparency(7)

1193

APPENDIX D. KERNUN UTM REFERENCE (8)

NAME

udp-proxy, test-udp — generic UDP proxy

SYNOPSIS

udp-proxy [-hv] [-d dbglev] -f cfgfile

test-udp [-hv] [-d dbglev] -f cfgfile [-r] [-t test_expr]

DESCRIPTION

The udp-proxy is a generic proxy for protocols based on the UDP.

The udp-proxy assumes that a server or servers listen on a fixed UDP port number and clients

communicate from arbitrary source ports. The udp-proxy is able to mediate either transparent

communication to any number of servers according to the original destination address or to a fixed

address given in the configuration (the original destination address is one of the proxy addresses).

The test-udp program checks the syntax and partially the semantics of the configuration; for

test expression syntax, see test-expr(5).

Format of the proxy configuration file is described in udp-proxy.cfg(5).

The udp-proxy uses common Kernun mechanism for policy decisions about received and sent

datagrams. It is described in access-control(7) and host-matching(7). The proxy uses single-phase

ACLs (session-acl) which are checked at the moment of a session establishment.

The session

The proxy uses an abstraction of session. The session is a distinctive period of communication

between a single client (i.e. IP address and port) and a server (or server set), e.g. TFTP transfer

of a file. The session is just a logical concept as there is nothing similar to the TCP connection in

the UDP. There is no means of unambiguous detection of session termination (which TCP provides

by closing a connection). Thus a number of conditions can be defined in the configuration to limit

the session duration.

Session types

There are several types of sessions:

one-way Only datagrams in the direction from the client to the server are allowed. If a datagram

from the server is received, it is not passed to the client and the session is immediately

terminated. An example of one-way protocols is SYSLOG.

normal Sessions of this type are used for ordinary UDP protocols with bidirectional flow of

datagrams between a client and a server, e.g. NFS. The datagrams from the client are

forwarded to a fixed server IP address and port and replies from the server must come from

the same IP and port. From the client’s point of view, all replies come from the same IP

address and port as were the original ones used by the client.

1194

any-port This session type is prepared for situations when the server listens on a port, but

it replies form another one. Thus, the first datagram from the server must have a proper

source IP address but it can have an arbitrary source port number. The port is then fixed

and used for all remaining datagrams of the session (in both directions) on the server side.

On the client side, the original address and port remain in use. For example, TFTP servers

can be configured to work this way.

any-sock This is similar to the any-port session type, extending it to the possibility of fixing

not only the port of the server, but even the IP address. The first reply can come from any

IP address and port. From the client’s point of view, there is an important difference because

in the transparent case, proxy keeps the actual server address (not the port) in replies. Be

careful and check whether the actual servers are reachable from the client’s network.

broadcast This is another communication model. A client sends all datagrams to an IP broad-

cast address and any number of servers in the target network can reply to the client. There is

no address fixing like in the any-* cases and all replies are forwarded downstream with their

actual addresses (keeping the original ports). Again, you have to check whether the actual

servers are reachable from the client’s network (in both transparent and non-transparent

cases). This mode enforces nonstandard session handling and must not be mixed with nor-

mal unicast traffic. Similar mode uses e.g. DHCP, but the DHCP itself cannot be processed

by the udp-proxy (due to lack of information about the original client when forwarding the

reply).

Server connection

When a datagram arrives, the proxy checks its source and destination addresses and tries to assign

the datagram to an existing session. If a match is found, the datagram is passed to a peer belonging

to the session. If no session matches, the configuration ACL set is searched for, whether particular

peers are allowed to communicate through the proxy. If this search fails, the datagram is dropped.

Otherwise, a new session is established, the target server is selected and the outgoing socket to it

is created or assigned.

When a non-transparent session is created (i.e., a session initiated by a datagram destined

directly for one of the sockets udp-proxy is listening on), the proxy must be configured to

communicate to a specific remote server with the plug-to configuration directive. Otherwise,

the session initiation fails.

When a transparent session is created (i.e., a session initiated by a datagram destined to a real

server “behind” the udp-proxy, see transparency(7) for details), the proxy either communicates

with the original destination server or with the one defined by the plug-to directive. If the

plug-to configuration directive is used in the ACL selected for a transparent session, it has

precedence over the original destination. This means that the udp-proxy will ignore the original

destination and communicate with the plug-to server.

When creating the communication channel to the server(s), the proxy uses a generic IP address

and port. It is possible to force the source address of outgoing datagrams, either to a specific IP

address, or to the address of the client (by the source-address configuration directive).

1195

APPENDIX D. KERNUN UTM REFERENCE (8)

UDP based protocols sometimes require to use a specific source port, not a generic one. Like the

IP address, also the source port number of outgoing datagrams can be forced in the configuration

(by the source-port configuration directive). Of course, this setting can be done only if the

client source address is forced, too. Otherwise the proxy should not distinguish among different

server replies. Moreover, the proxy must be in this case configured for listening on the particular

outgoing interface and forced source port, because it cannot create a separate server-side socket

for every session (server-side sockets of different session from the same client would have the same

source socket address in this case).

Firewall administrator can choose the out-of-band method described in auth(7) for authenti-

cating users on the proxy.

Broadcasts

There are some limitations when using the udp-proxy for protocols with IP broadcast used as

destination address.

If the proxy should process datagrams destined non-transparently to it using its client-side

network broadcast address (or “limited” broadcast address 255.255.255.255), the proxy must listen

on the address 0.0.0.0. The reason is that the proxy must be able to modify the source address of

replies outgoing back to the client (for which, the socket bound to 0.0.0.0 is required).

If the proxy should process datagrams destined transparently to some network “behind” the

proxy, it must listen on the address 0.0.0.0, or on the interface address transparently. Note that the

proxy processes transparently even broadcast datagrams destined to a network directly connected

to the proxy, if it is not the client-side network. Example: if the proxy operates on two interfaces

with addresses 10.1.1.1 and 192.168.1.1, then a datagram sent from the address 10.1.1.2 to the

address 192.168.1.255 will establish a transparent session.

The transparent broadcast mode is not allowed in the case when the incoming and outgoing

interface is the same (e.g. in the case of two networks aliased to the same interface) and source-

port forcing is on. The proxy has implemented a check against re-processing datagrams sent to

the target network by itself (the datagrams will appear on the proxy’s listening interface again).

However, in this case, the proxy cannot recognize and distinguish a new datagram from the client

and a datagram sent by itself. All attributes (interface name, source address, source port, target

address and target port) of both of them match.

Data limitations

In the session-acl, several data limitations can be defined for the session; if any of them

becomes true, the session is terminated.

max-dgrams-in The maximum number of datagrams passed in the direction from the server(s)

to the client per session. If more datagrams are sent from the server, the session will be

terminated.

max-dgrams-out The maximum number of datagrams passed in the direction from the client

to the server(s) per session. If more datagrams are sent from the client, the session will be

terminated.

1196

max-bytes-in The maximum number of bytes transferred from the server(s) to the client during

a session. When exceeded, the session will be terminated.

max-bytes-out The maximum number of bytes transferred from the client to the server(s)

during a session. When exceeded, the session will be terminated.

Note that if both the max-dgrams-in and the max-dgrams-out limits are reached (not

exceeded), the session is terminated immediately. This feature can significantly decrease number

of “dead” sessions having exchanged sufficient number of datagrams and waiting for a timeout

only. However, if some of the datagrams have lost (due to the unreliability of the UDP), such a

session fails because a datagram resent by any peer will exceed the limitations.

Time limitations

In the session-acl, several time limitations can be defined for the session; if any of them

becomes true, the session is terminated.

session duration (the session element of the timeout item) The maximum time for a

session duration. The session will be terminated if session seconds elapse since the session

establishment time.

server idle timeout (the in element of the timeout item) Timeout for datagrams from

the server(s). If in seconds elapse without receiving a datagram from the server(s), the

session will be terminated.

client idle timeout (the out element of the timeout item) Timeout for datagrams from

the client. If out seconds elapse without receiving a datagram from the client, the session

will be terminated.

session idle timeout (the both element of the timeout item) Timeout for datagrams re-

gardless their direction. If no datagram belonging to a session is received for both seconds,

the session will be terminated.

Note that unidirectional idle timeouts can be affected by the opposite peer latency. If, for

instance, the client consumes almost all the time of the in timeout, the server may respond very

quickly and in spite of that the timeout will be reached.

Configuration details

The udp-proxy uses common Kernun mechanisms for several sofisticated features.

The udp-proxy reads its configuration file and starts receiving datagrams on UDP sockets

(address/port couples) specified by the listen-on configuration directive. It also maintains a list

of active sessions (client/server or client/server-set couples), the maximum number of concurrently

active sessions must be set by the configuration directive udpserver.max-sessions.

The proxy usually runs as one parent and several child processes, see udpserver(7) for details.

The udp-proxy uses common Kernun mechanism for listening on its sockets, optionally chang-

ing root directory and running with alternative user privileges. For more detailed information, see

application(5).

1197

APPENDIX D. KERNUN UTM REFERENCE (8)

For the details of the udp-proxy logging possibilities and configuration, see logging(7).

For the details of the udp-proxy traffic shaping, see traffic-shaping(7).

OPTIONS

-h Print usage information.

-v Display version information and exit.

-d dbglev Set debuging level to a specific number. Permitted values are 3 through to 9, 3 being

the least and 9 the most verbose. See logging(7) for details. This setting is relevant only till

configuration reading is finished.

-f cfgfile Read cfgfile for configuration information.

-r Resolve names in configuration prior to testing.

-t test_expr Test configuration according to given expression. Format of the test_expr is

described in test-expr(5).

SEE ALSO

application(5), test-expr(5), udp-proxy.cfg(5), udpserver(5), access-control(7), host-matching(7),

logging(7), traffic-shaping(7), transparency(7), udpserver(7)

BUGS

Due to the nature of the UDP protocol, handling of sessions by udp-proxy cannot work perfectly

under all circumstances.

1198

	How to Read the Documentation
	Kernun UTM Product Overview
	Kernun UTM
	Kernun Clear Web

	Kernun UTM System Management
	Installation Media, Releases, and Builds
	Disk Space Layout
	Licensing
	Boot Manager
	ZFS boot manager
	LEGACY (UFS) boot manager
	Security notice

	Installation
	Standalone Installer
	Initial Configuration
	Installation from the GUI
	Installation from the Command Line
	Enabling Serial Console Output

	Backup and Restoring
	Backup and Restoring from the GUI
	Backup and Restoring from the Command Line
	Restoring a Backup in the Standalone Installer

	Upgrade
	Upgrade from the GUI
	Upgrade from the Command Line

	Audit
	Emergency Repair Environment
	Running in virtual machine environment
	VMware
	Hyper-V
	VirtualBox
	XEN

	User Interface
	Graphical User Interface
	Kernun GUI Launcher
	GKAT—Management Console
	Logs
	GCML — Configuration
	Locking

	Command Line Interface
	Command Line Interface Details
	C3H — Command Completion and Context Help
	KAT — Kernun UTM Admin Tool
	CML — Configuration Meta Language

	Administrative Utilities

	Configuration Basics
	Configuration Language
	The Initial Configuration
	Global Level
	System
	SSH Server
	Local Mail Handling
	Application Proxies and ACLs
	DNS Proxy
	HTTP Proxy
	FTP Proxy
	HTTPS and SSH Proxy
	SMTP Proxy
	IMAP4 and POP3 Proxy

	Changing the Configuration
	Adding TCP Proxies

	Advanced features
	Packet Filter
	Packet Flow
	Packet Filtering
	Antispoofing Using Packet Filter
	Selective Packet Forwarding
	Network Address Translation
	Packet Forwarding along with NAT
	Defending against DoS/DDoS Attacks
	Honeypot

	System Configuration
	User Accounts
	Network Interfaces
	Static Routes
	Dynamic IP routing with BIRD
	File /etc/rc.conf
	Kernel Parameters in /etc/sysctl.conf
	Configuration of the cron Daemon

	Caching Name Server
	DNS and DHCP Services
	DNS Server for the Local Zone
	DHCP Server for the Local Network

	Time Synchronization with NTP
	Monitoring of Kernun UTM Operation
	Logging Configuration
	Log Rotation
	Monitoring of Active Sessions
	Proxy Statistics Generation
	Monitoring of System Parameters

	Networking in Proxies
	Transparent Proxies
	A Proxy and a Server on the Same Port
	Listening on a port range

	H.323 Proxies
	SIP Proxy
	SQLNet Proxy
	UDP Proxy
	Cooperation of HTTP and FTP Proxies
	Secure Communication Using SSL/TLS
	User Authentication
	Authentication Methods
	Authentication in FTP Proxy
	Basic Authentication in HTTP Proxy
	Kerberos Authentication in HTTP Proxy
	Kerberos Authentication in Transparent HTTP Proxy
	NTLM Authentication in HTTP Proxy
	HTTP Authentication Proxy
	Out of Band Authentication

	Antivirus Checking of Data
	Connecting with ClamAV
	Connecting via ICAP protocol
	Antivirus Results
	Antivirus in Proxies
	SMTP Proxy: Discarding Infected Mails
	SMTP Proxy: Replacing Infected Documents
	Antivirus in POP3 and IMAP4 Proxies

	Antispam Processing of E-mail
	Antispam Engine
	White-, Grey-, and Blacklists

	Content Processing
	Content Type Detection
	HTML Filtering
	MIME Processing

	Filtering HTTP Requests by URI
	URL Matching and Rewriting
	Blacklists in HTTP Proxy
	Kernun Clear Web DataBase
	Using External Web Filter

	HTTPS Inspection
	Certificates
	HTTPS inspection ACL flow
	Transparent mode
	Non-transparent mode
	SNI inspection in HTTPS
	TLS termination

	Adaptive Firewall
	IDS agent variables
	Rules update
	Rules modification

	Traffic Shaping
	Virtual Private Networks — OpenVPN
	Remote Access Server
	Network to Network
	Accessing the virtual network
	Logs

	Virtual Private Networks — IPsec
	IPsec Configuration

	High Availability Clusters
	Controling multiple systems from GUI
	Sharing the configuration among systems

	Kernun Branch Access
	Description and Plug-in
	Installation
	Configuration
	Diagnostics and Troubleshooting

	IPv6
	Honeypot

	Kernun UTM Reference (1)
	HtmlMatchPasswd.pm
	clear-web-db-update.sh
	clear-web-db
	cluster-sync
	diskdb
	fwpasswd
	grep-debug
	grep-stats
	html-match-db
	kernun-audit
	license
	log-ts
	mkblacklist
	monitor
	ooba-acs
	ooba-samba
	oobctl
	printblacklist
	quarc.sh
	resolveblacklist
	rrd
	sum-stats
	switchlog
	triplicator

	Kernun UTM Reference (5)
	acl
	adaptive-firewall
	alertd
	alertd.cfg
	altq
	antivirus
	application
	atr
	atrmon.cfg
	auth
	clear-web-db
	common
	cwcatd.cfg
	dhcp-server
	dns-proxy
	dns-proxy.cfg
	ftp-proxy
	ftp-proxy.cfg
	gk-proxy
	gk-proxy.cfg
	h323-proxy
	h323-proxy.cfg
	http-cache
	http-control
	http-proxy
	http-proxy.cfg
	ica
	icap-server
	icap-server.cfg
	imap4-proxy
	imap4-proxy.cfg
	interface
	ipc
	ipsec
	kernun.cml
	ldap
	license
	listen-on
	log
	mod-antispam
	mod-html-filter
	mod-mail-doc
	mod-match
	monitoring
	nameserver
	netio
	nls
	ntp
	openvpn
	packet-filter
	pf-control.cfg
	pf-queue
	pike
	pikemon.cfg
	ping
	pop3-proxy
	pop3-proxy.cfg
	proxy-ng
	radius
	resolver
	router
	rtadvd
	sip-proxy
	sip-proxy.cfg
	smtp-proxy
	smtp-proxy.cfg
	snmpd
	source-address
	sqlnet-proxy
	sqlnet-proxy.cfg
	ssh
	ssl
	sysctl
	system
	tcp-proxy
	tcp-proxy.cfg
	tcpserver
	test-expr
	time
	udp-proxy
	udp-proxy.cfg
	udpserver

	Kernun UTM Reference (7)
	access-control, acl
	adaptive-firewall
	antivirus
	auth
	cluster
	configuration
	data-matching
	doctype-identification
	host-matching
	ips
	kernun
	logging
	monitoring
	netio
	port-range-listen
	resolving
	tcpserver
	time-matching
	traffic-shaping
	transparency
	udpserver

	Kernun UTM Reference (8)
	af-db.sh
	alertd
	atrmon
	bootmgr
	cml
	cwcatd
	dns-proxy, test-dns
	ftp-proxy, test-ftp
	gk-proxy, test-gk
	h323-proxy, test-h323
	http-proxy, test-http
	icamd
	icap-server, test-icap
	icasd
	imap4-proxy, test-imap4
	kat
	kavhttpd
	pf-control
	pikemon
	pop3-proxy, test-pop3
	sip-proxy, test-sip
	smtp-proxy, test-smtp
	sqlnet-proxy, test-sqlnet
	sysmgr
	tcp-proxy, test-tcp
	udp-proxy, test-udp

